Index

Abbreviations, 210–211
Ablated material morphology, 378
Ablation, of C/C materials, 353–388
Ablation morphologies, 363–365
Ablation rate, 367
Ablation resistance, 367
Ablation solver algorithms, 373
Ablation tests, 358, 359
Ablative C/C composites, variety of, 355–356
Ablative conditions, C/C and C/phenolic composites in, 357
Ablative material design, 355
ABO4 coatings, 260
Accelerated mission tests (AMTs), 596
Acheson process, 149
Acoustic emission (AE), 349. See also AE parameters for CMCs, 571–590
Acoustic emission entries
Acoustic emission acquisition, approaches to, 574, 575–580, 580–584
Acoustic emission events, location of, 576
Acoustic emission monitoring, 576, 577
Acoustic emission signal analysis supervised pattern recognition method in, 584
unsupervised clustering methodology in, 583–584
using pattern recognition techniques, 580–584
Acoustic emission systems, 576
Acoustic emission tensile tests, 572
Adherence, of environmental barrier coatings, 435
Adhesive joining, 553
Adhesives, 552
Adhesive technology, 553
AE parameters, 349. See also Acoustic emission entries
Aerodynamic performance, improving supersonic, 192–193
Aerogel CMC components, designing, 425
Aerogels, 405, 593
Aerogels applications, 200–202
Aero-propulsion, SiC/SiC composites for, 217–235
Aero-propulsion gas turbine engines, ceramic components for, 218
Aerospa technology advancement, 236
AESTUS (Astrium ST/EADS IW), 193–195
Afterburner components, 598–599
Air plasma spraying (APS), 442–443
Air plasma spraying (APS), 442–443
Aitken’s relaxation methods, 505
Alumina-based composites, 240
Alumina-YAG matrices, 249–250, 253
Anisotropic damage, simplest, 472
Anisotropic damage theory, 467, 468–481
Anisotropic framework, tools for implementing, 479–481
Anisotropic interphases, 52
Anisotropy, 309
Anti-ablation components, of oxidation protective coatings, 461
Anti-ablation layer, 460
Anti-oxidation coatings, preparation methods for, 454–456
Anti-oxidation methods, for C/C composites, 452
Antioxidation protection, for carbon brakes, 654–655
Applications. See also Aeronautics applications; CMC applications;
Diverter structural component applications; Friction applications;
High energy laser (HEL) applications; Industrial applications;
Nuclear applications; Space applications
atmospheric reentry, 354, 356–359
for C/C and C/C-SiC materials, 191–209
for friction systems, 202–207
one-step-cycle, 92
for oxide–oxide composites, 261–263
tribological, 655–657
Architecture, 624, 630
Arc image furnace, 378
ArcionIT technology, 554–555
Ariane 5, 193, 195
ARIES fusion reactor, 611, 614–616
Arrhenius plots, 119
Aspa, Yvan, xvii, 353
ASTM (American Society for Testing and Materials) standards, 362
Astrum, 196, 197, 198
Asymmetrical four-point bending test, 562
ATK-COIC composites, 252, 253–256
 Atmospheric reentry, 353–354
 Atmospheric reentry application, 354, 356–359
 Atmospheric reentry materials, 355–356
 Atomic displacement damage, 390
 Atomic level, of carbon fibers, 28
 Autoclave technique, 163–164
 Autoclaving, 244
 Automotive brake disks (discs), 203–204
 Automotive components, crash behavior of, 206–207
 Backside impact damage, 413, 414
 Balance equations, 371
INDEX

