Contents

Preface xv
Contributors xvii

Part I: Fibers: Interface and Architecture 1

1. **Reinforcement of Ceramic Matrix Composites: Properties of SiC-Based Filaments and Tows** 3
 Jacques Lamon, Stéphane Mazerat, and Mohamed R’Mili
 1.1 Introduction 3
 1.2 Processing of SiC-Based Filaments 4
 1.3 Fracture Characteristics of Single Filaments 6
 1.3.1 Statistical Strength Distributions 6
 1.3.2 Weibull Distribution of Failure Strengths 6
 1.3.3 Determination of Weibull Statistical Parameters 8
 1.3.4 Normal Distribution 9
 1.4 Multifilament Tows 11
 1.4.1 The Bundle Model 13
 1.4.2 Filaments–Tows Relations: Tow-Based Testing Methods for Determination of Single Filament Properties 14
 1.5 Mechanical Behavior at High Temperatures 16
 1.5.1 Strength Degradation and Oxidation at High Temperature 16
 1.5.2 Static Fatigue Under Constant Load at Intermediate Temperatures: Subcritical Crack Growth 16
 1.6 Summary 23
 References 23

2. **Carbon Fibers** 27
 Herwig Peterlik
 2.1 Introduction/Production Routes 27
 2.2 Structure of Carbon Fibers 28
 2.2.1 Levels 1 and 2, Atomic level 28
 2.2.2 Level 3, Lower Nanometer Range 28
 2.2.3 Level 4, Upper Nanometer Range 31
 2.2.4 Level 5, 10-μm Range 32
 2.3 Stiffness and Strength of Carbon Fibers 32
 2.4 Concluding Remarks and Future Directions 36
 Acknowledgments 37
 References 37

3. **Influence of Interfaces and Interphases on the Mechanical Behavior of Fiber-Reinforced Ceramic Matrix Composites** 40
 Jacques Lamon
 3.1 Introduction 40
CONTENTS

3.2 Role of Interfacial Domain in CMCs 41
 3.2.1 Crack Initiation at Interfaces 41
 3.2.2 Crack Deflection at Interfaces 41
 3.2.3 Approaches to Crack Deflection at Interfaces 42
 3.2.4 Deflection Criteria Based on the Cook and Gordon Mechanism 44
 3.2.5 Influence of Material Elastic Properties on Crack Deflection 45

3.3 Influence of Deflected Cracks 49

3.4 Strengthened Interfaces and Interphases 51

3.5 Various Concepts of Weak Interfaces/Interphases 56

3.6 Determination of Interfacial Properties 56
 3.6.1 The Interfacial Tensile Strength 57
 3.6.2 Interfacial Shear Strength or Stress 57
 3.6.3 Interface Selection 60
 3.6.4 Influence of Interfacial Resistance to CMCs 60

3.7 Interface Selection 60

3.8 Conclusions 60

References 61

4 Textile Reinforcements: Architectures, Mechanical Behavior, and Forming 65
Philippe Boisse

4.1 Introduction 65

4.2 Textile Composite Reinforcements 65
 4.2.1 Multiscale Materials: Fibers, Tows, Fabrics 65
 4.2.2 Architecture and Geometry of the Unit Woven Cell 67
 4.2.3 Experimental Analysis of the Mechanical Behavior 67
 4.2.4 Mechanical Behavior Modeling 73

4.3 Reinforcements of Ceramic Composites 74
 4.3.1 Silicon Carbide Fibers 74
 4.3.2 Textile Reinforcement 75
 4.3.3 Infiltration of the Textile Preform 75

4.4 Preforming Simulation 76
 4.4.1 Fishnet Algorithm 76
 4.4.2 Continuous FE Approaches 76
 4.4.3 Hypoelastic Behavior: Simulation of a Double-Dome Forming 77
 4.4.4 Composite Reinforcement Forming Using a Semidiscrete Approach 77

