Index

Aflavus gene loss evidence, 346, 347f, 348
ACE1 gene cluster in ascomycetes evolution, 345f, 349–350, 351f
ACP and sequestration hypothesis, FAS and PKS, 236–237
acyl carrier protein (ACP), 233, 235f, 236
acyltransferase (AT), 222–223, 224–226f
aethearmides, new myxobacterial taxa, structure-guided isolation mining, 113–114, 114f
aflatoxin and related gene clusters, genetic rearrangements, 344–346, 345f, 347f
animals and fungi, oxidosqualene:lanosterol cyclase (OSLC), 297, 300, 301–302f, 305f
ansamycin polypeptide Hsp90 inhibitors, 485, 487
antidepressant agents from dyestuff intermediaries, 398, 398f
antifouling compounds, marine natural products, 49–50, 51f, 52–53, 52f
antimicrobial compounds, marine natural products, 53–55, 54f
aromatase/cyclase (ARO/CYC), 228–230, 231–232
autoxicity voidance, self-produced defense bioactive compounds common molecular mechanisms, 69
drug resistance prediction in other organisms, 76f, 77–78
extracellular excretion, 72–74, 73f
genomic clustering, 74–75, 75f
sequestration, excretion, 70–74, 71f, 73f
target mutation-based mechanism, 75–77, 76f, 77f
vacuolar sequestration, 70–72, 71f
bacterial antagonisms molecules, marine natural products, 59–60, 60f
bacterial cell-to-cell communication via quorum-sensing systems, 25–28, 27f
bacterial squalene cyclases (SCs), 311–312
BC265, nonquinone ansamycin Hsp90 inhibitor
BC265 as potent inhibitor of Hsp90, 489–490, 490f
future directions, 493–494
geldanamycin, herbimycin, macbecin and, 483, 486f, 484f
improved safety, efficacy profile of BC265, 491–493, 493f
macbecin biosynthetic gene cluster, rational bioengineering, 487–489
next generation ansamycin polypeptide Hsp90 inhibitors, 485, 487
benzopyrans, unusual antibacterial and other agents, 398–399, 399f
benzoxazinone glucosides, 9–11, 10f
bioinformatics analysis tools, biosynthetic pathways, 177–179, 178f
biosynthesis with engineered microbial consortia. See designer microbial ecosystems
biosynthetic units in microbial genomes, computational detection, 361–362
Brassicaceae, 15–16, 15f
Celegans, 387–390, 388f
caspofungin acetate (CANCIDAS®), discovery and development
API development, CANCIDAS® manufacturing process formulation, 513–516, 514f, 515f
caspofungin acetate (CANCIDAS®),
discovery and development (Continued)
background, rationale, 497
CANCIDAS® formulation development,
516
caspofungin, clinical development,
516–518, 518f
ethylenediamine, stereospecific incorporation, 516
natural product lead discovery, 498–502, 498f, 500f, 501f, 502f
phenylthioaminal, stereoselective formation, 515
pneumocandin B0, aza analogs, 510–511, 511f, 512r, 513
pneumocandin B8, chemical optimization, preclinical candidate selection,
504–506, 507f, 507r, 508r, 509f, 509r, 510f, 511f, 512f, 512r, 513f, 514f, 515f
pneumocandin B0 combination analog, 508–510, 509f, 509r, 510f
pneumocandin B8 conversion to caspofungin acetate, 514–516, 515f
pneumocandin B0, fermentation development, 502, 503r, 504f, 505f
pneumocandin B0, hemiaminal and 3-hydroxyglutamine modifications, 506, 507r, 508r
pneumocandin B0 isolation, purification, 514, 514f
pneumocandin B0 purification, 499f, 501–502, 502f
pneumocandin B8, solubility, stability enhancement efforts, 506, 507f
pneumocandin B8, structure determination, 499f, 501, 501f
pneumocandin prolation, titer improvement, L-proline effect,
503–504, 503r, 504f, 505f