Carbon-fiber-reinforced plastics (CFRP)
- Demand for, 138
- Future directions of, 118
- Mechanical properties for brakes, 652
- Oxidation protection of, 118–126
- For racing car brake disks, 655–656
- In the solar energy market, 137–140
- For racing car brake disks, 655–656
- Thermal conductivity of, 140
- For brake disks (discs), 163, 662
- Manufacture of, 158–159, 162–166
- Gyroscopy of, 166–168
- Carbon-fiber-reinforced polymers (CFRPs), 90–91.
 - See also CFRP materials
- Carbon-fiber-reinforced SiC composites, 148, 337–338
- Creep-recovery behavior of, 304–308
- Carbon-boron fiber, 384
- Carbon fiber–matrix composites, 235–236
- Carbon fiber–ceramic composites, 147–216
- See also C/C-SiC composites
- C/C-SiC handling device, 208–209
- C/C-SiC components, 170
- C/C-SiC type, 220, 223
- C/C-SiC structures, 170
- C/C-SiC preforms, 214–216
- C/C-SiC composites, 147–216
- Ceramic composites, 147–216
- Ceramic composites, ultrahigh temperature, 273–292
- Ceramic brake pads, 205, 206
- Ceramic bonding, 637
- Ceramic coatings, 457–459
- Ceramic components for aero-propulsion gas turbine engines, 218
- Ceramic composites, 23–26, 235
- Ceramic fiber–matrix composites (CFMCs), 236
- Ceramic fibers, coatings onto, 242
- Ceramic materials, mechanical properties of, 65
 - See also CMC entries; Continuous-fiber-reinforced ceramic matrix composites (CFMCs); SiC–SiC
 - CMCs
- CMC acoustic emission for, 571–590
- Adhesive joining of, 553
- Advantages of, 295–296
- In aerospace, 405
- Behavior at interfaces and interphases of, 40–64
- Braiding of, 553–554, 561
- Carbon-based, 554
- Carbon fiber–reinforced, 286–288
- Continuous-fiber-reinforced, 3
- Creep-recovery behavior of, 304–308
- Damage modeling for, 467–468
- Event-based AE monitoring of, 616–623
- Fission reactor applications for, 616–623
- FOD factors in, 425–426
- FOD responses for, 424–425
- Foreign object damage in, 405–429
- For friction applications, 647–671
- Fusion applications for, 610–616
- Integration and joining of, 551–567
- Microporous oxide–oxide, 250
- Microstructure–behavior relationships for, 520–547
- Nuclear applications for, 609–646
 - See also C/C-SiC components
- C/C-SiC composites
 - Tribological behavior of, 655–657
- Nylon-based, 160–161
- Oxidation behavior of, 190–191
- Properties of, 174–191
- Thermal properties of, 187–189
- Tribological behavior of, 191
- C/C-SiC sliding elements, 128–129, 207
- C/C testing, in SRM facility, 362–365
- C/C tribological applications, 655–657
- CEA, 631–633
- CEA sandwich design, 638–641
- Celsius phase, 436
- Ceramic-based composites, ultrahigh temperature, 273–292
- Ceramic brake pads, 205, 206
- Ceramic bonding, 637
- Ceramic coatings, 457–459
- Ceramic components for aero-propulsion gas turbine engines, 218
- Ceramic composites, 74–76, 236, 235
- Ceramic fiber–matrix composites (CFMCs), 236
- Ceramic fibers, coatings onto, 242
- Ceramic materials, mechanical properties of, 65
 - See also CMC entries; Continuous-fiber-reinforced ceramic matrix composites (CFMCs); SiC–SiC
 - CMCs
- CMC acoustic emission for, 571–590
- Adhesive joining of, 553
- Advantages of, 295–296
- In aerospace, 405
- Behavior at interfaces and interphases of, 40–64
- Braiding of, 553–554, 561
- Carbon-based, 554
- Carbon fiber–reinforced, 286–288
- Continuous-fiber-reinforced, 3
- Creep-recovery behavior of, 304–308
- Damage modeling for, 467–468
- Event-based AE monitoring of, 616–623
- Fission reactor applications for, 616–623
- FOD factors in, 425–426
- FOD responses for, 424–425
- Foreign object damage in, 405–429
- For friction applications, 647–671
- Fusion applications for, 610–616
- Integration and joining of, 551–567
- Microporous oxide–oxide, 250
- Microstructure–behavior relationships for, 520–547
- Nuclear applications for, 609–646
 - See also C/C-SiC components
- C/C-SiC composites
 - Tribological behavior of, 655–657
- Nylon-based, 160–161
- Oxidation behavior of, 190–191
- Properties of, 174–191
- Thermal properties of, 187–189
- Tribological behavior of, 191
- C/C-SiC sliding elements, 128–129, 207
- C/C testing, in SRM facility, 362–365
- C/C tribological applications, 655–657
- CEA, 631–633
- CEA sandwich design, 638–641
- Celsius phase, 436
- Ceramic-based composites, ultrahigh temperature, 273–292
- Ceramic brake pads, 205, 206
- Ceramic bonding, 637
- Ceramic coatings, 457–459
- Ceramic components for aero-propulsion gas turbine engines, 218
- Ceramic composites, 74–76, 236, 235
- Ceramic fiber–matrix composites (CFMCs), 236
- Ceramic fibers, coatings onto, 242
- Ceramic materials, mechanical properties of, 65
 - See also CMC entries; Continuous-fiber-reinforced ceramic matrix composites (CFMCs); SiC–SiC
 - CMCs
- CMC acoustic emission for, 571–590
- Adhesive joining of, 553
- Advantages of, 295–296
- In aerospace, 405
- Behavior at interfaces and interphases of, 40–64
- Braiding of, 553–554, 561
- Carbon-based, 554
- Carbon fiber–reinforced, 286–288
- Continuous-fiber-reinforced, 3
- Creep-recovery behavior of, 304–308
- Damage modeling for, 467–468
- Event-based AE monitoring of, 616–623
Ceramic matrix composites (CMCs) (Continued)
for pin cladding or structural materials, 621–623
porous oxide–oxide, 248–250
radiation effects in, 389, 394–401
reinforcement of, J–26
role of interfacial domain in, 41–49
silicon nitrides in, 424–425
topics related to, xv
Ceramic particles, 457
Ceramics, 3, 174–175, 392–394
Ceramic matrix composites (CMCs)
C fiber reinforcement, for brakes,
C fiber embedding, 151
CFRP materials, 175, 662.
CFRP preforms; Carbon-fiber-reinforced plastic
(CFRPs)
C–Si–B–C composites, 585, 586
Channel element model, in
Chain-of-segment model, in
Chemical bonding, at an interface, 40, 41
Characteristic strength, 538–539
Characteristic volume, 538
Chemical degradation, 405
CMC developments, for military engines, 594–600
CMC–elevated temperature stress–rupture, event-based AE of, 579
CMC exhaust components, Safran R&D
CMC failure behavior, 238–240
CMC mechanical joining, 552–553
CMC mechanical testing, 556
CMC mechanical joining, 552
CMC mixer nozzle, for helicopter demonstration, 598
CMC mixer nozzle technology, 126–127, 128–129, 203–204
CMC production, 120–121
CMC stress–strain behavior, event-based AE of, 576–579
CMC targets, configuration and support of, 407–408
Coating/CMC interface, 441
Coating processes, 443
Coating requirements, 219
Coatings, 240. See also Interface coating entries; Oxidation protective coatings; Oxidation-resistant coating systems
AUC, 260
barrier, 554
bond, 435
BoraSiC®, 123, 124
boron nitride, 240
BSA, 433, 434, 435, 436–437, 438–440
carbon, 240, 260, 261
carbon-based, 224
ceramic, 457–459
ontoceramic fibers, 242
CMC, 438–441
composite, 460
CVD, 437, 438–439
CVD-SiC, 124–125, 242
double-layer, 460
ductile polymeric, 424
EB-PVD, 443
fugitive, 56, 260–261
glass, 456
gradient, 459
impact damage of, 424
lacquer, 424
layered, 459
metal, 456–457
monazite, 260, 261
multilayer, 249, 430, 433, 434, 437–438
multilayer, 122–124, 437, 459, 460
nanoparticle–toughened, 458–459
nanowire–toughened, 458
oxide, 56
porous, 56, 260
powder consolidation, 407–408, 449–450
zirconia, 260, 261
Coatings research, 437
Coating temperature, 147
Coating work, for Si-based ceramics, 430
Coefficient of friction (COF, CoF), 191, 207, 650, 651, 652, 657. See also CoF stability
Coefficient of moisture expansion (CME), 361
Coefficient of thermal expansion (CTE), 116–117, 147, 187–189, 436–437, 441, 457, 551–552, 561, 661, 664
of environmental barrier coatings, 433
Coefficient of variation, 14
Composite behavior, probability-based
Composite approach, 273
Components manufacturing/testing, 599
Compaction, 415
Compartmentalization, 308
Collaborative programs, 600
Collision cascade, 391
Combustion chambers, CMC research and development for, 601–602
Commercial C/C composites, characteristics of, 426. See also Carbon/carbon entries
Commercial engines, CMC research and development for, 601–607
Composites.
Composite reinforcement forming, using semi-discrete approach, 77
Composites. See also Composite materials; C/SiC materials; Ultrahigh temperature ceramic-based composites
Composites; C/SiC materials; Matrix crack entries; Microcrack entries; Multiple cracking
Composites; C/SiC materials; Matrix crack entries; Microcrack entries; Multiple cracking
Composites; C/SiC materials; Matrix crack entries; Microcrack entries; Multiple cracking
Composites; C/SiC materials; Matrix crack entries; Microcrack entries; Multiple cracking
Composites; C/SiC materials; Matrix crack entries; Microcrack entries; Multiple cracking
Creep rates, 299–300, 306, 311
secondary, 300, 309–311, 319
in steam, 319
Creep-recovery behavior, 304–308
Creep resistance, 223, 254, 263–264
Creep run-out, 259–260, 299–300, 304
Creep rupture, 254
Creep strain(s), 299, 309, 310, 319, 326
Creep strain recovery, 304–308
Creep strains, 299, 309, 310, 319, 326
Creep stresses, 298, 312
Creep tests, 312
Critical elements, 542
Critical fiber, 11
Critical fiber-dictated failure mode, 18
Cross sections, of impact damage,
Cross-links, 36.
Critical fiber, 11
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber, 11
Critical fiber-dictated failure mode, 18
Cross sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
Critical fiber-dictated failure mode, 18
Cross-sections, of impact damage,
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue cycle(s)</td>
<td>325, 326, 327, 488</td>
</tr>
<tr>
<td>Fatigue behavior</td>
<td>108–109, 478</td>
</tr>
<tr>
<td>Fatigue analysis</td>
<td>496</td>
</tr>
<tr>
<td>Fatigue</td>
<td>482, 486</td>
</tr>
<tr>
<td>Fatigue resistance</td>
<td>21, 254</td>
</tr>
<tr>
<td>Fatigue tests, lifetime prediction during</td>
<td>586–588</td>
</tr>
<tr>
<td>FE approaches</td>
<td>76–77</td>
</tr>
<tr>
<td>Felt susceptors</td>
<td>139–140, 551</td>
</tr>
<tr>
<td>Ferraris, Monica</td>
<td>xvii, 551</td>
</tr>
<tr>
<td>Fiber(s)</td>
<td>65, 240–241</td>
</tr>
<tr>
<td>bonding to matrix</td>
<td>41</td>
</tr>
<tr>
<td>choices of, 624</td>
<td>23</td>
</tr>
<tr>
<td>continuous refractory</td>
<td>23</td>
</tr>
<tr>
<td>creep characteristics of, 254</td>
<td>11</td>
</tr>
<tr>
<td>critical, 11</td>
<td>344</td>
</tr>
<tr>
<td>distance between neighboring</td>
<td>4</td>
</tr>
<tr>
<td>first-generation</td>
<td>4</td>
</tr>
<tr>
<td>fracture surface of, 19</td>
<td>9</td>
</tr>
<tr>
<td>higher temperature capable</td>
<td>263–264</td>
</tr>
<tr>
<td>high modulus, 149</td>
<td>150</td>
</tr>
<tr>
<td>high tensacy, 149</td>
<td>4, 16</td>
</tr>
<tr>
<td>non-oxide, 4</td>
<td>16</td>
</tr>
<tr>
<td>oxide, 3</td>
<td>4</td>
</tr>
<tr>
<td>pitch-based reinforcing, 99–100,</td>
<td>40</td>
</tr>
<tr>
<td>reinforcing against fracture, 40</td>
<td>3</td>
</tr>
<tr>
<td>Si-based, 3</td>
<td>150</td>
</tr>
<tr>
<td>stress on, 50</td>
<td>347–348</td>
</tr>
<tr>
<td>strongly bonded, 347, 348</td>
<td>349–349</td>
</tr>
<tr>
<td>subcritical cracking of, 496–497</td>
<td>349</td>
</tr>
<tr>
<td>third-generation</td>
<td>4</td>
</tr>
<tr>
<td>treated, 50, 52</td>
<td>349</td>
</tr>
<tr>
<td>ultra-high modulus, 147, 150</td>
<td>349</td>
</tr>
<tr>
<td>woven, 341</td>
<td>349</td>
</tr>
<tr>
<td>Fiber architectures</td>
<td>225, 232, 240–241</td>
</tr>
<tr>
<td>Fiber bundle morphology, 377</td>
<td>241</td>
</tr>
<tr>
<td>Fiber bundles, 12, 16, 105, 107</td>
<td>241</td>
</tr>
<tr>
<td>Fiber bundle tests, 33</td>
<td>241</td>
</tr>
<tr>
<td>Fiber characteristics, 521</td>
<td>241</td>
</tr>
<tr>
<td>Fiber coat, 242, 243, 244</td>
<td>241</td>
</tr>
<tr>
<td>Fiber/coating bonds, 55</td>
<td>241</td>
</tr>
<tr>
<td>Fiber coatings, 154</td>
<td>241</td>
</tr>
<tr>
<td>advances in, 224–225</td>
<td>56</td>
</tr>
<tr>
<td>CVI-pyC, 153</td>
<td>56</td>
</tr>
<tr>
<td>oxide, 240</td>
<td>56</td>
</tr>
<tr>
<td>porous, 56</td>
<td>56</td>
</tr>
<tr>
<td>Fiber decoupling</td>
<td>56</td>
</tr>
<tr>
<td>Fiber degradation, 101, 253, 346–347</td>
<td>56</td>
</tr>
<tr>
<td>Fiber-direction (F1) microcracking mechanisms, 476–477</td>
<td>56</td>
</tr>
<tr>
<td>Fiber equilibrium local equation, 483</td>
<td>56</td>
</tr>
<tr>
<td>Fiber embedment, continuous, 175</td>
<td>9</td>
</tr>
<tr>
<td>Fiber failure(s), 13–14, 33, 237, 252, 304, 343, 347–348, 542</td>
<td>9</td>
</tr>
<tr>
<td>oxygen and delayed, 19</td>
<td>9</td>
</tr>
<tr>
<td>Fiber failure stress</td>
<td>6</td>
</tr>
<tr>
<td>Fiber flaw growth, stressed-oxidation degradation modeling in, 346–347</td>
<td>6</td>
</tr>
<tr>
<td>Fiber fracture(s), 11, 312</td>
<td>6</td>
</tr>
<tr>
<td>Fiber grain size, 221–222</td>
<td>6</td>
</tr>
<tr>
<td>Fiber interactions</td>
<td>15, 16, 525</td>
</tr>
<tr>
<td>Fiber interfacial coating system, 232</td>
<td>15</td>
</tr>
<tr>
<td>Fiber irradiation (FR), 348</td>
<td>16</td>
</tr>
<tr>
<td>Fiber length, equivalent, 355</td>
<td>16</td>
</tr>
<tr>
<td>Fiber lifetimes studies, 496</td>
<td>16</td>
</tr>
<tr>
<td>Fiber load-carrying capacity, 542–543</td>
<td>16</td>
</tr>
<tr>
<td>Fiber–matrix bonding (PMB), 161</td>
<td>543</td>
</tr>
<tr>
<td>166–167, 175, 624–625</td>
<td>544</td>
</tr>
<tr>
<td>Fiber–matrix interface(s), 97, 98–101, 109</td>
<td>544</td>
</tr>
<tr>
<td>weak, 238–239</td>
<td>109</td>
</tr>
<tr>
<td>Fiber–matrix interfacial domain, 40, 51–56, 530</td>
<td>109</td>
</tr>
<tr>
<td>role in CMCs, 41–49</td>
<td>109</td>
</tr>
<tr>
<td>Fiber–matrix interface sliding</td>
<td>398–399</td>
</tr>
<tr>
<td>properties, radiation effects on,</td>
<td>398</td>
</tr>
<tr>
<td>Fiber–matrix reactions, 270</td>
<td>398</td>
</tr>
<tr>
<td>Fiber/matrix sliding, 49–50</td>
<td>399</td>
</tr>
<tr>
<td>Fiber modulus, 251</td>
<td>399</td>
</tr>
<tr>
<td>Fiber orientation, 185, 186</td>
<td>399</td>
</tr>
<tr>
<td>Fiber overloading, 13</td>
<td>399</td>
</tr>
<tr>
<td>Fiber preforms, 89–90, 93</td>
<td>399</td>
</tr>
<tr>
<td>Fiber pull-out, 261</td>
<td>399</td>
</tr>
<tr>
<td>Fiber/PyC interface, 47–48</td>
<td>399</td>
</tr>
<tr>
<td>Fiber–reinforced ceramic matrix composites (CMCs), behavior at interfaces and interphases of, 40–64</td>
<td>399</td>
</tr>
<tr>
<td>Fiber–reinforced composites, 55–64</td>
<td>399</td>
</tr>
<tr>
<td>Fiber–reinforced SiC-based composites, stress-environmental effects on, 334–335</td>
<td>399</td>
</tr>
<tr>
<td>Fiber reinforcement, constraining effect of, 241</td>
<td>399</td>
</tr>
<tr>
<td>Fiber relaxation (FR), 348</td>
<td>399</td>
</tr>
<tr>
<td>Fiber rotation</td>
<td>348</td>
</tr>
<tr>
<td>Fiber seals, porous carbon, 638</td>
<td>348</td>
</tr>
<tr>
<td>Fiber strength, as a function of gauge length, 9</td>
<td>348</td>
</tr>
<tr>
<td>Fiber stress redistribution, 14</td>
<td>348</td>
</tr>
<tr>
<td>Fiber stress-rupture (SR), 348</td>
<td>348</td>
</tr>
<tr>
<td>Fiber structure, oxide matrices and, 243</td>
<td>348</td>
</tr>
<tr>
<td>Fiber surface flaw formation and/or growth, 336–337</td>
<td>348</td>
</tr>
<tr>
<td>Fiber-to-fiber bonding, 343</td>
<td>348</td>
</tr>
<tr>
<td>Fiber vaporization, 336, 337</td>
<td>348</td>
</tr>
<tr>
<td>Fiber volume fraction, 286–288</td>
<td>348</td>
</tr>
<tr>
<td>Fiber weakening, 347</td>
<td>348</td>
</tr>
<tr>
<td>Hickman regime, 494</td>
<td>348</td>
</tr>
<tr>
<td>Field-assisted sintering (SPS), 247–248</td>
<td>348</td>
</tr>
</tbody>
</table>
INDEX

