APPLIED CALCULUS

Sixth Edition

Produced by the Calculus Consortium and initially funded by a National Science Foundation Grant.

Deborah Hughes-Hallett Patti Frazer Lock Daniel E. Flath
University of Arizona _St. Lawrence University_ _Macalester College_

Andrew M. Gleason Guadalupe I. Lozano Karen Rhea
Harvard University _University of Arizona_ _University of Michigan_

Eric Connally William G. McCallum Ayşe Şahin
Harvard University Extension _University of Arizona_ _Wright State University_

Selin Kalaycioğlu Brad G. Osgood Adam H. Spiegler
New York University _Stanford University_ _Loyola University Chicago_

Brigitte Lahme Cody L. Patterson Jeff Tecosky-Feldman
Sonoma State University _University of Texas at San Antonio_ _Haverford College_

David O. Lomen Douglas Quinney Thomas W. Tucker
University of Arizona _University of Keele_ _Colgate University_

David Lovelock Aaron D. Wootton
University of Arizona _University of Portland_

with the assistance of
Otto K. Bretscher
Colby College

Coordinated by
Elliot J. Marks

WILEY

John Wiley & Sons, Inc.

This book was set in Times Roman by the Consortium using TeX, Mathematica, and the package AsTeX, which was written by Alex Kasman. It was printed and bound by Quad Graphics / Versailles. The cover was printed by Quad Graphics / Versailles.

This book is printed on acid-free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

This material is based upon work supported by the National Science Foundation under Grant No. DUE-9352905. Opinions expressed are those of the authors and not necessarily those of the Foundation.

The inside back cover will contain printing identification and country of origin if omitted from this page. In addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.
We dedicate this book to Andrew M. Gleason.

His brilliance and the extraordinary kindness and dignity with which he treated others made an enormous difference to us, and to many, many people. Andy brought out the best in everyone.

Deb Hughes Hallett
for the Calculus Consortium
Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy, Newton and Leibniz developed the ideas of calculus 300 years ago. Since then, each century has demonstrated the power of calculus to illuminate questions in mathematics, the physical sciences, engineering, business, and the social and biological sciences.

Calculus has been so successful because of its extraordinary power to reduce complicated problems to simple rules and procedures. Therein lies the danger in teaching calculus: it is possible to teach the subject as nothing but the rules and procedures—thereby losing sight of both the mathematics and of its practical value. This edition of *Applied Calculus* continues our effort to promote courses in which understanding reinforces computation.

Embracing e-Learning

Paper books are playing a smaller role in courses than in the past and are being replaced by electronic materials. This Sixth Edition provides opportunities for students to experience the concepts of calculus in ways that would not be possible in a traditional textbook. The enhanced e-text of *Applied Calculus*, powered by VitalSource, provides embedded videos and the complete solutions from the Student Solutions Manual. The enhanced e-text also contains additional content not found in the print edition:

- Worked example videos, which provide students the opportunity to see and hear over one hundred of the book’s examples being explained and worked out in detail, have been created to accompany the sixth edition.
- Strengthen Your Understanding true/false problems that focus on conceptual understanding.
- Appendices that extend ideas in the course.
- Chapter 10, on Geometric Series.
- Chapter summaries, giving a concise overview of each chapter.

WileyPLUS

In addition to the enhanced e-text, Students and instructors can access a wide variety of resources through WileyPLUS with ORION, Wiley’s digital learning environment. ORION Learning provides an adaptive, personalized learning experience that delivers easy-to-use analytics so instructors and students can see exactly where they’re excelling and where they need help. WileyPLUS with ORION features the following resources:

- Homework management tools, which enable the instructor to assign questions easily and grade them automatically, using a rich set of options and controls.
- QuickStart pre-designed reading and homework assignments. Use them as-is or customize them to fit the needs of your classroom.
- Intelligent Tutoring questions, in which students are prompted for responses as they step through a problem solution and receive targeted feedback based on those responses.
- Algebra Refresher material, delivered through ORION, provides students with an opportunity to brush up on material necessary to master Calculus, as well as to determine areas that require further review.
- Graphing Calculator Manual, to help students get the most out of their graphing calculator, and to show how they can apply the numerical and graphing functions of their calculators to their study of calculus.

Flexible Balance: Concepts and Modeling

The first goal of a calculus course is to acquire a clear intuitive picture of the central ideas. After this foundation has been laid, there is a choice of direction. All students benefit from both mathematical concepts and
modeling, but the balance may differ for different groups of students. For instructors wishing to emphasize the connection between calculus and other fields, the text includes:

- A variety of problems and examples from the biological sciences, economics, and business.
- Models from the health sciences and of population growth.
- Problems on sustainability.
- Case studies on medicine by David E. Sloane, MD.

