Index

Note: Page numbers printed in bold face indicate the location in the book where the term is defined, or where the primary discussion of it is located.

Aalen additive hazard model, 143–4, 148
 mediation analysis under the -, 143–4, 148
abdominal aortic aneurysm (sequential treatment of), 94–5
acyclic directed mixed graph (ADMG), 16–22, 60–9
 - representation of a semi-Markovian model, 19
additive hazard model, see ‘Aalen additive hazard model’
adherence, see ‘nonadherence’
 adjustment formula, 61–2, see also ‘back door criterion’
ADMG, see ‘acyclic directed mixed graph’
adoption design, xx, 260–2, 265–6, 269, 272
all causes model, 106–7
always-taker, 117, 321–2
analysis of covariance (using an observed covariate to improve the precision and/or remove the bias of an estimator), xxii, 218, 224, 232
ancestral graph, 342–3
augmented directed acyclic graph (ADAG), 39, 86, 219–20, 226
 - under recursive linear regression, 219
complier - (CACE), 322
 - in time series analysis, 330–1
average treatment effect
 - in the treated (via structural mean model), 322
back door criterion (for the identifiability of causal questions) 31–3, 61–5, 154–5, 220–1, 343–6
 - as a sufficient (but not necessary) condition for the adjustment formula, 61
 - for the identifiability of causal effects in time series analysis, 343–6
Bayesian
 - decision theory, 26–7, 51, 95, 301, 306
 - network, 17–18, see also ‘Markovian model’
 - predictive approach to causal inference, xvii, 71–84
bootstrapping (to compute a confidence interval), 199
bounds, 39, 115–23, 188, 282–3
 - for a non-identifiable causal effect, 115–23
 - for the treatment effect in randomized trials with imperfect compliance, 115–23
 - for a direct effect, 159
bow arc graph (simplest ADMG example of a non-identifiable causal effect), 20