primary amide, chemoselective borane reduction, 516
chemical communication between organism and environment, marine natural products, 42–50, 43f, 45f, 46f, 48f, 49f, 51f, 52–55, 52f, 54f
chemical communication within host compartment, marine natural products, 57–60, 58f, 60f
chemical control by host of microbial partners, marine natural products, 55–56
chemical defense of host by associated microorganisms, marine natural products, 57
chemical defense/chemical communication in sponges and corals. See marine natural products, chemical defense/chemical communication in sponges and corals
chemical resistance of microbial partners to host digestion, marine natural products, 56–57
Clavicipitaceae, host grasses endobiotic, epibiotic, ectobiotic growth, 128f, 129–130
ergot alkaloids, 130, 132, 133–134f indole-diterpenies, 135, 136f, 137
loline alkaloids, 139, 140f, 141
peramine, 137, 138f, 139
phylogenetic relationships, 130, 131f
symbiosis growth, fruiting, pathogenesis, 126–127, 128f, 129
taxonomy, 125–126
Clostridium difficile. See NVB302, C. difficile
combinatorial biosynthesis. See daptomycin, A54145 structure-activity relationship studies
communication mediation, hosts and microbial associates, marine natural products, 55–57
complex mixtures, natural products discovery, 380
compounds inducing larvae settlement, marine natural products, 47–48, 48f
computer-aided pathway engineering, 360–362
concentration dependence, natural products discovery, 380
consolidated bioprocessing (CBP), 25
core SM genes cooperation, 185, 187f
cyanobactins, 199f, 207–208
daptomycin, A54145 structure-activity relationship (SAR) studies, 437–438, 438–439f, 440, 440f
A21978C, A54145 gene clusters, 438–439f, 440, 441f, 441t, 449t
accessory genes/devices, 441t, 446
combinatorial biosynthesis, deletion of genes involved in amino acid modifications, 441t, 447
combinatorial biosynthesis methodology, combinatorial biosynthesis parts, devices, combinatorial exchanges, improved lipopeptide properties, expression hosts, future directions, interpeptide linker, domain-domain interactions, lipopeptide biosynthetic pathways, genome mining, NRPS domains, modules, versatile vectors, combinatorial design, databases. See natural products (NP) research, ideal database dehydratase (DH), deoxysugar modification, transfer, designer cell factories for natural products, designer microbial ecosystems, biosynthesis with engineered microbial consortia bacterial cell-to-cell communication via quorum-sensing systems, consolidated bioprocessing (CBP), control, optimization, economic perspective, population control engineering, pure or mixed cultures, synthetic microbial consortia for biosynthesis design, drug potentials. See natural products (NP), potential drugs drug resistance prediction, autotoxicity avoidance, engineered microbial consortia enoylreductase (ER), ergot alkaloids, extracellular excretion, autotoxicity avoidance, fatty acid synthase (FAS) and, feeding deterrents, marine natural products, filamentous fungi, waking sleeping pathways discovery, epigenetic manipulation, future directions, heterologous expression, histone acetylation vs. methylation, interspecies crosstalk, molecular manipulation, one strain-many compounds (OSMAC) strategy, promoter replacement, secondary metabolites (SMs) function, secondary metabolites (SMs), global