Active Learning: Good Problems

As instructors ourselves, we know that interactive classrooms and well-crafted problems promote student learning. Since its inception, the hallmark of our work has been its innovative and engaging problems. These problems probe student understanding in ways often taken for granted. Praised for their creativity and variety, the influence of these problems has extended far beyond the users of our textbook.

The Sixth Edition continues this tradition. Under our approach, which we called the “Rule of Four,” ideas are presented graphically, numerically, symbolically, and verbally, thereby encouraging students with a variety of learning styles to deepen their understanding. This edition continues to provide a wide variety of problem types:

- *End of Section Problems* reinforce the ideas of that section and make connections with earlier sections.
- *ConcepTests* promote active learning in the classroom. These can be used with or without any polling software, and have been shown to dramatically improve student learning. ConcepTests are particularly useful to instructors teaching in a flipped classroom. ConcepTests are available online for instructors in PPT or PDF format in WileyPLUS or on the Instructor Book Companion site at www.wiley.com/college/hughes-hallett.
- *Chapter Review Problems*, reserved for instructor-only use in WileyPLUS, provide opportunities to review ideas from the whole chapter.
- *Projects* for each chapter provide opportunities for a sustained investigation, often using skills from different parts of the course. These include business applications, issues in sustainability, and medical case studies based on clinical practice.
- *True-False Strengthen Your Understanding* questions, available online for every chapter, enable students to check their progress.
- *Spreadsheet Projects* in the online Appendix provide the opportunity for students to develop their spreadsheet skills while deepening their understanding of functions and calculus.
- *Focus on Practice* exercises at the end of Chapter 3 and 6 (Derivatives and Antiderivatives) build student skill and confidence.

Origin of the Text: A Community of Instructors

This text, like others we write, draws on the experience of a diverse group of authors and users. We have benefitted enormously from input from a broad spectrum of instructors—at research universities, four-year colleges, community colleges, and secondary schools. For *Applied Calculus*, the contributions of colleagues in biology, economics, medicine, business, and other life and social sciences have been equally central to the development of the text. It is the collective wisdom of this community of mathematicians, teachers, and natural and social scientists that forms the basis for the new edition.

What Student Background is Expected?

This book is intended for students in business, the social sciences, and the life sciences. A background in trigonometry is *not* required; the sections involving trigonometry are optional.

We have found the material to be thought-provoking for well-prepared students while still accessible to students with limited algebra backgrounds. Providing numerical and graphical approaches as well as the
algebraic gives students several ways of mastering the material. This approach encourages students to persist, thereby lowering failure rates. A pre-test over background material is available at the student book companion site: www.wiley.com/college/hughes-hallett. An ORION algebra refresher is available in WileyPLUS.

Mathematical Skills: A Balance Between Symbolic Manipulation and Technology

To use calculus effectively, students need familiarity with both symbolic manipulation and the use of technology. The balance between them may vary, depending on the needs of the students and the wishes of the instructor. The book is adaptable to many different combinations.

The book does not require any specific software or technology. Students may use whatever is readily available—a graphing calculator or online tools.

The Sixth Edition

Because different users often choose very different topics to cover in a one-semester applied calculus course, we have designed this book for either a one-semester course (with much flexibility in choosing topics) or a two-semester course. Sample syllabi are provided in the Instructor’s Manual.

The sixth edition has the same vision as previous editions. In preparing this edition, we solicited comments from a large number of mathematics instructors who had used the text. We continued to discuss with our colleagues in client disciplines the mathematical needs of their students. We were offered many valuable suggestions, which we have tried to incorporate, while maintaining our original commitment to a focused treatment of a limited number of topics. The changes we have made include:

- About 400 additional problems have been added to the WileyPLUS course, expanding instructors’ options for online homework assignments.
- Worked example videos have been added for every section in the text.
- Updated data and fresh applications throughout the book, including
 - Problems on sustainability.
 - Case studies on medicine by David E. Sloane, MD.
- Many new problems have been added, designed to build student confidence with basic concepts and to reinforce skills.
- As in the previous edition, a Pre-test is included for students whose skills may need a refresher prior to taking the course. It is available online at www.wiley.com/college/hughes-hallett.

Content

This content represents our vision of how applied calculus can be taught. It is flexible enough to accommodate individual course needs and requirements. Topics can easily be added or deleted, or the order changed.

Chapter 1: Functions and Change

Chapter 1 introduces the concept of a function and the idea of change, including the distinction between total change, rate of change, and relative change. All elementary functions are introduced here. Although the functions are probably familiar, the graphical, numerical, verbal, and modeling approach to them is likely to be new. We introduce exponential functions early, since they are fundamental to the understanding of real-world processes. The trigonometric functions are optional.

Chapter 2: Rate of Change: The Derivative

Chapter 2 presents the key concept of the derivative according to the Rule of Four. The purpose of this chapter is to give the student a practical understanding of the meaning of the derivative and its interpretation as an instantaneous rate of change. Students will learn how the derivative can be used to represent relative
rates of change. After finishing this chapter, a student will be able to approximate derivatives numerically by taking difference quotients, visualize derivatives graphically as the slope of the graph, and interpret the meaning of first and second derivatives in various applications. The student will also understand the concept of marginality and recognize the derivative as a function in its own right.