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
INDEX

372

cancer (chemotherapy for ovarian), 274–7
causal diagram, 39–40, 92–3, see also
‘directed acyclic graph representation of
a Markovian model’ and ‘augmented
directed acyclic graph’ and ‘acyclic
directed mixed graph representation of a
semi-Markovian model’ and ‘influence
diagram’ and ‘Bayesian network’
causal graph, see ‘causal diagram’
causal estimator (asymptotic variance of),
222
causative interaction, see ‘interaction,
mechanistic’
c-forest, 67
collapsibility of the causal conditional odds
ratio (insensitive to the retrospective
sampling), 201–2
compliance, see ‘noncompliance’ and
‘compliers’
compliers (latent subgroup of individuals
who would potentially adhere under
either treatment assignment), 311
– average causal effect (CACE), 322
principal stratification to estimate the
effect of treatment in the -, 311
composition, see ‘consistency assumption’
compositionality, 62
confounder, see ‘confounding’
confounding, xvi, 11, 28–31, 61–4, 141,
234–51
adjusting for -, 11
intermediate - (e.g., when some
prognostic factors of the mediator are
themselves affected by the exposure),
141
nonconfounding, 30–1
time-varying -, 234–51
unconfounding, 29–30
consistency assumption (that if a subject is
subject to exposure level X = x, then
the potential outcome Y_x equals the
observed factual outcome Y for that
subject), 8, 10–11, 22, 60–2, 64, 117,
119–21, 128–9
generalized - (composition), 22, 64, 128
contamination (e.g., in a randomized trial
some control arm individuals actually
receive the experimental treatment),
297, 311
controlled direct effect (part of an effect of
interest that we would observe had
we fixed a specific intermediate
response to a particular value, by
intervention in all individuals), see
‘direct effect’
counterfactual (contrary to the fact), 8,
12–13, 20–2, 25, 39, 60–3, 81–2,
101–12, 144, 154–7, 182, 185, 200–1,
297, 312–14
- exposures, 314–15
- graph, 21, 61–3
- question, 21
- survival time, 144
- intensity process, 144
- s for nonmanipulable exposures, 12,
101–12
- s and natural laws, 102
- s and determinism, 13
nested -s, 154–7
relationships between the - and the
sufficient causes framework, 182
- restrictions imposed by a causal
diagram, 63
potential outcomes as - variables, 8
- distributions in non parametric
structural equation models, 20
interpretability of - independencies, 12,
200
- independence, 22, 60, 62, 201
stochastic -s, 185
use of -s to address questions about the
causes of effects, 39
covariance, see ‘analysis of covariance’
Crohn’s disease (molecular mechanisms of),
194–6, 202–4
decision-theoretic, xvii, xviii, 25–40, 44,
47, 62, 85–99, 127, 143, 192–206
- approach to the estimation of the effect
of treatment in the treated, 37
- approach to causal inference, 25–40, 44,
47
- approach to the assessment of dynamic
treatment plans, 85–99
- approach to mechanism interaction, 192–206
- justification of propensity analysis, 33–4
relations between the - and the potential outcomes approach to causal inference, 37
deep determinism, 196
delta method (to compute a confidence interval), 199
direct effect, xix, 11, 35, 69, 109, 115, 126–75
assumption of no interaction between exposure and mediator for the estimation of -s, 131
definitions of controlled and natural -, 127–8, 152–6
estimation of controlled -s via G-computation, 132
estimation of controlled -s via inverse probability weighting, 133–7
estimation of natural indirect and -s in linear logistic, and probit models, 159–64
G-estimation of -s for additive and multiplicative models, 137–41
G-estimation of -s for logistic models, 141–2
no intermediate confounding conditions for the estimation of natural -s, 130
principal stratification -s, 171–3, 301–2
directed acyclic graph (DAG), 16, 19, 29, 72, 82, 92, 95, 116, 124, 219, 235–6
- induced by a recursive Markovian model, 17
- representation of a dynamic treatment plan, 92
augmented - (ADAG), 29, 219
do-calculus, xvii, 32, 44, 46, 64–5, 68, 98, 155
dormant independence, 68–9
dose-response relationship (as evidence in favour of a causal interpretation of an association), 274–89
d-separation, 17–18, 21–2, 34, 60, 62, 65, 92–3
dynamic treatment plan, see ‘sequential treatment plan’
epistasis, 197, 205
compositional epistasis (mechanistic interaction between the effects of genes), 197, 205
excess risk (as a statistic for mechanistic interaction), 197
relationship between - and RERI, 198
checking - via regression analysis, 198–9
conditions under which - implies mechanistic interaction, 200–2
estimation vs identification, 218
exclusion restriction, 315–16
family-structured studies of genetic association, 208–17
front door criterion (for the identifiability of causal questions), 63–4, 65, 156, 220–1
- for the identifiability of causal effects in time series analysis, 344
forensic law (causal inference in), xxi
genetic association, 192–216
G-estimation (of controlled direct effects by first removing the mediator’s effect from the outcome by transforming it, and subsequently estimating the remaining direct effect from the association between the exposure and that residual outcome), 137–46
- of controlled direct effects for additive and multiplicative models, 137–41
- of controlled direct effects via logistic regression model, 141–2
- of controlled direct effects in case-control studies, 142–3
- of controlled direct effects via additive hazard model, 143–6
g-formula, 18
Granger causality (in time series analysis), 4, 79, 328, 332–4, 337–9
- graphs, 337–9
Hardy–Weinberg equilibrium, 195
hedge, 67
INDEX

Hill (Bradford), xv–xvi, 44–54, 273–4
-’s guidelines for a causal interpretation of an observational study, xv–xvi, 44–54, 273–4
HIV (sequential treatment of), 85–90, 93, 98
ignorability, 10, 23, 51, 61–4, 103, 156, 183, 187, 243, 302, 305
conditional -, 23, 61–3
strong -, 10
sequential -, 156, 239
latent -, 302, 305
indirect effect, 126–75, see also ‘direct effect’
policy-making implications of the -, 157
influence diagram, 29, 39, 86
instrumental variable, xv, 34–6, 64, 115, 120, 131, 156, 264–5, 297–300
- as an example of supplementary variable early puberty as an -, 265
- formula, 120
-s to identify subpopulation causal effects, 115
- to rule out reverse causation, 264
mediation analysis using -, 297–300
intention to treat analysis (to estimate a treatment effect in presence of protocol nonadherence), 3, 116, 290–309, 307, 311–16
adherence adjusted -, 314–16
crude -, 313
covariate-adjusted -, 313
complier average causal effect in an -, 291, 322
- in the context of a randomized trial, 3, 116, 290–309, 307, 311–16
mediation analysis in the context of an -, 290–309
assumption of no - between exposure and mediator in the estimation of direct effects, 131
baseline covariate by random allocation -, 300
definition of mechanistic -, 196
- between random allocation and mediator in an “intention to treat analysis” 296
marginalization principle in presence of -, 3
mechanistic -, 50, 182–3, 192–206
qualitative, xix, 208–16
statistical -, 193
sufficient cause -, 183–5
testing for qualitative - by a permutation method, 213
interference, 8, 80, 193, 196, 198
mechanistic -, 193, 196, 198
intervention, xv, xvii, 2, 4, 12, 15–16, 18–19, 27–8, 30–2, 36–8, 88, 92, 97, 101–6, 200, 236, 290–309, 327
atomic vs sequential -, 97
complex -, 290–309
psychotherapy as an example of complex -, 290–305
graphical representation of a sequential - plan, 92
hypothetical - and counterfactuals, 12
-al definition of causal effect, xv, xvii, 4, 15, 101–6, 327
-al distribution, 18, 27–8, 30–2, 36–8
-al regime, 30, 88, 200
- in a Markovian model, 18
- in a non parametric structural equation model, 16
- in a semi-Markovian model, 19
- on both the exposure and the mediator, 129
- operation and do operator, 18
post-treatment -, 2
representing - in a directed acyclic graph, 92, see also ‘regime indicator’
-strategies in the context of a sequential treatment plan, 88, 236
INUS criterion, xxi, 181, 187, 189
inverse probability weighting
estimation of controlled direct effects via -, 132
kinetic independence graph, 358
 local independence and -s, 358–60