4.5 Conclusion 81

References 82

Part II Composite Materials 85

5 Carbon/Carbons and Their Industrial Applications 87
Hiroshi Hatta, Roland Weiss, and Patrick David

5.1 Introduction 87

5.2 Manufacturing of Carbon/Carbons 87
 5.2.1 Carbon Fiber Reinforcements 88
 5.2.2 Matrix Systems 90
 5.2.3 Redensification/Recarbonization Cycles 95
 5.2.4 Final Heat Treatment 95

5.3 Strengths 97
 5.3.1 Introduction 97
 5.3.2 Fiber/Matrix Interface 98
 5.3.3 Tensile Strength 101
 5.3.4 Shear Strength 104
 5.3.5 Compressive Strength 106
CONTENTS

7.4.3 Advances in SiC Fiber Architectures 225
7.4.4 Advances in SiC-Based Matrices 227
7.4.5 Advances in SiC/SiC Microstructural Design Methods 229
7.5 Current Microstructural Design Guidelines and Potential Service Issues for Higher Temperature SiC/SiC Components 232
7.6 Concluding Remarks 233
Acknowledgments 233
References 233

8 Oxide–Oxide Composites 236
Kristin A. Keller, George Jefferson, and Ronald J. Kerans
8.1 Introduction 236
8.2 Composite Design for Tough Behavior 237
8.2.1 Porous Matrices 237
8.2.2 Interface Control 238
8.3 Fibers and Fiber Architecture 240
8.4 Processing Methods 241
8.4.1 Processing of Interface Coatings 242
8.4.2 Matrix Infiltration 243
8.4.3 Consolidation 247
8.4.4 Metal Oxidation Processing 248
8.5 Porous Matrix Composite Systems 248
8.6 Properties 250
8.6.1 Basic Physical Characteristics 250
8.6.2 Room Temperature Uniaxial Mechanical Properties 251
8.6.3 Long-Term Thermal Exposure 253
8.6.4 Durability 254
8.6.5 Notch Sensitivity and Toughness 255
8.6.6 Off-Axis Properties 256
8.7 Composites with Interface Coatings 257
8.7.1 Weak Oxide–Oxide Phase Boundaries/Weak Oxides 257
8.7.2 Porous Coatings 260
8.7.3 Fugitive Coatings 260
8.7.4 Other Coatings 261
8.8 Technology Development 261
8.9 Potential Future for Oxide–Oxide Composites 263
Acknowledgments 264
References 264

9 Ultrahigh Temperature Ceramic-Based Composites 273
Yutaka Kagawa and Shuqi Guo
9.1 Introduction 273
9.2 Ultrahigh Temperature Ceramic-Based Composites with Particulates 273
9.2.1 Fabrication Methods 273
9.2.2 Physical Properties 278
9.2.3 Mechanical Properties 282
9.3 Ultrahigh Temperature Ceramic-Based Composites with Short Fibers 285
9.3.1 Carbon Fiber-Reinforced ZrB₂ or HfB₂-Based Ceramics Matrix Composites 286
9.3.2 Silicon Carbide Fiber-Reinforced ZrB₂-Based Ceramics Matrix Composites 288
9.4 Summary Remarks and Future Outlook 288
References 290
CONTENTS

Part III Environmental Effects and Coatings 293

10 Environmental Effects on Oxide/Oxide Composites 295
Marina B. Ruggles-Wren

10.1 Introduction/Background 295
10.2 Mechanical Behavior—Effects of Environment 296
 10.2.1 Tensile Stress–Strain Behavior 296
 10.2.2 Tensile Creep 298
 10.2.3 Tensile Creep and Recovery 304
 10.2.4 Tensile Creep—N720/A and N720/AM Composites with ±45 Fiber Orientation 308
 10.2.5 Compression and Compression Creep 313
 10.2.6 Creep in Interlaminar Shear 317
 10.2.7 Tension–Tension Fatigue 321
 10.2.8 Tension–Tension Fatigue with Hold Times 324
10.3 Concluding Remarks and Future Directions 330
References 331