regulators, fungal endotypes, grasses and morning glories. See Clavicipitaceae fungal natural product pathways, manipulation epigenetic remodeling, gene cluster expression, gene knockout, silencing, heterologous expression, precursor-directed biosynthesis, mutasynthesis, yeast expression, fungal secondary metabolites (SMs). See also secondary metabolites (SMs) bioinformatics analysis tools, biosynthetic pathways, core SM genes cooperation, genes to chemical structures, gene knockout, silencing, precursor-directed biosynthesis, mutasynthesis, yeast expression, nonribosomal peptide synthetases (NRPSs), PKS-NRPS hybrids, polyketide synthases, terpenoids, useful activities of, genome sequencing of, nonribosomal peptide synthetases (NRPSs), PKS-NRPS hybrids, polyketide synthases, terpenoids, useful activities of,
fungal secondary metabolites (SMs) gene clusters, evolutionary mechanisms
ACE1 gene cluster in ascomycetes evolution, 345f, 349–350, 351f
aflatoxin and related gene clusters, genetic rearrangements, 344–346, 345f, 347f
extensive gene cluster duplications, 350, 352
A. flavus gene loss evidence, 346, 347f, 348
other SM gene clusters, 351f, 352
ST and DOTH biosynthesis, associated gene content and organization, 344–349, 345f, 347f
ST gene cluster putative horizontal transfer, 347f, 349
fungal-actinomycete interactions genome sequencing techniques, 147–148
interorganismal interaction, chromatic-based gene regulation, 152–154
microbial regulatory interactions, 148–150, 149f, 151f
geldanamycin, herbimycin, macbacin 483, 486f, 484f
genomic clustering, autotoxicity avoidance, 74–75, 75f
glucosinolates, 7f
insect-plant relationship effect, 6–8, 7f
in plant immunity, 9
glycosylation. See sugar biosynthesis, glycosylation
glycosylation pattern alteration, by combinatorial biosynthesis, 318f, 326–327, 328f, 329
helminth worms, Worm Assay, 387, 388f
herbimycin, 483, 484f, 486f
high-content screening (HCS), 374
high-throughput screening (HTS), 374
horizontal gene transfer, 344
horizontal gene transfer, cautionary example, 351f, 352
human OSCL, 303–304
ILS-920, rapamycin analog for ischemic stroke
ILS-920 pharmacokinetics, brain penetration, 473
multiple brain cell types survival, immunohistorical markers of regeneration following MCAO, 476, 477f
nonimmunosuppressive rapamycin analogs design, 471, 472f, 473
rapamycin, immunophilin ligands and, 469–471, 470f
research results summary, 478–479
image-based screening advantages, 376–378, 377f
bacteria, viruses, 391–392
batch effects, 379
C. elegans, 387–390, 388f
complex mixtures screening, 380
concentration dependence, 380
developmental phenotypes, 378
future prospects, 392
helminth worms, Worm Assay, 387, 388f
high-content screening (HCS), 374
high-throughput screening (HTS), 374
image analysis, 374–375
infectivity, 378
limitations, 378–379
mammalian cells, 382–384, 383f
methods, 374–376, 375f
mode of action vs. molecular target, 378–379
motility, spacial phenotypes, 378
natural products, discovery challenges, 380
NP discovery applications, 381–382, 382f, 383f, 388f
NP research opportunities, new compounds for new targets, 381
NP research opportunities, new targets for known compounds, 381
phenotypes characterization, quantification, 375–376, 375f
plate reader-based screening, 374
protozoan parasites, 383f, 385–387
resolution, magnification, 376
INDEX