Glass sealing layers, 124–126
Glasy phases, 439, 441
Glasy reaction zone, 435, 438
Global solar energy market, 137–140
Godin, Nathalie, xvi, 571
Gradient coatings, 459
Gradient C/SiC materials, 661
Grain/boundary sliding, 222
Grain size, 241, 282, 284
Graphitic planes, 33–34. See also Graphitic planes
Graphite radiation damage, 394
Graphite, 379–380, 394
Graphene sheets, 28, 30
Hafnium diborides (HfB
Hafnium carbide (HfC), 460.
Guo, Shuqi, xvii, 273
Green–Naghdi's (GN) frame, 73
Green bodies, 150, 245, 246
Graphitized C fibers, 147
Graphitization, 96–97, 112, 189
Graphene planes, 33–34. See also Graphitic planes
Graphite microstructures, in carbon
Graphene layers, 36
Grain size, 241, 282, 284
Grain/boundary sliding, 222
Gradient C/SiC materials, 661
Gradient coatings, 459
Heterogeneous mass transfer constant,
Hertz–Knudsen–Langmuir relationship,
Henegar–Jones mechanism map, 348
Hemispherical forming, simulation of, 80
Hexagonal-phase, 436
Hexagonal-tube fuel-assembly body,
HB-, based ceramic matrix composites, 286–288. See also Hafnium entries
HBN-based composites, 273–290
HIC-SiC multilayer coatings, 459
High ductility, 641
High energy laser (HEL) applications, 240–241
Higher temperature capable fibers, 263–264
Higher temperature SiC/SiC components, microstructural
design guidelines and service issues
for, 232–233
High flux plasma jet ablation, 378
Highly oriented polycrystalline graphite (HOPG), 394
High modulus (HM) fibers, 147, 150
High performance brake systems,
666–667
High performance components, manufacture of, 209
High-performance vacuum furnaces, 129–130
High rise lift, brake pads for, 667
High strength, 6
High temperature behavior, of Young’s modulus, 35–36
High-temperature brazing alloys, 554
High-temperature electrolysis (HTE), 618
High-temperature furnaces, carbon/carbon composites for,
129–134
High temperature glue, brazing alloys as, 553
High temperature materials, 87
High-temperature mechanical tests, 633–635
High-temperature metal treatment applications, 207–209
High temperature processing, 289
High temperature range, 336
High temperatures, 16–23, 221
High-temperature SiC/SiC components, 218–219
High-temperature structural applications, CMC components for,
580–581
High-temperature testing, acoustic emission monitoring and, 584–586
High Temperature Test Reactor (HTTR), 624
High-temperature thermal treatments, 222
High-temperature thermal cycling, 593
High-temperature treatments, 112
High tensile (HT) fibers, 149
High tensity (HT) C-fibers, 88
High tensile Young’s modulus, 33
Hi-Nicalon™ fiber bundles, rupture time of, 19
Hi-Nicalon™ fibers, 16, 17, 18
free carbon in, 21
Hi-Nicalon™ Type S CMC, 223–224
Hi-Nicalon™ Type S fiber process, 4
Hi-Nicalon™ Type S (HNS, HNLS)
fibers, 220–224, 395–397, 627,
628–629, 632, 634. See also HNS entries
Hi-Nicalon™ entries
free carbon in, 21
Hi-P 7 (Herakles) experiment, 193, 195
HNS (NOX grade) fiber, 221. See also Hi-Nicalon™ entries
HNS reinforcement, 641
Hold times, tension-tension fatigue with, 324–330
Homogeneous temperature field,
lifetime predictions and, 507–508
Hooka’s operator, 468, 469
Hot-grip testing, 507
Hot isostatic pressing, 247–248
Hot pressed BSAS, 446. See also BSAS (barium strontium aluminosilicate)
Hot isostatic pressed SIC (Hi)(PSIC), 149
Hot pressed Y2O3, 446
Hot pressing (HP), 247–248, 274–275, 288–289
reactive, 276
Hot section components, 430
HSCT-EPM program, 438
Hybrid CVI/PIP approach, 227, 228, 229,
231. See also Chemical vapor infiltration (CVI); Polymer infiltration and pyrolysis (PIP)
Hybrid structures, 551
Hyperelastic models, 82
Hypoelastic behavior, 77
Hypoelastic models, 73, 82
Hysteresis, unloaded/loaded, 576, 577
Hysteresis loops, 57–59
iBN CMCs, 230. See also Boron entries;
Ceramic matrix composites (CMCs)
HB-, based composites, 273–290
iBN fibers, 223, 224, 226. See also Syramic™-iBN SIC fiber
iBN SIC/C fiber, 224
Immobile defects, 393
Impact damage, 405
in CMCs, 412–413
of coatings, 424
cross sections of, 413–416
Impact damage assessments, 408–409
Impact damage morphology, 410–417
Impact damage size, 419–420
Impact damage, 405
in CMCs, 412–413
of coatings, 424
cross sections of, 413–416
Impact damage morphology, 410–417
Impact damage size, 419–420
Impact damage size, 419–420
Impact damage, 405
in CMCs, 412–413
of coatings, 424
cross sections of, 413–416
Impact damage morphology, 410–417
Impact damage size, 419–420
Impact damage, 405
in CMCs, 412–413
of coatings, 424
cross sections of, 413–416
Impact damage morphology, 410–417
Impact damage size, 419–420
Impact damage, 405
in CMCs, 412–413
of coatings, 424
cross sections of, 413–416
Impact damage morphology, 410–417
Impact damage size, 419–420
INDEX