Focus on Theory: This section discusses limits and continuity and presents the symbolic definition of the derivative.

Chapter 3: Short-Cuts to Differentiation

The derivatives of all the functions in Chapter 1 are introduced, as well as the rules for differentiating products, quotients, and composite functions. Students learn how to find relative rates of change using logarithms.

Focus on Theory: This section uses the definition of the derivative to obtain the differentiation rules.

Focus on Practice: This section provides a collection of differentiation problems for skill-building.

Chapter 4: Using the Derivative

The aim of this chapter is to enable the student to use the derivative in solving problems, including optimization and graphing. It is not necessary to cover all the sections.

Chapter 5: Accumulated Change: The Definite Integral

Chapter 5 presents the key concept of the definite integral, in the same spirit as Chapter 2. The purpose of this chapter is to give the student a practical understanding of the definite integral as a limit of Riemann sums, and to bring out the connection between the derivative and the definite integral in the Fundamental Theorem of Calculus. We use the same method as in Chapter 2, introducing the fundamental concept in depth without going into technique. The student will finish the chapter with the ability to approximate a definite integral numerically and interpret it graphically. The chapter includes applications of definite integrals in a variety of contexts, including the average value of a function.

Chapter 5 can be covered immediately after Chapter 2 without difficulty.

Focus on Theory: This section presents the Second Fundamental Theorem of Calculus and the properties of the definite integral.

Chapter 6: Antiderivatives and Applications

This chapter covers antiderivatives from a graphical, numerical, and algebraic point of view. The Fundamental Theorem of Calculus is used to evaluate definite integrals.

Sections 6.4–6.7 are optional. Application sections are included on consumer and producer surplus and on present and future value; the integrals in these sections can be evaluated numerically or using the Fundamental Theorem. The chapter concludes with sections on integration by substitution and integration by parts.

Focus on Practice: This section provides a collection of integration problems for skill-building.

Chapter 7: Probability

This chapter covers probability density functions, cumulative distribution functions, the median and the mean.

Chapter 8: Functions of Several Variables

This chapter introduces functions of two variables from several points of view, using contour diagrams, formulas, and tables. It gives students the skills to read contour diagrams and think graphically, to read tables and think numerically, and to apply these skills, along with their algebraic skills, to modeling. The idea of the partial derivative is introduced from graphical, numerical, and symbolic viewpoints. Partial derivatives are then applied to optimization problems, ending with a discussion of constrained optimization using Lagrange multipliers.

Focus on Theory: This section uses optimization to derive the formula for the regression line.
Chapter 9: Mathematical Modeling Using Differential Equations

This chapter introduces differential equations. The emphasis is on modeling, qualitative solutions, and interpretation. This chapter includes applications of systems of differential equations to population models, the spread of disease, and predator-prey interactions.

Focus on Theory: This section explains the technique of separation of variables.

Chapter 10: Geometric Series (Available online and in the e-text)

This chapter covers geometric series and their applications to business, economics, and the life sciences.

Appendices (Available online and in the e-text)

Appendix A introduces the student to fitting formulas to data; Appendix B provides further discussion of compound interest and the definition of the number e. Appendix C contains selection of spreadsheet projects.

Supplementary Materials

Supplements for the instructor can be obtained online at the book companion site or by contacting your Wiley representative. The following supplementary materials are available for this edition:

- Instructor’s Manual containing teaching tips, sample syllabi, calculator programs, and overhead transparency masters, also available as PowerPoint slides.
- Instructor’s Solution Manual with complete solutions to all problems.
- Student’s Solution Manual with complete solutions to half the odd-numbered problems.
- Additional Material for Instructors, elaborating specially marked points in the text, lecture notes, and course notes, as well as password protected electronic versions of the instructor ancillaries, can be found on the web at the book companion site: www.wiley.com/college/hughes-hallett.
- Additional Material for Students, including an algebra refresher, is available via WileyPLUS.

ConcepTests

ConcepTests, or clicker questions, modeled on the pioneering work of Harvard physicist Eric Mazur, are questions designed to promote active learning during class, particularly (but not exclusively) in large lectures. Evaluation data showed that students taught with ConcepTests outperformed students taught by traditional lecture methods 73% versus 17% on conceptual questions, and 63% versus 54% on computational problems. A supplement to Applied Calculus, 6th edn, containing ConcepTests by section, is available through WileyPLUS and at the book companion site, www.wiley.com/college/hughes-hallett.

WileyPLUS Studio

The WileyPLUS studio is an online community that brings WileyPLUS users together in an engaging, virtual environment. It’s a space where you can share insights, identify best practices, provide product feedback, learn from peers and get rewarded for your efforts.