11 Stress-Environmental Effects on Fiber-Reinforced SiC-Based Composites 334
Gregory N. Morscher

11.1 Introduction/Background 334
11.2 Mechanisms 334
 11.2.1 Surface Recession 336
 11.2.2 Interior Oxidation and “Oxidation Embrittlement” (Via Cracks or Exposed Volatile Pathways) 336
11.3 Composite Systems 337
 11.3.1 Carbon-Fiber-Reinforced SiC Composites (C/SiCm) 337
 11.3.2 SiC-Fiber-Reinforced SiC Matrix Composites with Carbon Interphases (SiCf/Ci/SiCm) 338
 11.3.3 SiC-Fiber-Reinforced SiC Matrix Composites with BN Interphases (SiCf/BN/SiCm) 341
11.4 Modeling and Design for Stress-Oxidation Degradation 345
 11.4.1 Modeling Stressed-Oxidation Degradation in C/SpC Composites—C Fiber Removal 345
 11.4.2 Modeling Stressed-Oxidation Degradation in SiC/SpC Composites: Interphase Recession and Fiber Flaw Growth 346
 11.4.3 Modeling Stressed-Oxidation Degradation in SiC Fiber Composites—Unbridged Crack Growth Due to Fiber Weakening and Stress Concentration at Unbridged Crack Tip 347
 11.4.4 Modeling Stressed-Oxidation Degradation in SiC/BNSC Composites: Unbridged Crack Growth Due to Strongly Bonded Fibers and Local Fiber Failure 347
 11.4.5 Mechanism Map: Henegar and Jones 348
 11.4.6 Simple Design Approach: Matrix Cracking Stress 348
11.5 Concluding Remarks and Future Directions 350
Acknowledgments 350
References 350

12 Environmental Effects: Ablation of C/C Materials—Surface Dynamics and Effective Reactivity 353
Gerard L. Vignoles, Jean Lachaud, and Yvan Aspa

12.1 Introduction/Background 353
 12.1.1 Materials Description 355
CONTENTS

12.1.2 Materials Tests 357
12.1.3 Observation of Roughness Features 359
12.2 Materials Observation: Recession Rate 365
 12.2.1 Theory 368
 12.2.2 Results and Discussions 374
12.3 Concluding Remarks and Future Directions 383
Acknowledgments 384
References 384

13 Radiation Effects 389
Yutai Katoh

13.1 Introduction 389
13.2 Theory of Radiation Damage 389
 13.2.1 What Is Radiation Damage? 389
 13.2.2 Radiation Defect Production 390
 13.2.3 Defect Migration and Evolutions 391
 13.2.4 Resultant Macroscopic Effects 392
13.3 Radiation Effects on Ceramics 392
 13.3.1 Silicon Carbide 392
 13.3.2 Radiation Damage Evolution in SiC 392
 13.3.3 Radiation Effects in SiC 393
 13.3.4 Carbon Materials 394
13.4 Radiation Effects in Ceramic Matrix Composites 394
 13.4.1 SiC/SiC Composites 394
 13.4.2 Interphase in SiC/SiC Composites 398
 13.4.3 Carbon Fiber Composites 399
13.5 Concluding Remarks and Future Directions 401
Acknowledgment 402
References 402

14 Foreign Object Damage in Ceramic Matrix Composites 405
Sung R. Choi

14.1 Introduction/Background 405
14.2 Experimental Techniques 406
 14.2.1 FOD Test Rig 406
 14.2.2 Materials: CMC and Projectile Materials 406
 14.2.3 Configuration and Support of CMC Targets 407
 14.2.4 Impact Damage Assessments 408
14.3 Phenomena of Foreign Object Damage in CMCs 409
 14.3.1 Residual Strength 409
 14.3.2 Impact Damage Morphology 410
 14.3.3 Prediction of Impact Force 417
 14.3.4 Other Effects in FOD 420
14.4 FOD Response of Environmental Barrier Coatings 422
14.5 Comparison of CMCs and Silicon Nitrides 424
14.6 Consideration Factors of FOD in CMCs 425
14.7 Concluding Remarks 426
Acknowledgments 426
References 426