Impact energy balance, 417–418
Impact force, prediction of, 417–420
Impact gun, 406
Impacting kinetic energy, 418
Impact response, of environmental barrier coatings, 422–424
Impact testing, results of, 422, 423
Impact velocity, 410, 411, 412, 413, 415, 419
bouncing-back velocity and, 418
Imperfect load sharing, 14
Implicit functions, 268, 370–371
Indentation testing, 257–258
Industrial applications, 87–146, 209, 666–667
Industrial gas turbines, CMC program demonstrations on, 606–607
Industrial manufacture, of C/SiC materials, 668
Inelastic behaviors, 477–478
Inelastic strains, 470–471
Inert gas furnaces, 131, 132
Infiltration, 227–228
Infiltration depth, 154
In-plane deformation, in situ measurement of, 35
In-plane shear behavior, 68–69, 74
In-plane shear force, 80
In-plane tensile strength, 217, 218
In situ Raman scattering, 35
In situ reaction, 456
In situ XRD, 35, 36
In situ X-ray diffraction (XRD) INTERFACE concept, 242
Interface behavior, predicting, 47
Interface characteristics, 60
Interface coating processing, 242.
See also Interface coating concepts
Interface coatings, 240, 257–261
Interface control, 238–240, 257
Interface cracks, 530
mechanical behavior and, 530–531
Interface crack size, 50
Interface debond stresses, 48, 100
Interface engineering, 563
Interface failure(s), 44
Interface optimization, 530
Interface properties, 41, 56–60
Interfaces coating/CMC, 441
crack deflection at, 41–44
crack initiation at, 41
fiber/matrix, 97, 98–101, 109
fiber-reinforced ceramic matrix composites and, 40–64
functions of, 60
strengthened, 51–56
weak, 56
Interface selection, 60
Interface strength, 43, 530–531.
See also Interfacial shear strength; Interfacial tensile strength at elevated temperatures, 100–101
at room temperature, 98–100
Interfacial bonding, with C/C and C/SiC composites, 454
Interfacial coating concepts, 261
Interfacial domain characteristics, criteria for, 60–61
Interfacial domains control of, 51–52
fiber/matrix, 40, 51–56, 530
guidelines to designing, 60
role in CMCs, 41–49
Interfacial domain strength, features associated with, 53
Interfacial fiber coatings, advances in, 318–321
Interfacial fracture energy, 42
Interfacial shear strength, 56, 57–60, 624
Interfacial shear stresses, 52, 57, 59, 60, 490
Interfacial sliding, 398–399
Interfacial stress, 50
See also Interfacial shear stresses
Interfacial tensile strength, 36, 57, 60
Intergranular cracking, 282
Interior oxidation, 334–335, 336–337
Interlaminar failure(s), 317–321
Interlaminar shear, creep in, 317–321
Interlaminar shear strength (ILSS), 318–321, 654
Interlayers, 555
Interlocking, in CMC joints, 558–559
Intermediate modulus (IM) C-fibers, 88
Intermediate modulus (IM) fibers, 149–150
Intermediate temperature range, 335–336
Internal oxidation modes, 339
International Nuclear Energy Research Initiative (INERI), 620
Interphase carbon, 360
Interphase composites, choice of, 630–631
Interphase oxidation, 339
Interphase recession, stressed-oxidation degradation modeling in, 346–347
Interphase region, 338–340
Interphase removal (IR), 348
Interphases. See also Pyrocarbon (PyC) interphases
anisotropic, 52
carbon-based, 401–402
defined, 40
fiber-reinforced ceramic matrix composites and, 40–64
functions of, 60
multi layered, 47–48, 631
in SiC/SiC composites, 398–399
strengthened, 51–56
weak, 56
Interphase thickness, 635–636
Interphase volatilization, 337
Interseam matrix, 522
Ion thrusters, 354
Iridium (Ir), 460
Irradiation, toughness and, 394
Irreversible material loss, 353
Isothermal conditions, 371–372
Isotothermal CVI, 92, 93
See also Chemical vapor infiltration (CVI)
Isothermal oxidation, 339
Isotropics pitches, 91
ITAR (International Traffic in Arms Regulations) agreement, 593
ITER (International Thermonuclear Experimental Reactor), 560, 610–611, 624
ITER divertor, 612, 613
DVK experiment, 193, 194
Japan Atomic Energy Research Institute (JAERI), 624
Jefferson, George, xvi, 236
Jet vanes, 202
Joining, 552–553, 557
See also CMC joining; Micro-wave-assisted joining methods
Joining materials, 552
Joining technology, 551–552
Joists, 557–558
Johannes Henniger mechanism map, 348
Kagawa, Yutaka, xvi, 373
Kakai, Yutai, xvi, 389
Keller, Kristin A., xvi, 236
Kerans, Ronald J., xvi, 236
Kinematic models, 76
Kinetic data, 368
INDEX