Acknowledgements

First and foremost, we want to express our appreciation to the National Science Foundation for their faith in our ability to produce a revitalized calculus curriculum and, in particular, to Louise Raphael, John Kenelly, John Bradley, Bill Haver, and James Lightbourne. We also want to thank the members of our Advisory Board, Benita Albert, Lida Barrett, Bob Davis, Lovenia DeConge-Watson, John Dossey, Ron Douglas, Don Lewis, Seymour Parter, John Prados, and Steve Rodi for their ongoing guidance and advice.

1“Peer Instruction in Physics and Mathematics” by Scott Pilzer in Primus, Vol XI, No 2, June 2001. At the start of Calculus II, students earned 73% on conceptual questions and 63% on computational questions if they were taught with ConcepTests in Calculus I; 17% and 54% otherwise.
In addition, we want to thank all the people across the country who encouraged us to write this book and who offered so many helpful comments. We would like to thank the following people, for all that they have done to help our project succeed: Enrique Acosta, Ruth Baruth, Graeme Bird, Jeanne Bowman, Lucille Buonocore, Scott Clark, Jeff Edmunds, Sunny Fawcett, Lynn Garner, Sheldon P. Gordon, Ole Hald, Jenny Harrison, Adrian Iovita, Thomas Judson, Christopher Kennedy, Hannah Knight, Donna Krawczyk, Suzanne Lenhart, Madelyn Lesure, Kevin Martin, Rosalind Horn Martin, Georgia Kamvosoulis Mederer, Nolan Miller, David Muñoz Ramírez, Andrew Pasquale, Richard D. Porter, Laurie Rosatone, Kenneth Santor, Anne Scanlan-Rohrer, Alfred Schipke, Virginia Stallings, Ralph Teixeira, Joe B. Thrash, J. Jerry Uhl, Rachel Deyette Werkema, Hannah Winkler, and Hung-Hsi Wu.

Reports from the following reviewers were most helpful in shaping the sixth edition:
 Jill E Guerra, Nicole Williams, Ben Wehrung, Lauren Fern, Dipa Sarkar-Dey, Alicia Frost, Pamela D Nemeth, Alice Dealin, Pam Crawford, Christopher Dona, Victor Roeske, Steven Leonhardi, and Christopher Goodrich.

Reports from the following reviewers were most helpful in shaping the fifth edition:
 Anthony Barcellos, Catherine Benincasa, Bill Blubagh, Carol Demas, Darlene Diaz, Lauren Fern, Wesley Griffith, Juill Guerra, Molly Martin, Rebecca McKay, Barry Peratt, Karl Schaffer, Randy Scott, Paul Vicknair, Tracy Whelan, P. Jay Zeltner.
APPLICATIONS INDEX