15 Environmental Barrier Coatings for SiC/SiC 430
Kang N. Lee

15.1 Introduction 430
CONTENTS

15.2 Background 431
15.2.1 Silica Volatility 431
15.2.2 Key Requirements for EBC 432

15.3 Evolution of EBCs 437
15.3.1 Mullite Coating 437
15.3.2 First Generation Environmental Coatings 438
15.3.3 Second Generation Environmental Coatings 441
15.3.4 Next Generation Environmental Coatings 442

15.4 Processing, Testing, and Lifing 442
15.4.1 Processing 442
15.4.2 Testing 443
15.4.3 Lifing 444

15.5 Concluding Remarks and Future Directions 448

References 448

16 Oxidation Protective Coatings for Ultrahigh Temperature Composites 452
Qiangang Fu and Yiguang Wang

16.1 Introduction 452

16.2 Basic Requirements of Anti-Oxidation Coating for C/C and C/SiC Composites 453
16.2.1 Inhibiting Ability of Oxygen Diffusion 453
16.2.2 Good Match of Thermal Expansion with C/C and C/SiC Composites 453
16.2.3 Low Volatility during Service Process 453
16.2.4 Compatible Stability with C/C or C/SiC Composites 453
16.2.5 Good Interfacial Bonding with C/C or C/SiC Composites 454

16.3 Preparation Methods of Anti-Oxidation Coatings 454
16.3.1 Pack Cementation 454
16.3.2 Chemical Vapor Deposition 454
16.3.3 Liquid Phase Reaction 454
16.3.4 Plasma Spraying 455
16.3.5 Sol-Gel Method 455
16.3.6 Supercritical Fluid Technique 455
16.3.7 Slurry Method 455
16.3.8 In Situ Reaction 456

16.4 Oxidation-Resistant Coating Systems 456
16.4.1 Glass Coatings 456
16.4.2 Metal Coatings 456
16.4.3 Ceramic Coatings 457

16.5 Composite Coating 460
16.6 Summary 460

References 461

Part IV Modeling 465

17 Damage and Lifetime Modeling for Structure Computations 467
Pierre Ladevèze, Emmanuel Baranger, Martin Genet, and Christophe Cluzel

17.1 Introduction 467
17.2 Damage Modeling Based on an Anisotropic Damage Theory Including Closure Effects 468
17.2.1 General Notations 468
17.2.2 Thermodynamic Framework 469
17.2.3 A First CMC Damage Model 471
CONTENTS

17.2.4 An Advanced CMC Damage Model 472
17.2.5 Some tools for the Implementation of the Anisotropic Framework 479

17.3 Multiscale Modeling of the Oxidation/Damage Coupling and the Self-Healing Effects 481
17.3.1 Modeling of Fatigue and of the Transverse Intra-yarn Crack Opening 482
17.3.2 Modeling of the Healing Process 490
17.3.3 Modeling of the Sub-Critical Cracking of Fibers 496
17.3.4 Simulation of Degradation Mechanisms and Prediction of Lifetime 497

17.4 Prediction Capabilities 503
17.4.1 Calculation of the Local Behavior 503
17.4.2 Lifetime Predictions and Application to Damage Tolerance Analysis 506
17.4.3 Control of the Damage Localization and Static Failure Predictions 513

References 515

18 Approach to Microstructure–Behavior Relationships for Ceramic Matrix Composites Reinforced by Continuous Fibers 520
Jacques Lamon
18.1 Introduction 520

18.2 Composite Mechanical Behavior 521
18.2.1 Tensile Stress–Strain Behavior of Composites Reinforced by Continuous Fibers 521
18.2.2 Ultimate Failure 524

18.3 Constituent Properties and Length Scales 526
18.3.1 Length Scales: Micro and Minicomposites 527
18.3.2 Fracture Strength of Matrix 527
18.3.3 Flaw Strength Distributions 528
18.3.4 Damage Tolerance and Influence of Macroscopic Flaws 528
18.3.5 Interface Strength and Influence of Interface Cracks on the Mechanical Behavior 530