Kinetic energy, of impact, 418
Kinetic energy transfer, 390
Knudsen regime, 494
Krenkel, Walter, xvi, 647
Lachaud, Jean, xviii, 353
Lacquer coating, 424
Ladévéze, Pierre, xvi, 467
Laminates, 163–164, 167–168
Lamination, cross-ply, 98, 99
Lamont, Jacques, xvi, xviii, 3, 40, 520
Larson–Miller (LM) approach, 229, 230–231
Laser-assisted joining, 557
Laser communication terminals (LCTs), 199
Laser profilometry, 359
Layered coatings, 459
Lead-cooled fast reactors (LFRs), 616, 617
Lasevsky, Dr., 474
Lee, Kang N., xviii, 430
Legendre–Fenchel transform, 474
Length scales, 526–531
Lifetime
maximum, 500
temperature vs., 501
tow, 545
Lifetime control mechanisms, 542–544
Lifetime modeling, 467–519
Lifetime predictions, 497–503, 506–512, 544–545
damage tolerance analysis and, 512
during fatigue tests, 586–588
model vs. experiment comparison, 509
Lifing, 448–449
EBC, 448
Lifting method, 430–431, 442–448
Lifting method development, 448
Linear variable differential transformer (LVDT), 410
Link failure, 533–535
Liquid composite molding (LCM), 65, 75
Liquid phase formers, 278
Liquid phase impregnation (LPI), 625
Liquid phase reaction method, 454–455
Liquid phase sintered (LPS), 278
See also LSI entries
advantages of, 173
Load-carrying ability, impacts on, 345
Load-carrying carbon-carbon systems, 134
Load-deflection behavior, 237
Load displacement curves, 57, 59–60, 410–411
Load effects, on static fatigue, 16–23
Loading
creep, 330
quasi-static, 479
static, 330
uniaxial, 35
Loading conditions, 59
Loading frequency, 322, 323, 324
Loading rate, 297
Loads, mechanical, 647
Load sharing, 13, 50, 535, 536
fiber interactions by, 13
imperfect, 14
Load-strain curves, 12, 71
Load train, 6
Load transfers, 55
Local behavior calculation, 503–506
Local loop, 504–505
Local stress, 345
Locking angles, 49
Lock-in thermography, 562
Longitudinal tow, 525, 544
Long-term thermal exposure, 253
Low activation materials (LAMs), 611–612
Low-cost raw materials, 173
Lower nanometer range, of carbon fibers, 28–31
“Low-met” materials, 665
Low stress damage detection, 571
Low temperature range, 335
Low toughness, 6
LSI-based C/SiC materials, 170.
See also Liquid silicon infiltration (LSI) process
LSI materials, 177, 178, 181, 184, 185, 190
LSI process time, 171
LVMR (light water reactor) applications, 623, 627–628
LVMR pin cladding, US designs for, 637–638
Macrocrack density indicator, 490.
See also Macroscopic cracks
Macrocrack formation, 349
Macrocrack opening indicator, 490
Macro-lifetime models, 468
Macromodels, 490, 497–498.
See also Macroscale models
Macro-multiphysic models, 468
Macroprizes, 355, 522, 529
Macroscale models, 368
Macroscale prediction, 482–483
Macroscopic cracks, 513
Macroscopic damage evolution law, 487
Macroscopic effects, on materials, 392
Macroscopic flaws, 528–530
Macroscopic identification, 489–490
Macroscopic models, 481–482
Macroscopic roughness, 375–378
Macroscopic scale, 66
Macrotests, 500
Mass flux, 368
Mass loss, in ablation, 375–378
Mass transfer constants, heterogeneous, 368
Master curve, 46–47
Material elastic properties, crack deflection and, 45–49
Material-flow interaction, 355
Material functions, for quasi-static loading, 479
Material hardening function, 478
Material loss, irreversible, 353
Material optimization, 383
Materials
392, 393.
See also Carbon materials
Materials observation, 365–383
Materials tests, 356–359
Material surface morphology, 362–363, 364
Matrices.
See also SIC matrices
alumina-mullite, 249
alumina-YAG, 249–250, 253
aluminosilicate, 249
bonding of fibers to, 41
carbon, 625
dense, 238
fracture strength of, 527–528
multilayered, 155, 584
oxygen inhibited, 341
porous, 237–238
self-healing, 55–56, 467, 468, 491
“self-sealing,” 155
Matrix buildup, 523, 525
Matrix-coated tows, 523
Matrix consumption, evolution laws for, 494
Matrix crack deflection, 61
Matrix crack density, 576
Matrix cracking, 335, 337, 467, 522–523, 520, 521, 580, 581
degree of, 345
types of, 583–586
Matrix cracking saturation, 533
Matrix cracking strengths (MCSs), 218, 223, 225, 232
Matrix cracking stress, 348–349
Matrix crack regions, impacts on, 345

684
INDEX

685

Matrix crack spacing, 539
Matrix damage, 521, 522, 523, 541–542
Matrix decomposition, 135, 156
Matrix densification, 308, 330
Matrix density, 253, 264
Matrix-dominated properties, improvements in, 264
Matrix–fiber reactions, 290
Matrix flaws, 537
Matrix fragmentation modeling, 544
Matrix fragmentation stochastic model, 531–535
Matrix infiltration (MI), 149, 243–247.
See also Matrix infiltration entries; MI materials
Matrix infiltration approaches, 228, 231.
See also CVI-MI approach
Matrix interfacial crack patterns, 53
Matrix materials, 249, 250
Matrix porosity, 238, 250, 252
Matrix precursors, 90–94
thermosetting resins as, 91
thermoplastics as, 91–92
Matrix processes, 232
Matrix sintering, 238
Matrix strength, 538
Matrix systems, 90–94
Maximum application temperature, of carbon/carbon materials, 134
Maximum force, 14
Maximum lifetime, 300
Maximum stress, 325, 329
Mazerat, Stéphane, xviii, 3
Mechanical behavior
of composites, 521–526
environmental effects on, 296–330
experimental analysis of, 67–72
at high temperatures, 16–23
interface cracks and, 330–531
modeling, 73–74
Mechanical bonding, at an interface, 40
Mechanical damage model, 513
Mechanical erosion, 458
Mechanical interlocking, in CMC joints, 55B–559
Mechanical joining, 552–553
Mechanical loads, 647
Mechanical macro-modeling, 468
Mechanical models, continuous, 77
Mechanical properties
of C/C materials for brakes, 652
of C/SiC and C/C-SiC materials, 178–187
degradation of, 350
of oxide–oxide composites, 251–253
of ultrahigh temperature ceramic-based composites, 282–285
Mechanical tensile tests, 635
Mechanical tests, 67–72, 599
Mechanism analysis, for lifetime modeling, 498–503
Melt-infiltrated (MI) SiC/SiC CMC, 217, 229–231
Sylramic, 399–400
Sylramic 3T fibers, 406, 407, 408, 410, 411, 412, 413, 415–416, 418
FOC in, 420
Melt infiltration (MI), 248, 289, 395.
See also Matrix infiltration entries; MI materials
Melt infiltration process, 160–174, 177
Melting ranges, for brazing alloys, 553
Mesophase pitch as precursor (PPP), 27.
See also PPP fibers
Mesophase pitches, 91–92
Mesosopic scale, 66
Metal coatings, 456–457
Metal oxidation processing, 248
 Metals, 134–137, 639
Metal treatment applications, high-temperature, 207–209
Methane formation, 66
Methane formation, 253
Microcrack density, 55
Micromodels, 482, 483–484
Micromechanical models, 498–503
Micromodeling, 498–503
Micromechanical, 537–539
Micromechanical models, 537–539
Micromodels, 482, 483–484.
See also Microscale models
Micro-multiphysics models, 468
Microporous oxide/oxide CMCs, 250
Micromechanical models, 368
Micromechanical models, 66, 67
Microstructural design guidelines, for higher temperature SiC/MMC components, 232–233
Microstructure–behavior relationships, 520–547
Microstructures
graphitic, 399–400
SiC/3T, 217, 229–231
tailored, 160
thermal spray coating, 443
Micro-wave-assisted joining method, 537
Migrating vacancies, 393
Military engines, 594–600
MI materials, 181, 183.
See also Matrix infiltration entries; MI infiltration entries; SiC fiber-reinforced MI matrix composites
Micromechanical behavior, 484, 486
Micromechanical models, 537–539
ultimate failure in, 533
Microorientation angle, 31–32
Mixed matrix systems, 138
Minicomposite behavior, 261–262
Mixtures law, 521
Model acoustic emission (MAE), 573
Model development, 350
Models.
See also Healing process modeling; Lifetime modeling; Models; Multiscale modeling of receding ablative surfaces, 368–372
for stress-oxidation degradation, 345–349
Modeling strategies, multiscale, 369, 481–503
Models. See also Damage model entries; Diffusion model behavior, 628
CMAS composition, 445–447
diffusion/reaction, 497
for fatigue, 482–490
FOC, 419, 425–426
macro- and micro-multiphysics, 468
macro-lifetime, 468
macrosopic, 481–482
microcomposite, 482, 483–484
micromechanical, 537–539
multiaxial elemental strength, 541
physicochemistry in, 384
plasticity, 478
probabilistic, 546
shear fracture, 106
silica volatality, 432, 433, 444–445
of stress state, 544
of stress–strain behavior, 531–539
of transverse intra-yarn crack opening, 482–490
Weibull, 527, 528
Modified C/SiC materials, 660
Molten salt reactors (MSRs), 616, 617
Monazite coatings, 242, 258–260
Monazites, 56, 257
Monolithic carbons, thermophysical properties of, 110
INDEX