Business and Economics

Admission fee 39
Advertising 8, 113, 118, 343, 352, 356, 363
Aircraft landing/takeoff 50
Airline capacity and revenue 121–122, 336, 340, 353, 357, 363
Annual interest rate 59–60, 65, 111, 113, 147, 155, 306, 344, 410, 419
Annual yield 318
Apple Apps downloads 114
Attendance 26, 75, 200
Average cost 202–208, 213, 229, 269
Bank account 60, 62, 147, 148, 155, 304–305, 340, 343, 352, 369, 394–395, 408, 410, 411, 419
Beef consumption 343
Beer production 112
Bicycle production 26, 267
Billionaires in US 29
Break-even point 33–34, 38, 39, 353
Budget constraints 37–38, 41, 376–383
Business revenue
 General Motors 28
 Hershey 19, 55, 307
 McDonald’s 15, 307
Car rental 14, 341–342
Cartel pricing 300
Chemical costs 94, 109, 111, 126
Cobb-Douglas production function 201, 208, 348–349, 370, 380, 383, 398
Coffee 63, 64, 148, 212, 266, 362, 395
College savings account 307
Competing businesses 363
Compound interest 47, 53, 58–66, 85, 86, 147,148, 304–308, 408, 410, 411, 419
Consumer surplus 297–303
Consumption
 alternative fuels 65
 biodiesel 30, 50
 calorie 76, 77, 111, 143, 268, 344, 361, 362
 CFC 7
 drug 221-222
 E85 fuel 65
 energy 305, 323
 fossil fuel 243
 gas in car 7, 24, 77, 109, 113, 150–151, 189–190, 241–242, 259, 342
 hydroelectric power 30, 50
 wind power 50–51, 62
Consumption smoothing 272
Contract negotiation 65
Cost overruns 332
Crop yields 326
Density function 322–336
Depreciation 4, 9, 35, 40, 65, 396
Doubling time 56, 58–60, 62–65
Duality 384
Economy 30, 349, 370
Economy of scale 120
Elasticity of demand 25, 202–206, 213
Energy output and consumption 30, 50, 62, 151, 155, 189–190, 241, 273, 296
Equilibrium prices 36–38, 40, 42, 298–303
Equilibrium solution 415–416, 419–420
Facebook subscribers 114
Farms in the US 19, 93–94
Fertilizer 8, 106–107, 143, 200, 332
Fixed cost 31–32, 34, 38–39, 41, 68, 120, 123, 106–197, 199, 201
Future value 60–61, 65, 303–307, 408
Gas mileage 7
Gold production and reserves 111
Government spending 7, 111
Gross Domestic Product 3, 30, 48, 108
Gross World Product 55
Heating costs 269
Households with cable TV 7, 28, 95, 220
Housing construction 71–79
Income stream 303–306
Inflation 30, 49, 56, 60, 149, 156
Inventory 271
Job satisfaction 356
Joint cost function 382
Labor force 28, 349, 354,382
Land use 221, 411
Lifetime
 of a banana 332, 337
 of a machine 33, 326
 of a transistor 333
Loan payments 66, 86, 113, 272, 363
Lottery payments 61, 66
Marginal product of labor 202
Marginal profit 34, 39, 195, 267
Marginal revenue 34, 39, 122–126, 144, 155, 157, 194–202, 213, 267, 293
Maximum profit 125, 194–196, 200–203, 210, 372–373, 376
Maximum revenue 75, 198,200,210
Milk production 15, 211
Mortgage payments 344, 363
Multiplier 105–106, 144
Multiplier, fiscal policy 111
Multiplier, Lagrange 378–383
Mutual funds 112, 242
Net worth of a company 267, 392–393, 414–415, 425
Oil production 55, 114, 267, 271, 308, 411
Phone rates 14, 344
Point of diminishing returns 216, 220, 222
Present value 60–61, 65, 304–308, 348
Price control 298, 300, 302, 303
Pricing 15, 300, 340
Producer surplus 297–303
Production costs 39, 382–383
Production workers 97
Productivity 356
Profit function 33–34, 39, 196–197, 373–374
Railway passengers 49
Relative change 18–19, 21, 23–25, 29–31, 42, 107
Rent control 300, 303
Resale value 35
Revenue function 32–33, 39, 75–78, 120–121, 211, 213, 293, 340, 351
Sales forecasts 16, 55, 218–220, 272
Sales of CDs 16
Sales of jeans 24
Solar panels 30, 113
Stock market 30, 49
Supply curve 35–37, 40, 41, 42, 68–69, 81, 297, 299–303
Surplus 297–303
Taxes 36–38, 42, 111, 201
Textbook prices 56
Tobacco production 27
Total cost 17, 31, 39, 113, 123–125, 195–199, 201, 202, 204–207, 229, 264–266, 269, 293, 341, 353, 376, 382
Total profit 39, 194, 198–199, 372
Total revenue 32, 39, 123, 125, 155, 161, 195–197, 199–201, 212, 267, 293, 307, 372
Total utility 119
Value of a car 4
Variable cost 31, 39, 41, 201, 203, 265, 266
Wage, real 202
Wages, human height and 18
Warehouse storage 201, 271
Waste collection 11–12, 17, 262
World production
automobile 27
bicycle 26
biofuel 113
coal 259
gold 111
grain 16
milk 15
solar cell 108, 113, 259
solar power 109, 259, 263
soybean 108
tobacco 27
zinc 41
Yield, annual 143, 193, 318, 331, 431

