Contents

Foreword by R. Alkire V
Foreword by Y. Gogotsi and P. Simon VII
Preface XIX
List of Contributors XXIII

1 Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing 1
Grzegorz D. Sulka
1.1 Introduction 1
1.2 Anodizing of Aluminum and Anodic Porous Alumina Structure 6
1.2.1 Types of Anodic Oxide Film 7
1.2.2 General Structure of Anodic Porous Alumina 8
1.2.2.1 Pore Diameter 9
1.2.2.2 Interpore Distance 12
1.2.2.3 Wall Thickness 13
1.2.2.4 Barrier Layer Thickness 14
1.2.2.5 Porosity 17
1.2.2.6 Pore Density 19
1.2.3 Incorporation of Anions 20
1.2.4 Cell-Wall Structure 23
1.2.5 Crystal Structure of Oxide 26
1.2.6 Density and Charge of Oxide Film 26
1.2.7 Miscellaneous Properties of Anodic Porous Alumina 27
1.3 Kinetics of Self-Organized Anodic Porous Alumina Formation 28
1.3.1 Anodizing Regimes and Current/Potential-Time Transient 28
1.3.2 Pores Initiation and Porous Alumina Growth 32
1.3.2.1 Historical Theories 32
1.3.2.2 Field-Assisted Mechanism of Porous Film Growth 34
1.3.2.3 Steady-State Growth of Porous Alumina 36
1.3.2.4 Growth Models Proposed by Patrmarakis and Colleagues 39

Nanostructured Materials in Electrochemistry. Edited by Ali Eftekhar
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31876-6
1.3.2.5 Other Phenomenological Models of Porous Alumina Growth 41
1.3.2.6 Other Theoretical Models of Porous Alumina Growth 44
1.3.3 Volume Expansion: The Pilling–Bedworth Ratio (PBR) 45
1.3.4 Rates of Oxide Formation and Oxide Dissolution 46
1.4 Self-Organized and Prepatterned-Guided Growth of Highly Ordered Porous Alumina 50
1.4.1 Aluminum Pre-Treatment 53
1.4.2 Self-Organized Anodizing of Aluminum 58
1.4.2.1 Structural Features of Self-Organized AAO 60
1.4.2.2 Order Degree and Defects in Nanopore Arrangement 74
1.4.3 Post-Treatment of Anodic Porous Alumina 81
1.4.3.1 Removal of the Aluminum Base 81
1.4.3.2 Removal of the Barrier Layer 82
1.4.3.3 Structure and Thinning of the Barrier Layer 85
1.4.3.4 Re-Anodization of Anodic Porous Alumina 87
1.5 AAO Template-Assisted Fabrication of Nanostructures 88
1.5.1 Metal Nanodots, Nanowires, Nanorods, and Nanotubes 89
1.5.2 Metal Oxide Nanodots, Nanowires, and Nanotubes 91
1.5.3 Semiconductor Nanodots, Nanowires, Nanopillars, and Nanopore Arrays 91
1.5.4 Polymer, Organic and Inorganic Nanowires and Nanotubes 93
1.5.5 Carbon Nanotubes 94
1.5.6 Photonic Crystals 95
1.5.7 Other Nanomaterials (Metallic and Diamond Membranes, Biomaterials) 95
References 97

2 Nanostructured Materials Synthesized Using Electrochemical Techniques 117

Cristiane P. Oliveira, Renato G. Freitas, Luiz H.C. Mattoso, and Ernesto C. Pereira

2.1 Introduction 117
2.2 Anodic Synthesis 119
2.2.1 Electropolishing and Anodization 119
2.2.2 Porous Anodic Alumina 128
2.2.2.1 Porous Anodic Alumina as Template 135
2.2.2.2 Porous Anodic Alumina to Create Nanodevices 137
2.3 Cathodic Synthesis 144
2.3.1 Nanowires 144
2.3.1.1 Template Procedures to Prepare Nanowires 145
2.3.1.2 Magnetic Nanowires 147
2.3.1.3 Nanotubes 152
2.3.2 Multilayers 158
2.3.3 Other Materials 162
2.3.3.1 Semiconductors 165
2.3.3.2 Oxides 168
2.3.3.3 Metals 170
2.4 Final Remarks 173
References 174

3 Top-Down Approaches to the Fabrication of Nanopatterned
Electrodes 187
Yvonne H. Lanyon and Damien W.M. Arrigan
3.1 Introduction 187
3.2 Considerations for Choosing a Nanoelectrode Fabrication
Strategy 189
3.3 Nanoelectrode Fabrication Using Top-Down Approaches 190
3.3.1 E-Beam Lithography 191
3.3.2 Focused Ion Beam Lithography 196
3.3.3 Nano-Imprint Lithography 199
3.3.4 Nanogap Electrodes 203
3.3.5 Non-High-Resolution Techniques 205
3.4 Applications 206
3.5 Conclusions 207
References 209