Monolithic SiC, 659
Monosilicates, 441, 445
Monte Carlo random walk (MC/RW) algorithm, 372, 373
Monte Carlo simulation method, 334–335
Monte Carlo simulations, in fragmentation modeling, 531
Morscher, Gregory N., xvi, 334, 571
MPP fibers, 29, 30, 31, 32, 35. See also Mesophase pitch as precursor (MPP) approach
Multilayer composite strength, 253
See also Alumina-mullite matrix
Multiple-BSAS mixture, 439. See also BSAS (barium strontium aluminoisolate) coating
Multilayer composites, 240, 430, 433, 434–438
Multiaxial elemental strength model, 541
Multidisk brake configuration, 649
Multifilament tows, 11–16
Multilayered carbon/carbon, 125
Multilayered coatings, 122–124, 457, 459, 460
Multilayered (PyC/SiC) fiber coatings, 41
Multilayered interphases, 47–48, 631
Multilayer strategies, for C/SiC composites, 339–341
Multiphase inlay ceramic coatings, 457–458
Multiplexing, 336, 337, 339–341, 546
Multiscale materials, 65–67
Multiscale modeling, of oxidation/damage coupling and self-healing effects, 481–503
Multiscale modeling strategies, 369
N720/alumina, 410, 411
N720/alumina composites, 295, 396–397, 308–313. See also NextelTM entries
N720/alumina oxide/oxide, 422
N720/aluminosilicate, 413–415
Nanopowder infiltration and transient eutectic phase (NITE) method, 555–556, 560–561, 628, 641
associated composites and, 635–636
Nanopowder infiltration and transient eutectic-phase (NITE) SiC/SiC screws, 552
Nanopowders, 635
Nanowire-toughened coatings, 458
NASA (National Aeronautics and Space Administration), 224, 225, 227, 228, 233, 261–262
NASA advancements, in SiC/SiC materials/processes, 220–231
NASA USET Program, 601, 603
“Needle forest” situation, 374
Neighboring fibers, distance between, 344
Neutron fluxes, 354
Neutron irradiation, 400
Newton-Raphson method, 505
Newton-Raphson solver, 505
NextelTM 720/alumina (N720/A) composite, environmental effects on mechanical behavior of, 296–330. See also N720/alumina entries
NextelTM 720/alumina-mullite (N720/AM) composite, environmental effects on mechanical behavior of, 296–330
NextelTM 720/aluminosilicate composite, 295
NextelTM 720/B system, creep/oxidation/fatigue performance of, 254–255
NextelTM 720-based composites, 254
NextelTM 720 oxide fibers, 406–407, 410
NextelTM-based composites, 259–260
NextelTM fibers, 240, 241
NextelTM oxide fibers, 4
Next-generation environmental coatings, 442
NicalonTM fiber bundles, 12
NicalonTM-fiber-reinforced CVI SiC composites, 346
NicalonTM fibers, 8, 20, 21. See also Hi-NicalonTM entries
NicalonTM filaments, flaw strengths for, 10
NicalonTM SiC-based single filaments, strain-to-failure for, 15
NicalonTM Type S fibers, 406, 407
See also Hi-NicalonTM Type S (HiNS, HNSL) fibers
Nondestructive tests, 562
Nonlinear force–strain relation, 11
Nonlinear stress–strain curves, of carbon fibers, 35
Non-oxide fibers, 4, 16
Non-pure SiC, radiation effects on, 392
Nonreactive melt infiltration (NRMI), 219
See also NRMI entries; RMI fabrication route
Norquest-Robinson–Torrens (NRT) model, 390, 391
Normal distribution, 9–10
Normalized strength, 410
Notations, for damage modeling, 468–469
Notch sensitivity, 255
NRMI CMCs, 229, 230, 231. See also Ceramic matrix composites (CMCs); Nonreactive melt infiltration (NRMI)
NRMI fabrication route, 223, 225, 226
Nuclear applications
CMC joining for, 560–561 for CMCs, 609–646
hermetic composite design for, 637 processing of C/C composites for, 624–627 processing of SiC/SiC composites for, 627–641
Nuclear industry, 609, 610, 622
Nuclear Reaction Analysis (NRA), 630
Nuclear reactors, SiC/SiC components in, 610
Nuclear transmutation, 390
Numerical approaches, 372
Numerical results, of roughness features, 378–380
Objective derivatives, 73
Octets, 355
Off-axis compressive tests method, 104–105
Off-axis properties, of oxide–oxide composites, 256–257
One-dimensional (1D) composites, 521, 535, 536–537
One-step-cycle applications, 92
Open-hole plate, 513, 515
Open structures, impact damage on, 411
Optical microscope (OM), 359
Optical systems, 199
Organic matrix composites, 75
Original equipment manufacturers (OEMs), 430, 448
Orthogonal microcracking (OMC) mechanisms, 475–476, 479
Orthorhombic normal forms, 73
Outer glass sealing layers, 124–126
Outer multilayer coatings, 122–124
Overloading, of fibers, 13
Overablation, 354, 367
Overloading, of fibers, 13
Oxidation, 336–337 of BN, 341, 342 of carbon, 652 of C/C and C/C-SiC materials, 190–191
directed metal, 248 at high temperatures, 16
interior, 334–335, 336–337
methods to prevent, 337–338
protection against, 457–458
of protection tiles, 379
of SC matrices, 336
in TBC failure, 644
Oxidation/damage coupling, multiscale modeling of, 481–483
Oxidation embrittlement (OE), 336–337, 348
Oxidation furnace, 2D C/R testing in, 362
Oxidation mechanisms, for SC composites, 335
Oxidation performance, of Nextel
Oxidation reactions, 345, 494
Oxidation rates, 121, 123, 190
Oxidation-resistant coating systems, 664–666
Oxidation-resistant temperature, 460
Oxidation stability, 147
Oxidation tests, 337, 366, 367
of 2D C/R, 362
of 3D C/C, 359–361
Oxide, total volume of, 492, 493
Oxide-based fibrous composites, processing of, 241–248
Oxide-based porous coatings, 56
Oxide coatings, 56
Oxide composite stability, 236
Oxide fiber coating, 240
Oxide fibers, 3, 4, 246
Oxide layers, 20
Oxide matrices, fiber structure and, 243
Oxide-oxide CMCs, 236, 237–238, 248–250, 256–259, 295–296, 324, 330. See also Ceramic matrix composites (CMCs)
Oxide-oxide CMCs, 236, 237–238
Porous matrix, 262, 263
reinforcement of, 240–241
technology development for, 261–263
tough, 264
with weak oxide–oxide phase boundaries, 257–261
Oxide-oxide materials, 262
Oxide-oxide phase boundaries, weak, 257–260
Oxide-oxide TPS systems, 263. See also Thermal protection systems (TPSs)
Oxide plug, role of, 499
Oxide scale growth, 346
Oxide volatilization flux, 495
Oxygen, delayed fiber failure and, 19
Oxygen barrier layer, 459
Oxygen concentration indicator, 482
Oxygen concentration, 490, 496–497
Oxygen concentration evolution, 500
Oxygen concentration indicator, 482
Oxygen diffusion, 453, 494
Oxygen diffusivity, 453, 494
Oxygen-free SiC fiber, 4
Oxygen inhibited matrix, 341
Pack cementation and capillary infiltration (PCI), 169
Pack cementation method, 454, 458
Polyacrylonitrile (PAN)-based carbon fibers, 30, 31, 88
PAN fibers, 29–30, 32, 35. See also Polyacrylonitrile (PAN)
Parallellepipedic macropores, 355
Parallelepipedic (PLIC), 304
Pattern recognition techniques, acoustic emission signal analysis using, 580–584
Peak stress, 45, 255
Peak-to-valley roughness, 374–375
Polarization, 31–32, 227, 228
Polarization failure criterion, 255
Point defects, 393, 394
Point stress failure criterion, 255
Polyacrylonitrile (PAN), 27. See also PAN entries
Polyacrylonitrile (PAN)-based carbon fibers, 399
Polycarbosilanes, 157
Polycarbosiloxanes, 157–158
Polyacrylonitrile graphite, 379–380
Polyacrylonitrile TAC fibers, 264
Polymeric coatings, ducile, 424
Polymer infiltration, 158, 159
Polymer infiltration and pyrolysis (PIP), 149, 157–160, 174, 176–177, 227, 289, 395. See also PIP entries
Polymer precursors, 91, 94
Polymer reinforcement, 87
Polysilicon, 137
Pitch-based reinforcing fibers, 99–100
Pitches, 91–92
Pitch impregnation, 625
Planar fracture(s), 304, 327
Planar fracture surface, 308
Planar interface construction (PLIC), 372, 373, 374
Plasma arc jet, 378
Plasma-facing components (PFCs), 609, 611–616
Plasma jet ablation, high flux, 378
Plasma jet tests, 359–361, 362
Plasma-sprayed BSAS, 446. See also BSAS (barium strontium aluminosilicate) coating
Plasma spraying, 437, 442–443, 446, 447, 455, 459
Plasticity, coupling damage with, 470–471
Plasticity model, 478
Plug truncation, 493
Plug volume, evolution of, 495
Possion’s ratio, 278, 289
Possion–Weeks model, in fragmentation modeling, 531
Polyacrylonitrile (PAN), 27. See also PAN entries
Polyacrylonitrile (PAN)-based carbon fibers, 399
Polybaricative, 157
Polybaricative precursors, 157–158
Polybaricative graphite, 379–380
Polybaricative TAC fibers, 264
Polycrystalline ducile, 424
Polymer infiltration, 158, 159
Polymer infiltration and pyrolysis (PIP), 149, 157–160, 174, 176–177, 227, 289, 395. See also PIP entries
Polymer precursors, 91, 94
Polymer reinforcement, 87
Polybaricative, 157
Polymerizing, 95, 96
Porosity, 154
Porous aluminas, 428
Porous carbon fiber seal, 638
Porous C/C components, 554
Porous coatings, 260
Porous fiber coatings, 56
Porous matrices, 373–378
Porous matrix composites, 238
Porous matrix composite systems, 248–250
Porous matrix oxide–oxide CMCs, 261, 317–321. See also Ceramic matrix composites (CMCs)
Porous matrix oxide–oxide composites, 262, 263
Porous oxide–oxide CMCs, 248–250
Porsche Ceramic Composite Brake (PCCB), 203, 204
Postimpact residual strength testing, 409
Postimpact strength, 420–421, 409–410, 424
Powder immersion reaction assisted coating (PRAC), 121–122
Power-law crack–velocity formulation, 301
Power law form, of time to failure, 22
Power laws, 387, 388
Pratt & Whitney F100 engine, 596, 597
Pressure gradients, 273–274, 288–289
Pressureless sintering (PS), 247, 248
Pressure infiltration, 244–245
Pressure infiltration entries; Melt infiltration entries
Prepreg processing, 243–244
Prepregs, 158–159
Pressure gradient CVI, 92, 93–94.
See also Chemical vapor infiltration (CVI)
Pressure infiltration, 244–245
Pressureless sintering (PS), 247, 273–274, 277–278, 288–289
Pressurized melt infiltration (PMI), 169–170
Primary knock-on atom (PKA), 390, 391
Probabilistic models, 346
Probability-based general model, of composite behavior, 536
Processing methods, for oxide–based fibrous composites, 241–248
Production routes, for carbon fibers, 27
Projectile materials, 406–407
Projectiles, 408, 410–411
Propagation stages, 496
Propeller brakes, 204–205
Protection tiles, oxidation of, 379
PYAH-SOCAR technology, 196, 200
Push-in/push-out tests, 57, 58
Push-out curve, 57, 58
Push-out tests, 98–99, 100, 106, 257–258
PWR (pressurized water reactor) applications, 622–623
PyC interlayers, 396, 398
Pyrocarbon-based tailored interface, 61.
See also Pyrolytic carbon (PyC)
Pyrocarbon (PyC) fiber coatings, 41.
See also Fiber/PyC interface
Pyrocarbon (PyC) interphases, 47, 50, 52, 55, 631, 635, 641
Pyrolyzed Cphenolic resin composites, 355, 356
See also PIP entries; Polymer infiltration and pyrolysis (PIP)
Pyrolysis behavior, 91
Pyrolysis process times, 171–172
Pyrolytic carbon (PyC), 93, 398.
See also Pyrocarbon entries
Pyrolytic graphite, 394
Quasi-Newton method, 481
Quasi-paracentral operator, 505
Quasi-static loading, identified material functions for, 479
Racing car brake disks, C/C composites for, 655–656
Radial gripping, at an interface, 40
Radiation, energetic, 389
Radiation-cooled structures, 196
Radiation damage, graphite, 394
Radiation damage evolution, in SiC, 392–393
Radiation damage theory, 389–392
Radiation defect production, 390–391
Radiation degradation, 401–402
Radiation effects, 390–391
in carbon materials, 394
on ceramics, 392–394
on fiber–matrix interfacial sliding properties, 398–399
in SiC, 393–394
Radiation enhanced diffusion, 392
Radiation environments, extended service life in, 401
Radiation heat transfer, 172
Radiation-resistant CVD SiC, 394.
See also Chemical vapor deposition (CVD)
Radiation-resistant material, 393
Raman measurements, 30
Raman scattering, in situ, 35
Rapid CVI methods, 92, 94
Rare earth silicate coating volatility, 433, 434
Rare earth (RE) silicates, 441, 445
Rate constitutive models, 73
Raw materials, low-cost, 173
Reaction bonded SiC (RBSC), 149
Reaction bonding, 248
Reaction constant, 494
Reaction-controlled regime, 382
Reaction–diffusion competition, 383
Reaction/diffusion micromodels, 482
Reaction/diffusion model, 497, 498
Reaction rates, 367
Reactive agents, solid, 278
Reactive hot pressing (RHP), 276
Reactive phase, 366
Reactive sintering (RS), 273–274, 276–277, 288–289
Reactive spark plasma sintering (RSPS), 276
Reactivity, 380–383, 384, 554
Receding ablative surfaces, modeling, 368–372
Recession, 444
Recession rates, 366, 432
Recrystallized SiC (RSiC), 149
Redensification/recarbonization cycles, 95
Refractory fibers, continuous, 23
Refractory metals, 639
Reinforcement, 3–26
Reinforcing architecture, creating, 624
Relaxation domains, 539–540
Relaxation methods, 505
Representative unit cell (RUC), 66, 67
Research and development (R&D), 607 in aero-engine field, 593
on CMCs for commercial engines, 600–607
EBC, 448, 606–607
in gas-turbine field, 593
on oxidative protective coatings, 460–461
Research reactors, 610
Residual crack opening, 489
Residual strains, 477–478, 484
Residual strength, 108–109, 409–410, 421–422
Resin transfer molding (RTM), 158.
See also RTM process
Response surfaces, 502
Reynolds number (Re), 381, 383
Rig testing, 599, 600, 605
Ring cracking, 413
RMI fabrication route, 225.
See also Representative unit cell (RUC)
R’Mili, Mohamed, xviii, 3
Robust cladding closure process, 640
Rocket jet vanes, 202
Rocket motor nozzle/divergents, 354
SiC/SiC components (Continued)