Life Sciences and Ecology
AIDS 63
Algae population growth 272
Anaphylaxis 86
Asthma 231–232
Bacterial colony growth 161, 236–237, 244, 256, 286
Bird flight 193
Birds and worms 421–426
Birth and death rates 286
Blood pressure 78, 86, 192, 194, 272, 355, 364
Body mass of a mammal 72, 76, 77, 154, 343–344, 356
Cancer rates 8, 85
Carbon dioxide
Cardiac output 355, 364
Carrying capacity 116, 216–217, 297, 394
Clutch size 193
Competition 424
Cornea curvature 355
Cricket chirp patterns 3–4
Crows and whelks 193
Deforestation 48
Density function 322–338
Dialysis, kidney 426–445
Drug saturation curve 71
Energy (calorie) expenditure 268, 344, 361, 362
Environmental Protection Agency (EPA) 56, 63, 119
Eye 355
Fever 118, 179, 220
Firebreaks and forest fires 230–231
Fish growth 27, 77, 142
Fish harvest 28, 329–330, 337, 392, 396, 431
Fish population 55, 142, 148, 193, 241, 392, 396, 399, 431–432
Foraging time 192
Global warming 143, 347
Gompertz growth equation 406
Growth of a tumor 95, 406
Half-life and decay 58, 62–64, 223, 410, 411
Heartbeat patterns 3, 272
Heart rate 7, 17, 18, 29, 263
Hematocrit 193
HIV/AIDS 63
Insect population 395
Ion channel 222
Island species 64, 74, 76, 143, 213, 297, 390, 425–426
Kidney disease 286, 355
Kleiber’s Law 76
Koala population 64, 213
Lizard loping 29
Logistic growth 116, 213–221, 394, 431
Lotka-Volterra equations 421, 424
Lung 83, 110, 165, 223, 231
Money supply 370
Muscle contraction 28, 112
Nicotine 7, 28, 62, 112, 160, 223, 227, 420,
Nitrous oxide levels 56
Photosynthesis 189, 191, 273, 286
Plant growth 257, 261, 332,
Pollutant levels 20, 62, 119, 393, 395, 408–409, 411,
Population genetics 432–433
Predator-prey cycles 421–424
Pulmonologist 110
Rabbit population 297
Rain forest 27, 114
Rats and formaldehyde 358–359, 364
Relative change 18–19, 21, 23–25, 29–31, 42, 107
Relative rate of change 30, 44–
45, 63, 107–109, 114, 141–142, 148–149, 154–156, 161, 166
Respiratory deaths 56
Ricker curve 193
SARS 221, 433
Species density 353–354
Species diversity 6, 7, 17, 74, 76, 77, 84, 143, 164, 390
Spread of a disease 193, 220–221, 427–431, 433
Starvation 64, 113, 193, 262
Sturgeon length 27
Sustainable yield 113, 431
Symbiosis 421, 424
Tiger population 64
Toxicity 358
Tree growth 31, 70, 261, 325, 331
Vaccination 50, 427, 430
Waste generation 11–12, 17, 142, 262
Fog 344
Grand Canyon flooding 274
Gravitational force 76
Greenland Ice Sheet 113
Half-life and decay 58, 62–64, 223, 410, 411
Height of a ball 143
Height of a sand dune 5, 27, 141
Hyperbolic vehicles 242
Illumination 126–127
Isotherms 345–347
Keeling Curve 167
Newton’s laws of cooling and heating 416–421
Pendulum period 73, 142
Radioactive decay 56, 63, 64, 149, 263, 395
Relative change 18–19, 21, 23–25, 29–31, 42, 107
Sea level changes 6, 8–9, 120
Solar panels 30, 113
Specific heat 77
Tide levels 82–83, 165
Topographical maps 346–347, 352, 353
Velocity, average 22–23, 26–27, 29, 76, 88–89, 94–96, 119
Velocity, instantaneous 88–89, 94–96
Velocity, vertical 165, 259, 263
Velocity of a ball 143
Velocity of a bicycle 235, 240
Velocity of a bungee jumper 260
Velocity of a car 23, 29, 94, 96, 234, 239–243, 256, 338
Velocity of a particle 27, 94, 119, 259
Velocity of a runner 239
Velocity vs speed 22–23
Volcanic explosion 345
Volume of a hot-air balloon 71, 103
Volume of air in the lungs 83, 110
Volume of a tank 260
Weather map 345–346, 375
Wind chill 143, 354
Wind energy 49–50, 62
Wind speed 109, 344, 354–355

Social Sciences
Abortion rate 116–117
Age distribution 322–327
Baby boom 218
Birth and death rates 111, 286
Commuting 356
Density function 332–336
Distribution of resources 317–318
Ebbinghaus model for forgetting 420
GPAs 331
Happiness 353
Health care 322
Human body weight 17, 86, 111, 112, 114, 134, 192, 228, 341, 344, 345, 356, 361, 362
Human height and wages 18
Human height prediction 262
Indifference curve 356, 383
IQ scores 338
Job satisfaction 356
Land use 221, 411
Monod growth curve 161
Normal distribution 336–338
Okun’s Law 18
Olympic records 9, 18, 20, 44
Population, United States 29, 86, 95, 97, 111, 213–215, 217–218, 221, 322–324, 390
Population density 353–354
Population growth 5, 14, 23–24, 28, 30, 42–45, 47–49,
<table>
<thead>
<tr>
<th>Preface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty line 16, 119</td>
</tr>
<tr>
<td>Relative change 18–19, 21, 23–25, 29–31, 42, 107</td>
</tr>
<tr>
<td>Search and rescue 17, 161</td>
</tr>
<tr>
<td>Traffic patterns 9, 103, 134, 58, 62–64, 223, 410, 411</td>
</tr>
<tr>
<td>Waiting times 324, 337</td>
</tr>
<tr>
<td>Wave 78–80</td>
</tr>
<tr>
<td>Wikipedia 62, 395</td>
</tr>
<tr>
<td>Zipf’s Law 77</td>
</tr>
</tbody>
</table>
To Students: How to Learn from this Book

- This book may be different from other math textbooks that you have used, so it may be helpful to know about some of the differences in advance. At every stage, this book emphasizes the meaning (in practical, graphical or numerical terms) of the symbols you are using. There is much less emphasis on “plug-and-chug” and using formulas, and much more emphasis on the interpretation of these formulas than you may expect. You will often be asked to explain your ideas in words or to explain an answer using graphs.