sample throughput, 379
size, shape parameters, 377
terms, conventions, 373–374
zebrafish, 390–391
indole-diterpenes, 135, 136f, 137
inducible defense metabolites. See phytoalexins
interpeptide linker, domain-domain interactions, 446
ketoreductase (KR), 224–226f, 227
ketosynthase (KS), 223, 224–226f, 227
lanthipeptides, 198–201, 199f, 200f
bioengineering studies in native producers and heterologous hosts, 201
in vitro engineering, 202, 203f
in vivo engineering, 201–202
lasso peptides, 199f, 208–209
linear azol(in)e-containing peptides (LAPs), 202–203, 204f, 205
lipopeptide biosynthetic pathways, genome mining, 440f, 450
loline alkaloids, 139, 140f, 141
macbecin, 483, 484f, 486f, 487–489
macrolides, 106, 107f, 108
mammalian cells, 382–384, 383f
marine bioprospecting
chemical, biological screening methods, 94–95
chemical profiling, alternative approaches, 94
compounds in clinical use, 85, 86f, 87
extracts vs. fractions vs. compounds screening, 92–93
future innovations, 95–97
genomic screening, 95
international treaties, permit issues, 88f, 89, 90f, 91
research program implementation, 87–89, 88f
techniques, collection protocols, 91–92
marine natural products, chemical defense/chemical communication in sponges and corals
antifouling compounds, 49–50, 51f, 52–53, 52f
antimicrobial compounds, 53–55, 54f
bacterial antagonisms molecules, 59–60, 60f
chemical communication between organism and environment, 42–50, 43f, 45f, 46f, 48f, 49f, 51f, 52–55, 52f, 54f
chemical communication within host compartment, 57–60, 58f, 60f
chemical control by host of microbial partners, 55–56
chemical defense of host by associated microorganisms, 57
chemical resistance of microbial partners to host digestion, 56–57
communication mediation, hosts and microbial associates, 55–57
compounds inducing larvae settlement, 47–48, 48f
feeding deterrents, 42–47, 43f, 45f, 46f
photoprotective and antioxidant compounds, 48–49, 48f
quorum sensing (QS) molecules, 58–59, 58f
tissue organization, chemical substance synthesis, 39, 40f, 41–42
microviridins, 199f, 209
multiple enzymatic inhibitors, 400–403, 402f, 403f
myxobacteria
aethemides, new myxobacterial taxa, structure-guided isolation mining, 113–114, 114f
life cycle, 103
macrolides, 106, 107f, 108
miscellaneous isolated compounds from, 110–111, 110f
myxoprinoxinomide, genome- and metabolome-mining, 115, 116f, 117, 118f, 119
natural products from, 103–104
new antimicrobials (bioassay-guided fractionation) screening, 112–113, 112f, 113f
new scaffolds screening, 111–115, 112f, 113f, 114f, 116f, 117, 118f, 119f
peptides, 104–106, 105f
polyketides, 108–109, 109f
myxoprinoxinomide, genome- and metabolome-mining, 115, 116f, 117, 118f, 119
natural products (NP) discovery, image-based screening applications
bacteria, viruses, 391–392
C elegans, 387–390, 388f
helminth worms, Worm Assay, 387, 388f
mammalian cells, 382–384, 383f
protozoan parasites, 383f, 385–387
zebrafish, 390–391
natural products (NP), potential drugs
antidepressant agents from dyestuff intermediaries, 398, 398f
benzopyrans, unusual antibacterial and other agents, 398–399, 399f
future directions, 407–408
multiple enzymatic inhibitors, 400–403, 402f
privileged structures (PS), selection of other, 399, 400f
privileged structures (PS) with multiple activities use, 397–398
protein-protein interactions, inhibitors, 403–404, 405–406f
underprivileged scaffolds, 406–407, 407f
natural products (NP) research
discovery challenges, 380
new compounds for new targets, 381
new targets for known compounds, 381
opportunities, 381
natural products (NP) research, ideal database
biogeography, taxonomy, 416f, 417–418, 419f
biological potential assessment, 415f, 416f, 427
current databases, 413–414, 415f
database selection, 415f, 416f, 428–429
databases searching, 427–428
dereplication, 418, 420
dereplication approaches, compared, 422–423
dereplication approaches, H-NMR spectroscopy, 421–422
dereplication approaches, mass spectroscopy, 421
dereplication approaches, UV spectroscopy, 421
dereplication example, 423–424, 424f, 425f, 426f
future directions, 429–430
new compound characterization, 426–427
NP chemists’ requirements vs. various databases, 414, 415f, 416f, 417–418, 419f, 420–424, 424f, 425f, 426–428, 426f
requirements, 414
new antimicrobials (bioassay-guided fractionation) screening, 112–113, 112f, 113f
new scaffolds screening, 111–115, 112f, 113f, 114f, 116f, 117, 118f, 119f
nonribosomal peptide synthetases (NRPSs), 183, 184f
NRPS domains, modules, 440f, 444, 446
NVB302, *C. difficile*
actagardine, mersacidin, deoxyactagardine B and, 455–456, 456f
C. difficile infection, 461–462, 462f
chemical semisynthesis, 461
lantibiotic libraries generation and, 457–459, 460f
lantibiotic synthesis, 457, 458f
NVB302 discovery, lantibiotics, 455
Phase I clinical trial, 466–467
toxicology, 466
in vitro microbiology, 462–464, 463f, 464f, 465f
in vivo biology, 464–466, 466f
oxidosqualene cyclases (OSCs), 298–299f
animals and fungi, oxidosqualene:lanosterol cyclase (OSLC), 297, 300, 301–302f, 305f
bacterial squalene cyclases (SCs), 311–312
enzymes catalytic function, 297, 300
future directions, 312–313
human OSCL, 303–304
oxidosqualene:β-amyrin cyclase (OSβAC), 308
oxidosqualene:cyloartenol cyclase (OSCC), 306
oxidosqualene:lupeol cyclase (OSLuC), 308
oxidosqualene:protostadienol cyclase (OSPC), 304, 306
plant oxidosqualene cyclases, 306–309, 307f, 310f
squalene:hopene cyclase (SHC), 311–312
oxidosqualene:β-amyrin cyclase (OSβAC), 308
INDEX