service issues for, 232–233
SiC fiber in, 220
SiC/SiC composites, 458
SiC-whisker-toughened SiC, 458
SiC volatility data, 432
SiC volatility, 433, 434
SiC/SiC screws, 552
SiC/SiC microcomposites, 55
SiC/SiC microstructures, 217
SiC/SiC microstructural design methods, advances in, 229–231
SiC/SiC minicomposites, 55
SiC/SiC screws, 552
SiC volatility, 433, 434
SiC volatility data, 432
SiC-whisker-reinforced SiC, 458

σy estimates, 7
Silica activity, 438. See also SiO2 entries
Silica-based composites, 243
Silica-free matrix materials, 249
Silica-free porous composites, 250
Silica glass sealings, 126
Silica volatility, 431–432
Silica volatility model, 432, 433, 444–445
Silicides, 457
Silicon, properties of, 181
Silicon carbide-based ceramics, 555.
See also C/SiC composites, SiC entries
Silicon carbide fiber-reinforced ZrB2-based ceramic matrix composites, 288
Silicon-doped boron nitride (BN), 219
Siliconization, 161, 168–172, 658
Silicon nitrides, 424–425
Silicon treatments, 121, 128, 134

Simplified marching-cube (SMC) discretization, 372, 373, 374
Simulations of double-dome forming, 77, 78, 79 of hemispherical forming, 80 of preforming, 76–81
Simulation tools, 209
Siluminate = BSAS/BSAS EBC, 440–441, 444. See also BSAS (barium strontium aluminosilicate) coating
Single-fiber fracture, 101
Single fiber tests, 33
Single-filament properties, determination of, 14–16
Single filaments, 6–10, 15
Sintered SiC (SSiC), 149
Sintering, 133, 249. See also Spark plasma sintering (SPS) method
pressurless, 247, 273–274, 277–278, 288–289
reactive, 273–274, 276–277, 288–289
spark plasma, 273–274, 275–276, 279, 288
Sintering approach, 222–223. See also Matrix sintering
SiO2 scale formation, 337. See also Silica entries
SiO2 volatilization, 432
SiSiC matrix, 169
SITE process, 636
Skin–core structure, 32
Sliding elements, 128–129
Sliding surface topography, 50
Slip length, 485
Slow crack growth (SCG), 496, 544, 545 in filaments under constant stress, 21–22
SIM micrographs of, 20
Slow crack growth mechanism, 19–21
Slow crack growth parameters, 298, 301, 329
Slurries, 243, 244–245, 246. See also Solution/sol/slurry coating techniques
Slurry method, 455
Small-angle X-ray scattering (SAXS), 31
S-N curves, 108–109
Sneumo jet engine applications, 594–595
Sneumo M53 engine, 594
Sneumo P88 engine, 594–595
Sodium-cooled fast reactors (SFRs), 616, 617
CMCs for structural materials in, 618, 620–621
Soft structures, impact damage morphology and, 411
Solar energy market, C/C materials in, 137–140
Solar Turbines field evaluations, 606–607
Sol–gel method, 455
Solid/liquid rocket motor nozzles/divergers, 354
Solid oxide reaction products, 337
Solid reactive agents, 278
Solid state displacement reactions, 557–558
Solution/sol/slurry coating techniques, 242
Solver acceleration, 505–506
Sound, speed of, 577
Sound travel, in CMCs, 573–574
Sound waves, synchronized, 575
Space applications, for C/SiC and C/C–SiC materials, 192–200
Space propulsion, 193–199
Spallation, 422–424, 444, 447
Spark plasma sintering (SPS), 273–274, 275–276, 279, 288–289
reactive, 276
Specific heat, of carbon/carbon composites, 117
Speed of sound, 577
Sprig, Patrick, xviii, 593
SRM facilities, 362–365
SRM ground experiments, 359
Stability, with C/C and C/SiC composites, 453–454
Stable failure(s), 13
Standardized test methods, 562–563
Standard normalized tests, 628
State, laws of, 469
Static fatigue, 16–23
Static fatigue constants, 18, 19
Static fatigue failure, 503
Static fatigue lifetime test, 498
Static fatigue loading, 507
Static fatigue tests, 498, 586–588
Standard loading, 330, 486–487, 488
Static test methods, 33
Statistical strength distributions, 6
Steady-state creep, 103–104
Steady-state morphology, 376, 378
Steam cycling, 443
Steam effects, 254, 299–304, 311, 312, 314, 319, 325
Steam environment, 296, 307
Stiffness, 32–36, 70–71
Stochastic models, of matrix fragmentation, 531–535
Stochastic structural features, 543–544
Strain, residual, 484
Strain data, 6
INDEX