- The book contains the main ideas of calculus in plain English. Success in using this book will depend on reading, questioning, and thinking hard about the ideas presented. It will be helpful to read the text in detail, not just the worked examples.

- There are few examples in the text that are exactly like the homework problems, so homework problems can’t be done by searching for similar-looking “worked out” examples. Success with the homework will come by grappling with the ideas of calculus.

- For many problems in the book, there is more than one correct approach and more than one correct solution. Sometimes, solving a problem relies on common sense ideas that are not stated in the problem explicitly but which you know from everyday life.

- Some problems in this book assume that you have access to a graphing calculator or computer. There are many situations where you may not be able to find an exact solution to a problem, but you can use a calculator or computer to get a reasonable approximation.

- This book attempts to give equal weight to four methods for describing functions: graphical (a picture), numerical (a table of values), algebraic (a formula), and verbal (words). Sometimes it’s easier to translate a problem given in one form into another. For example, you might replace the graph of a parabola with its equation, or plot a table of values to see its behavior. It is important to be flexible about your approach: if one way of looking at a problem doesn’t work, try another.

- Students using this book have found discussing these problems in small groups helpful. There are a great many problems which are not cut-and-dried; it can help to attack them with the other perspectives your colleagues can provide. If group work is not feasible, see if your instructor can organize a discussion session in which additional problems can be worked on.

- You are probably wondering what you’ll get from the book. The answer is, if you put in a solid effort, you will get a real understanding of one of the crowning achievements of human creativity—calculus—as well as a real sense of the power of mathematics in the age of technology.
CONTENTS

1 FUNCTIONS AND CHANGE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>WHAT IS A FUNCTION?</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>LINEAR FUNCTIONS</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>AVERAGE RATE OF CHANGE AND RELATIVE CHANGE</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>APPLICATIONS OF FUNCTIONS TO ECONOMICS</td>
<td>31</td>
</tr>
<tr>
<td>1.5</td>
<td>EXPONENTI AL FUNCTIONS</td>
<td>42</td>
</tr>
<tr>
<td>1.6</td>
<td>THE NATURAL LOGARITHM</td>
<td>51</td>
</tr>
<tr>
<td>1.7</td>
<td>EXPONENTIAL GROWTH AND DECAY</td>
<td>56</td>
</tr>
<tr>
<td>1.8</td>
<td>NEW FUNCTIONS FROM OLD</td>
<td>66</td>
</tr>
<tr>
<td>1.9</td>
<td>PROPORTIONALITY AND POWER FUNCTIONS</td>
<td>72</td>
</tr>
<tr>
<td>1.10</td>
<td>PERIODIC FUNCTIONS</td>
<td>78</td>
</tr>
</tbody>
</table>

CHAPTER 1 SUMMARY

DIGITAL
STRENGTHEN YOUR UNDERSTANDING DIGITAL
PROJECTS: COMPOUND INTEREST, POPULATION CENTER OF THE US, MEDICAL CASE STUDY: ANAPHYLAXIS 85

2 RATE OF CHANGE: THE DERIVATIVE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>INSTANTANEOUS RATE OF CHANGE</td>
<td>88</td>
</tr>
<tr>
<td>2.2</td>
<td>THE DERIVATIVE FUNCTION</td>
<td>97</td>
</tr>
<tr>
<td>2.3</td>
<td>INTERPRETATIONS OF THE DERIVATIVE</td>
<td>103</td>
</tr>
<tr>
<td>2.4</td>
<td>THE SECOND DERIVATIVE</td>
<td>114</td>
</tr>
<tr>
<td>2.5</td>
<td>MARGINAL COST AND REVENUE</td>
<td>120</td>
</tr>
</tbody>
</table>

CHAPTER 2 SUMMARY

DIGITAL
STRENGTHEN YOUR UNDERSTANDING DIGITAL
PROJECTS: ESTIMATING TEMPERATURE OF A YAM; TEMPERATURE AND ILLUMINATION; CHLOROFLUOROCARBONS IN THE ATMOSPHERE 126

FOCUS ON THEORY: LIMITS AND THE DEFINITION OF THE DERIVATIVE 127
LIMITS, CONTINUITY, AND THE DEFINITION OF THE DERIVATIVE 128

3 SHORTCUTS TO DIFFERENTIATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>DERIVATIVE FORMULAS FOR POWERS AND POLYNOMIALS</td>
<td>136</td>
</tr>
</tbody>
</table>
3.2 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 144
3.3 THE CHAIN RULE 150
3.4 THE PRODUCT AND QUOTIENT RULES 156
3.5 DERIVATIVES OF PERIODIC FUNCTIONS 161