latent variable, 339–43, see also
 semi-Markovian model and latent projection
 -s in time series analysis, 339–43
latent projection (an acyclic directed mixed graph representing a Markovian model with latent variables), 19
Latin square analysis (error estimation in), 3
legal philosophy (causal inference in), xx
linear risk regression model, 193–4
linear odds regression model, 194
local independence, 79, 352, 358, 361–2
 - properties of stochastic kinetic models, 358
 - and kinetic independence graphs, 358–60
 - and causal influence, 361–2
marginalization principle (irrelevance of models with nonzero interaction but exactly zero main effects), 3
marked point process, 76–84
 sequential treatment plans as -s, 76–84
Markov chain Monte Carlo (MCMC), 95, 211–13
Markovian model, 17–19, see also
 ‘semi-Markovian model’ and ‘nonparametric structural equation model’ and ‘intervention’
 recursive -, 17
 difference between a - and a Bayesian network, 18
 directed acyclic graph representation of a -, 17
Markov relative to a directed acyclic graph (property of a joint probability distribution), 17
mechanism, 193
mechanistic interaction, see ‘interaction’
mediation analysis, 126–75, 297, 290–309, 301–2, see also ‘direct effect’
 - in randomized trials, 290–309
 - using instrumental variables, 297
 - using principal stratification, 301–2
 - in the context of an intention to treat analysis, 290–309
mediator, see ‘mediation analysis’
Mendelian randomization (use of a genotype as an instrumental variable to investigate an hypothesised environmental or biological cause), xx, 264–5, see also ‘instrumental variable’
 - as a natural experiment, 264–5
mitogen activated protein kinase (MAPK) signalling cascade, 365–9
mixed graph, 16–19, 22, 60–9, 338–42, 345, 350, 353–4
moderation, 168, 300, 306
modularity, 28, 92
m-separation, 17, 61–2, 68, 338–9, 341
multiple sclerosis (molecular mechanisms of), 209–12, 214–16
mutilated graph (resulting from an intervention operation on a causal diagram representation of a NPSEM), 18, 21, 60, 65
natural direct effect (allows the mediator to be fixed at the level that each individual held naturally, just before applying the treatment), see ‘direct effect’
natural experiment, 253–68
 adoption studies as -s, 260
 early puberty designs as a -, 265–7
 children of twins designs as a -, 259–61
 Mendelian randomization as a -, 264–5
natural law (thought to govern a particular system at all times and places, as in classical physics), 101–13
 - conceptualization of a causal effect for a nonmanipulable variable, 101–13
 -s and ‘counterfactuals’, 102
necessary element for the sufficiency of a sufficient set (NESS), xxi, 187
nonadherence (in either of two forms: noncompliance and contamination), see ‘noncompliance’ and ‘contamination’
noncompliance (e.g., some subjects randomized to the experimental treatment do not receive it), 297, 311
nonevidential assumptions, 49, 203, 205
non parametric structural equation model (NPSEM), xvi, 7, 12, 15–23, 39, 44, 47, 105, 124, 152, 155, 171, 205, 256, 258, 331, 338–9, 341
causal diagram representation of -, 17
definition of -, 17
relation between -s and "potential outcomes", 22–3
NPSEM, see 'non parametric structural equation model'