oxidosqualene:cycloartenol cyclase (OSCC), 306
oxidosqualene:lupeol cyclase (OSLuC), 308
oxidosqualene:protostadienol cyclase (OSPC), 304, 306
parasexual vs. sexual recombination, 344
peptides, 104–106, 105f. See also ribosomally synthesized and posttranslationally modified peptides (RiPPs)
peramine, 137, 138f; 139
photoprotective and antioxidant compounds, marine natural products, 48–49, 48f
phylogenetic relationships, 130, 131f
phytoalexins in Brassicaceae, 15–16, 15f
phenyalanine-derived, 12, 13f; 14
phytochemicals, experimental research history, 5
PKS-NRPS hybrids, 183, 184f
plant oxidosqualene cyclases, 306–309, 307f; 310f
plate reader-based screening, 374
pneumocandin B₀ aza analogs, 510–511, 511f; 512f; 512r, 513
chemical optimization, preclinical candidate selection, 504–506, 507f; 507r; 508r; 509f; 509r; 510f; 511f; 512f; 512r; 513f; 514f; 515f
combination analog, 508–510, 509f; 509r; 510f
conversion to caspofungin acetate, 514–516, 515f
fermentation development, 502, 503t, 504f; 505f
hemiaminal and 3-hydroxyglutamine modifications, 506, 507r; 508f
isolation, purification, 514, 514f
pneumocandin prolaction, titer improvement, L-proline effect, 503–504, 503r, 504f; 505f
purification, 499f; 501–502, 502f
solubility, stability enhancement efforts, 506, 507f
structure determination, 499f; 501, 501f
polyketide synthase (PKS)
ACP and sequestration hypothesis, FAS and PKS, 236–237
acyl carrier protein (ACP), 233, 235f; 236
acyltransferase (AT), 222–223, 224–226f
aromatase/cyclase (ARO/CYC), 228–230f; 231–232
dehydratase (DH), 227, 228–230f; 231
enoylreductase (ER), 231
fatty acid synthase (FAS) and, 219, 220f
ketoreductase (KR), 224–226f; 227
ketosynthase (KS), 223, 224–226f; 227
PKS vs. FAS, 220, 220f; 221–222f; 222
product template (PT) domain, 228–230f; 232
sequence-structure-function relationship, 222–223, 224–226f; 227, 228–230f; 231–233, 234f; 235f; 236
thioesterase (TE), 233, 234f
types, 219
polyketide synthases, 180, 181f; 182–183, 182f
polyketides, 108–109, 109f
potential drugs. See natural products (NP), potential drugs
privileged structures (PS) with multiple activities use, 397–398
selection of other, 399, 400f
protein-protein interactions, inhibitors, 403–404, 405–406f
protozoan parasites, 383f; 385–387
quorom sensing (QS) molecules, marine natural products, 58–59, 58f
ribosomally synthesized and posttranslationally modified peptides (RiPPs)
biosynthetic pathways, 197–198
cyanobactins, 199f; 207–208
lanthipeptides, 198–201, 199f; 200f
lanthipeptides, bioengineering studies in native producers and heterologous hosts, 201
lanthipeptides, in vitro engineering, 202, 203f
lanthipeptides, in vivo engineering, 201–202
lasso peptides, 199f; 208–209
linear azol(in)e-containing peptides (LAPs), 202–203, 204f; 205
microviridins, 199f; 209
sactipeptides, peptides crosslinked by cyste is to α-carbon linkages, 210
thiopeptides, 205–207, 206f
sactipeptides, peptides crosslinked by cysteine to
α-carbon linkages, 210