4 Template Synthesis of Magnetic Nanowire Arrays 211
Sima Valizadeh, Mattias Strömberg, and Maria Strømme
4.1 Introduction 211
4.2 Electrochemical Synthesis of Nanowires 213
4.2.1 Fabrication of Nanoelectrodes 213
4.2.2 Reactions, Diffusion, and Nucleation in the Electrochemical
Deposition of Co Nanowires 214
4.2.2.1 Theoretical Considerations of Spherical Diffusion at a
Nanode Array 214
4.2.3 Electrodeposition of Magnetic Multilayered Nanowire
Arrays 222
4.2.3.1 Electrodeposition of 8 nm Ag/15 nm Co Multilayered Nanowire
Arrays (Wire Diameter 120 nm) 224
4.2.3.2 Template Synthesis of 2 nm Au/4 nm Co Multilayered Nanowire
Arrays (Wire Diameter 110 nm) 225
4.3 Physical Properties of Electrodeposited Nanowires 231
4.3.1 Magnetic Properties of Nanowire Arrays 231
4.3.2 Electrical Transport Measurements on Single Nanowires Using
Focused Ion Beam Deposition 234
4.4 Summary 238
References 238
8 Nanoscale Engineering for the Mechanical Integrity of Li-Ion Electrode Materials 319
Katerina E. Aifantis and Stephen A. Hackney
8.1 Introduction 319
8.2 Electrochemical Cycling and Damage of Electrodes 320
8.2.1 Fracture Process of Planar Electrodes 320
8.2.2 Electrochemical Cycling of Particulate Electrodes 323
8.3 Electrochemical Properties for Nanostructured Anodes 330
8.3.1 Nanostructured Metal Anodes 331
8.3.1.1 Sn and Sn-Sb Anodes at the Nanoscale 331
8.3.1.2 Si Anodes at the Nanoscale 333
8.3.2 Embedding/Encapsulating Active Materials in Less-Active Materials 334
8.3.2.1 Sn-Based Anodes 335
8.3.2.2 Si-Based Anodes 337
8.4 Modeling Internal Stresses and Fracture of Li-anodes 339
8.4.1 Stresses Inside the Matrix 339
8.4.2 Stable Crack Growth 341
8.4.3 Griffith’s Criterion 342
8.4.4 No Cracking 344
8.5 Conclusions and Future Outlook 345
References 345

9 Nanostructured Hydrogen Storage Materials Synthesized by Mechanical Alloying 349
Mieczyslaw Jurczyk and Marek Nowak
9.1 Introduction 349
9.1.1 The Aim of the Research 349
9.1.2 Types of Hydride 352
9.1.3 The Absorption–Desorption Process 353
9.1.4 Hydrides Based on Intermetallic Compounds of Transition Metals 354
9.1.5 Prospects for Nanostructured Metal Hydrides 355
9.2 The Fundamental Concept of the Hydride Electrode and the Ni-MH Battery 357
9.2.1 The Hydride Electrode 357
9.2.2 The Ni-MH Battery 357
9.2.2.1 Normal Charge–Discharge Reactions 357
9.2.2.2 Overcharge Reactions 357
9.2.2.3 Over-Discharge Reaction 358
9.3 An Overview of Hydrogen Storage Systems 358
9.3.1 The TiFe-Type System 359
9.3.2 The ZrV₂-Type System 364
9.3.3 The LaNi₅-Type System 366
### Contents

9.3.4 The Mg$_2$Ni-Type System 369  
9.3.5 Nanocomposites 371  
9.4 Electronic Properties 376  
9.5 Sealed Ni-MH Batteries 381  
9.6 Conclusions 382  
References 383  

10 Nanosized Titanium Oxides for Energy Storage and Conversion 387  
Aurelien Du Pasquier  
10.1 Introduction 387  
10.2 Preparation of Nanosized Titanium Oxide Powders 387  
10.2.1 Wet Chemistry Routes 387  
10.2.2 Chemical Vapor Deposition 389  
10.2.3 Vapor-Phase Hydrolysis 389  
10.2.4 Physical Vapor Deposition 390  
10.3 Other TiO$_2$ Nanostructures 390  
10.4 Preparation of Nano-Li$_4$Ti$_5$O$_12$ 390  
10.5 Nano-Li$_4$Ti$_5$O$_12$ Spinel Applications in Energy Storage Devices 393  
10.5.1 Asymmetric Hybrid Supercapacitors 394  
10.5.2 High-Power Li-Ion Batteries 396  
10.6 Nano-TiO$_2$ Anatase for Solar Energy Conversion 398  
10.6.1 TiO$_2$ Role in Dye-Sensitized Solar Cells 398  
10.6.2 Trap-Limited Electron Transport in Nanosized TiO$_2$ 399  
10.6.3 Electron Recombination in Dye-Sensitized Solar Cells 400  
10.6.4 Preparation of Flexible TiO$_2$ Photoanodes 401  
10.6.4.1 Sol–Gel Additives 402  
10.6.4.2 Mechanical Compression 403  
10.6.4.3 Metallic Foils 403  
10.7 Conclusions 404  
References 405  

11 DNA Biosensors Based on Nanostructured Materials 409  
Adriana Ferancová and Ján Labuda  
11.1 Introduction 409  
11.2 Nanomaterials in DNA Biosensors 410  
11.2.1 Carbon Nanotubes 410  
11.2.1.1 Electronic Properties and Reactivity of CNTs 411  
11.2.1.2 CNT–DNA Interaction 412  
11.2.1.3 CNTs in DNA Biosensors 413  
11.2.2 Fullerenes 422  
11.2.3 Diamond and Carbon Nanofibers 423  
11.2.3.1 Diamond 423  
11.2.3.2 Carbon Nanofibers 424  
11.2.4 Clays 424