observational study, 11
odds of disease, 198
odds ratio, 198

postmenopausal hormone therapy, 319–21
post-truncation independence constraints, 68–9
potential outcome, xvi–xvii, xxi, 6–13, 15–16, 20, 22–3, 37, 45, 81–2, 114–24, 127, 153, 312
cross-classifications by -, 114–24
definition of -, 7
- definition of subject-specific causal effect, 8
- definition of controlled direct effect, 127, 153
relation between - and non parametric structural equation models, 12, 22–3
-s for nonmanipulable exposures, 12, 101–12
relations between - and decision-theoretic causal inference, 37
-s and missing data, 45
- definition of a causal treatment effect, 312
using -s to define causal effects in presence of truncation by death, 121–4
potential response, see 'potential outcome' principal
- stratification, xvi, 38–9, 117–18, 124, 129, 301–5, 311, 321–2
- stratification to estimate the effect of treatment in the compliers, 311
mediation analysis using - stratification, 129, 173, 297, 301–5
- stratification for causal inference in randomized trials, 321–2
- strata defined by joint compliance behavior, 117–18
propensity, 11, 33–4, 51, 255, 263, 274
- analysis, 33–4
- score, 11, 34, 51, 255, 263, 274
psychotherapy (as an example of complex intervention), 290–305

qualitative interaction (where the value of a causal factor determines a change of direction in the effect of another factor), see 'interaction'

randomized trial, 310–26, see also
’intention to treat analysis’ and ’randomized experiment’
principal stratification for causal inference in -, 321–2
use of structural mean models in -s, 315–22
randomized experiment, 9–10
rank-preserving model, 297–9, 324
regime (the set of the conditions under which a given study operates, characterized by a particular joint distribution for the observed variables), xvi, 25–38, 86, 88–9, 200
- indicator, 28, 86, 89
representation of a - indicator in a causal (influence) diagram, 29, 92–3
observational vs experimental -, xvi, 25–38, 86, 88, 200
inference across -s, xvii
regression discontinuity designs to deal with unmeasured confounders, 265–6
relative excess risk due to interaction (RERI), 198
RERI, see ‘relative excess risk due to interaction’
reverse causation, 264
Rothamsted view on causality, xv–xvi, 2–3
schizophrenia, 302–6
selection bias, 263–4
designs for dealing with -, 263–4
semi-Markovian model (a generalization of a Markovian model*, that allows for latent variables), 19–22, 63–8, see also ‘intervention’
sequential treatment plan, 76–100
-s as marked point processes, 76–84
stability condition for the identifiability of a -, 90–1
positivity condition for the identifiability of a -, 91
graphical representation of -s, 92–5
sharp causal null hypothesis, 8
single nucleotide polymorphism (SNP) is a DNA sequence variation occurring when a single nucleotide in the genome differs between members of a biological species, 210–12
Sims causality (in time series analysis), 334–5
stable-unit-treatment-value-assumption (SUTVA), 7
stochastic kinetic model (SKM), 355–70
structural mean model, 297–301, 315–22
subject-specific causal effect, see ‘potential outcome’
sufficient cause, xviii, 50, 180–91, 198
- interaction, 183–5
the - framework in philosophy, 181
the - framework in epidemiology and biomedicine, 181–5
the - framework in statistics, 185
the - framework in the social sciences, 185–7
relationships between the counterfactual and the - frameworks, 182
superadditivity (as a statistic for mechanistic interaction), 197–8
relationship between - and RERI, 198
checking - via regression analysis, 198–9
conditions under which - implies mechanistic interaction, 200–2
supplementary variable (to improve the efficiency of an estimator or to make an effect of interest estimable), xv, 218–32
synergism, see ‘mechanistic interaction’
therapeutic alliance, 292–7, 301–5
time series, 327–54
analysis of -, 327–54
learning causal structure in - analysis, 346–9
graphical representations for -, 335–43
transparent action, 97
treated (effect of treatment in the), 37–9
treatment effect heterogeneity, 291–3
truncation by death (e.g., when, in the study of the long-term effect of an exposure, some subjects die before the outcome can be measured), 115, 121–4, 297
using potential outcomes to define causal effects in presence of -, 121–4
twin network graph (a special case of counterfactual graph), 21
two-stage least squares, 256, 298, 318