SAR studies. See daptomycin, A54145

structure-activity relationship studies

secondary metabolites (SMs)

assessment, 159

bacterial secondary metabolites, plant disease, 160, 161f, 162

biosynthetic gene manipulation and, 159–160

as fungal avirulence factor, 164

fungal secondary metabolites, as host-selective toxins, 160, 161f, 162–163, 163f

d vs. non-host selective grouping, 160

non-host-selective toxins, plant disease, 161f, 164–165

secondary metabolic gene clusters, horizontal gene transfer, 163f, 165–166

secondary metabolic toxins, protection against predation, 166–167

self-produced defense bioactive compounds. See autotoxicity voidance, self-produced defense bioactive compounds

6-deoxyhexose (6DOH) sugars, 318f, 319, 321f

SMASH pipeline, 362

squalene-hopene cyclase (SHC), 311–312

ST and DOTH biosynthesis, associated gene content and organization, 344–349, 345f, 347f

ST gene cluster putative horizontal transfer, 347f, 349

strigolactones, 11–12, 11f

sugar biosynthesis, glycosylation

6-deoxyhexose (6DOH) sugars, 318f, 319, 321f

bioactive compounds, 317, 318f

deoxysugar modification, 325–327, 328f, 329

deoxysugar transfer, 323, 324f, 325

future prospects, 332–333

glycosylation pattern alteration, by combinatorial biosynthesis, 318f, 326–327, 328f, 329

sugar biosynthesis plasmids, 318f, 320f, 327, 328f, 329

in vitro glycorandomization, 329–331, 331f

sugar biosynthesis plasmids, 318f, 320f, 327, 328f, 329

synthetic biology

biosynthetic units in microbial genomes, computational detection, 361–362

classical molecular biology techniques, 359

computer-aided pathway engineering, 360–362

designer cell factories for natural products, 364–367

engineered pathways, rapid assembly, 363

total microbial genomes synthesis, 363–364

enzyme design for novel chemistry, 361

future prospects, 367

gene code rewriting, 362–364

heterologous pathways for overproduction optimization, 365–366

huge gene clusters, chemical synthesis, 362–363

natural pathways for facilitated engineering refactoring, 366–367

pathways to produce desired compounds, prediction, 360–361

production pathways to heterologous hosts transplantation, 364–365

recent developments, 360

SMASH pipeline, 362

synthetic microbial consortia for biosynthesis design, 32–34, 33f

target mutation-based mechanism, autotoxicity avoidance, 75–77, 76t, 77f

terpenoids, 185, 186f

therapeutic products production

bioreactor design, 268

chemical modification and, 269

current production routes, common natural products, 266, 267t, 268–269

direct vs. indirect genetic engineering, 264–265

fed-batch bioreactor operation, 266

future directions, 271

gene, metabolic engineering, 265

heterologous natural product biosynthesis, 269–271, 270f

historical perspective, 261

mutagenics, selection methods, 268
INDEX

penicillin, 261–262
product production host genetic, metabolic and process, 264–266, 264f
production host, influence on process development, 262, 263f, 264–266, 264f, 267f, 268–269
thioesterase (TE), 233, 234f
thiopeptides, 205–207, 206f
tissue organization, chemical substance synthesis, marine natural products, 39, 40f, 41–42
toxicity avoidance. See autotoxicity avoidance, self-produced defense bioactive compounds
underprivileged scaffolds, 406–407, 407f
vacuolar sequestration, autotoxicity avoidance, 70–72, 71f
waking sleeping pathways. See filamentous fungi, waking sleeping pathways