18.4 Modeling of Stress–Strain Behavior 531
18.4.1 Stochastic Model of Matrix Fragmentation in 1D Composite and Minicomposite 531
18.4.2 Ultimate Failure in 1D Composite and Minicomposite 535
18.4.3 Toward a Probability-Based General Model of Composite Behavior 536
18.4.4 The Stress–Strain Behavior of 1D Composites and Minicomposites 536
18.4.5 Alternate Approach 537

18.5 Virtual Testing: Computational Approach for Woven Composites 539
18.5.1 Multiple Cracking in Transverse Tows 539
18.5.2 Matrix Damage in 2D Woven Composites 541

18.6 Predictions of Rupture Time 542
18.7 Conclusions 545

References 546

Part V Joining 549

19 Integration and Joining of Ceramic Matrix Composites 551
Monica Ferrars and Valentina Casalegno
19.1 Introduction/Background 551
19.2 Mechanical Joining and Integration of CMC 552
19.3 Adhesive Joining of CMC 553
19.4 Brazing of CMC 553
19.5 Liquid Silicon Infiltration 554
19.6 ArcJoinT 554

References 564
CONTENTS

19.7 “Exotic” Techniques for Integration And Joining of CMC 555
 19.7.1 Transient-Liquid-Phase Bonding 555
 19.7.2 Nanopowder Infiltration and Transient Eutectic Phase 555
 19.7.3 Spark Plasma Sintering 556
 19.7.4 Micro-Wave-Assisted Joining 557
 19.7.5 Laser-Assisted Joining 557
 19.7.6 Glass and Glass-Ceramic as Joining Materials for CMC 557
 19.7.7 Solid State Displacement Reactions 557
 19.7.8 Preceramic-Polymer Joints 558

19.8 Back to Basic: Joints for CMC Like in Wood-Based Products 558

19.9 Special Issues 560
 19.9.1 Joining of CMC for Nuclear Applications 560
 19.9.2 Joining of CMC for Ultrastable Structures 561

19.10 Mechanical Tests on Joined CMC 561
 19.10.1 Shear Strength Tests 561
 19.10.2 Nondestructive Tests 562

19.11 Concluding Remarks and Future Directions 562

Acknowledgments 563

References 563

Part VI Nondestructive Evaluation 569

20 Use of Acoustic Emission for Ceramic Matrix Composites 571
 Gregory N. Morscher and Nathalie Godin
 20.1 Introduction/Background 571
 20.2 AE Principles and Practice 572
 20.3 Event-Based AE Monitoring of CMCs 575
 20.3.1 Event-Based AE of CMC Stress–Strain Behavior 576
 20.3.2 Event-Based AE of CMC-Elevated Temperature Stress-Rupture 579
 20.3.3 Event-Based AE of CMC C-Coupon Testing 580
 20.4 AE Signal Analysis Using Pattern Recognition Techniques 580
 20.4.1 Unsupervised Clustering Methodology Applied to AE Signals 583
 20.4.2 Supervised Pattern Recognition Method 584
 20.5 High Temperature Testing and AE Monitoring 584
 20.5.1 Identification of Damage Mechanism on SiCf/[Si-B-C] Composite at Intermediate Temperatures (450–750°C) 585
 20.5.2 Identification of Damage Mechanism on Cf/[Si-B-C] Composite at High Temperature (700–1200°C) 586
 20.6 Acoustic Emission and Lifetime Prediction During Static Fatigue Tests 586
 20.6.1 Detection of Energy Release Acceleration 587
 20.6.2 Application of the Benioff Law to Assess Lifetime of the CMCs 588
 20.7 Concluding Remarks and Future Directions 588

References 589

Part VII Applications 591

21 CMC Applications to Gas Turbines 593
 Patrick Spriet
 21.1 Introduction 593
 21.2 CMC Developments for Military Engines 594
 21.2.1 Demonstration and Developments for Exhaust Section 594
 21.2.2 Demonstration of CMC Afterburner Component 598
 21.2.3 Turbine Component Demonstrations on Military Engines 599