CHAPTER 3 SUMMARY DIGITAL

STRENGTHEN YOUR UNDERSTANDING DIGITAL
PROJECTS: CORONER’S RULE OF THUMB; AIR PRESSURE AND ALTITUDE;
RELATIVE GROWTH RATES: POPULATION, GDP, AND GDP PER CAPITA; KEELING CURVE:
ATMOSPHERIC CARBON DIOXIDE 166

FOCUS ON THEORY: ESTABLISHING THE DERIVATIVE FORMULAS 168

ESTABLISHING THE DERIVATIVE FORMULAS 168
FOCUS ON PRACTICE 172

4 USING THE DERIVATIVE 173

4.1 LOCAL MAXIMA AND MINIMA 174
4.2 INFLECTION POINTS 181
4.3 GLOBAL MAXIMA AND MINIMA 187
4.4 PROFIT, COST, AND REVENUE 194
4.5 AVERAGE COST 202
4.6 ELASTICITY OF DEMAND 208
4.7 LOGISTIC GROWTH 213
4.8 THE SURGE FUNCTION AND DRUG CONCENTRATION 223

CHAPTER 4 SUMMARY DIGITAL

STRENGTHEN YOUR UNDERSTANDING DIGITAL
PROJECTS: AVERAGE AND MARGINAL COSTS, FIREBREAKS,
PRODUCTION AND THE PRICE OF RAW MATERIALS, MEDICAL CASE STUDY:
IMPACT OF ASTHMA ON BREATHING 229

5 ACCUMULATED CHANGE: THE DEFINITE INTEGRAL 233

5.1 DISTANCE AND ACCUMULATED CHANGE 234
5.2 THE DEFINITE INTEGRAL 243
5.3 THE DEFINITE INTEGRAL AS AREA 249
5.4 INTERPRETATIONS OF THE DEFINITE INTEGRAL 255
5.5 TOTAL CHANGE AND THE FUNDAMENTAL THEOREM OF CALCULUS 264
5.6 AVERAGE VALUE 268
CHAPTER 5 SUMMARY
STRENGTHEN YOUR UNDERSTANDING
PROJECTS: CARBON DIOXIDE IN POND WATER, FLOODING IN THE GRAND CANYON
FOCUS ON THEORY: THE SECOND FUNDAMENTAL THEOREM OF CALCULUS
THEOREMS ABOUT DEFINITE INTEGRALS

6 ANTIDERIVATIVES AND APPLICATIONS

6.1 ANALYZING ANTIDERIVATIVES GRAPHICALLY AND NUMERICALLY
6.2 ANTIDERIVATIVES AND THE INDEFINITE INTEGRAL
6.3 USING THE FUNDAMENTAL THEOREM TO FIND DEFINITE INTEGRALS
6.4 APPLICATION: CONSUMER AND PRODUCER SURPLUS
6.5 APPLICATION: PRESENT AND FUTURE VALUE
6.6 INTEGRATION BY SUBSTITUTION
6.7 INTEGRATION BY PARTS

CHAPTER 6 SUMMARY
STRENGTHEN YOUR UNDERSTANDING
PROJECTS: QUABBIN RESERVOIR, DISTRIBUTION OF RESOURCES, YIELD FROM AN APPLE ORCHARD
FOCUS ON PRACTICE

7 PROBABILITY

7.1 DENSITY FUNCTIONS
7.2 CUMULATIVE DISTRIBUTION FUNCTIONS AND PROBABILITY
7.3 THE MEDIAN AND THE MEAN

CHAPTER 7 SUMMARY
STRENGTHEN YOUR UNDERSTANDING
PROJECTS: TRIANGULAR PROBABILITY DISTRIBUTION

8 FUNCTIONS OF SEVERAL VARIABLES

8.1 UNDERSTANDING FUNCTIONS OF TWO VARIABLES
8.2 CONTOUR DIAGRAMS
8.3 PARTIAL DERIVATIVES
8.4 COMPUTING PARTIAL DERIVATIVES ALGEBRAICALLY

xx Preface
Preface

B COMPOUND INTEREST AND THE NUMBER e DIGITAL
C SPREADSHEET PROJECTS DIGITAL
 1. MALTHUS: POPULATION OUTSTRIPS FOOD SUPPLY DIGITAL
 2. CREDIT CARD DEBT DIGITAL
 3. CHOOSING A BANK LOAN DIGITAL
 4. COMPARING HOME MORTGAGES DIGITAL
 5. PRESENT VALUE OF LOTTERY WINNINGS DIGITAL
 6. COMPARING INVESTMENTS DIGITAL
 7. INVESTING FOR THE FUTURE: TUITION PAYMENTS DIGITAL
 8. NEW OR USED? DIGITAL
 9. VERHULST: THE LOGISTIC MODEL DIGITAL
 10. THE SPREAD OF INFORMATION: A COMPARISON OF TWO MODELS DIGITAL
 11. THE FLU IN WORLD WAR I DIGITAL

ANSWERS TO ODD-NUMBERED PROBLEMS 439

INDEX 461