691

Strain increment, 74
Strain measurement, 16
Sieve rates, 326
Strain recovery, 306
Strains, residual, 477–478
Strain–stress curves, 14
Strain–time curves, 304
Strain(s)-to-failure, 6, 9, 50, 325
Strength. See also Compressive strength;
 Flexural strength; Interfacial strength; Shear strength; Tensile (tensile) strength
 of carbon fibers, 22–36
 of C/C composites, 97–109
 characteristic, 338–339
 of filaments, 14–15
 interface, 530–531
 normalized, 410
 postimpact, 409–410, 420–421, 424
 residual, 108–109, 409–410
 of tows, 14
Strength data, 6
Strength degradation, 410, 420, 421,
 425, 512
 at high temperatures, 16
Strength degradation mechanism, 109
Strength degradation patterns, 510
Strength distributions, 6, 534
Strength equation, 335
Strength tests, on joined CMC, 561–562
Stress(es)
 Stressed-oxidation degradation, 420–421
 Interfacial stress, 106
 of tows, 14
 on fiber, 50
 filaments under constant, 21–22
 fracture, 101
local, 345
 microbuckling, 106, 108
 Stress-based approaches, in
 fragmentation modeling, 531
 Stress concentration, 347
 Stress concentration factor, 512
 Stress condition tests, 349
 Stress criteria, 477
 Stress distribution, 486
 modeling and design for, 345–349
 Stress–oxidation degradation modeling, 345–349
 in C/CSC composites, 345–346
 in SiC/BN/SC composites, 347–348
 in SiC/CSC composites, 346–347
 in SiC fiber composites, 347
 Stress–oxidation mechanisms, 337, 350
 Stress-environmental effects, on
 fiber-reinforced SIC-based composites, 334–352
 Stress rate, 297
 Stress redistribution, 14
 Stress–rupture (SR), of fibers, 348
 Stress–rupture behavior, 300, 311
 Stress–rupture experiments, 346–347
 Stress–rupture fracture surfaces, 340
 Stress–rupture results, 344
 Stress–rupture tests, 229, 337, 579, 581
 Stress–rupture time behavior, 16, 18
 Stress–rupture time data, 545
 Stress–rupture time diagrams, 16–19
 Stress–rupture time relationship, 22
 Stress sensors, universal, 35
 Stress state modeling, 544
 Stress–strain curves, 14, 33, 104–106,
 296, 297, 521–522, 523
 nonlinear, 35
 tensile, 54, 55, 59
 Stress–strain law, 483–484
 Stress–strain plot, 251, 252
 Stress–strain response, 480, 520
 Strongly bonded fibers, 347–348
 Structural components, modeling and
design of, 264
 Structural features, stochastic, 543–544
 Structural materials, CMCs for, 621–623
 Structural performance, at high
temperatures, 221
 Structural phenomena, in composite
 specimens, 543
 Subcomponents, 170, 588
 Subcritical crack growth, 16–23,
 297–301
 Subcritical cracking, of fibers, 496–497
 Subelement feasibility tests, 599, 600
 Supercooled fluid technique, 455
 Supercritical-water reactors (SCVRs),
 616, 617
 Supersonic aerodynamic performance,
improving, 192–193
 Super Sylramic™-iBN fiber, 223
 Supervised classification technique, 584, 586
 Supervised pattern recognition method, applied to AE signals, 584
 Surface gas transfer, 371–372
 Surface morphology, 362–363, 364
 Surface recession, 334–335, 336
 Surface recession equation, 368
 Surface recession velocity, 370
 Surface roughening, 354
 Surface roughness, 50
 Surface roughness scales, 359
 Sustained creep, 307
 Syrlamic™ composites, 344
 Syrlamic™ fiber(s), 4, 6, 223, 406, 407, 421–422
 Syrlamic™-iBN fiber, 223, 225
 Syrlamic™-iBN SIC fiber, 56.
 See also
 Super Syrlamic™-iBN fiber
 Symmetric operators, computing square
 roots of, 480
 Synchronized sound waves, 575
 Tactile air cycles (TACs), 596
 Tailored interfaces, pyrocarbon-based,
 61
 Tailored microstructures, 160
 TAURU fusion reactor, 611, 614–616
 TBC failure, 444.
 See also Thermal barrier coatings (TBCs)
 TBC spallation, 444
 Technology development, for
 oxide–oxide composites, 261–263
 Technology improvements, for
 environmental concerns, 430
 Telescope tubes, 199
 Temperature(s), 353, 501, 664, 665
 See also
 Coating temperature; Elevated temperatures; Maximum
 application temperature; Oxidation-resistant temperature
 Temperature effects, 16–23, 420
 Temperature fields, homogeneous,
 507–508
 Temperature gradient, 508–510
 Temperature gradient cycling, 444
 Temperature ranges, 335–336
 10-μm range, of carbon fibers, 32
 Tensile (tension) strength
 of tows, 13
 Tensile behavior, 11, 69–70
 analysis of, 57
 of tows, 13
 Tensile creep, 298–304, 308–313
 Tensile creep and recovery, 304–308
 Tensile creep rates, 314
 Tensile creep strain, 316
 Tensile fatigue, S–N curves for, 108–109
 Tensile fracture, determining, 101–104
 Tensile internal forces, 80
INDEX

Tensile preloading, 421
Tensile properties, at elevated temperatures, 102–103
Tensile stresses, crack initiation and, 41
Tensile stress–strain behavior, 296–298, 309, 310, 521–524, 536
Tensile stress–strain curves, 54, 55, 59
Tensile tests, 191, 372, 635
Tension-tension fatigue, 321–324, 324–330
Tensor notation, 468
Textile reinforcements, 65–84
Textile preform, infiltration of, 75
Textile materials, measuring stiffness of, 353–354, 379
Textile composite reinforcements, 469–471
Thermal conductivity, 188–189, 394, 396–398, 400, 624, 625, 627, 636, 637, 654
of carbon/carbon composites, 110–115
Thermal conductivity plots, 281
Thermal creep, 633–634
Thermal cyclic life, enhanced, 435
Thermal cycling, 435, 438, 440, 593
Thermal expansion of carbon/carbon composites, 116–117 of environmental barrier coatings, 433
with C/C and C/SiC composites, 453
Thermal expansion mismatch, 458
Thermal exposure, long-term, 253
Thermal fatigue testing, 599
Thermal gradient CVI, 92, 93, 154–156, 174 See also Chemical vapor infiltration (CVI)
Thermal insulation, 129
Thermally grown oxide (TGO), 444
Thermal shock resistance, 125 of carbon/carbon composites, 118 of oxidation protective coatings, 460
Thermal shock resistance evolution, 627
Thermal spray coating microstructure, 443
Thermal stability, 189, 190
Thermal treatments, of metals, 134–137
Thermochemical capability, 640
Thermodynamical bond, 522
Thermodynamic stability, 554
Thermomechanical properties, 218
Thermophysical properties of monolithic carbons, 110
Thermoplastics, as matrix precursors, 91–92
Thermosetting resins, as matrix precursors, 91
Thermosstructural composite materials, 647
Thermostructural composites, tribological applications for, 668–669
Third-generation fibers, 4
3D C/C composites, 355, 359
3D C/C testing, under plasma jet and oxidation, 359–361
3D fiber preforms, 89–90, 150
3D geometrical models, 67
Three-dimensional (3D) strength properties, 218
3D-orthogonal architectures, 226–227
3D-reinforced carbon/carbon, compressive strength of, 106–107
3D-woven fabrics, 152
Three-node shell finite element, 80
Three-point bend testing, 257–258
Thrust vector control (TVC) systems, 202
Thru-thickness properties, 225–227
Thru-thickness tensile strength, 217, 218
Time-dependent rupture, 347
Time derivatives, 486
Time-space approximations, 504
Time–stress–temperature–environment degradation, 334
Time–temperature performance, 250
Time to failure, 22, 325, 588
Tokamak armor, 354–355
Tokamak system, 610
Tolerance analysis, 506–512
Tough ceramic composites, 237
Toughness, 255, 294
Tough oxide–oxide composites, 264
Tow–based testing methods, 14–16
Tow lifetimes, 545
Tows. See also SiC-based filaments/tows choices of, 624
decrimping of, 69–70
longitudinal, 544
matrix-coated, 525
multifilament, 11–16
static fatigue of, 22–23
stress–rupture time behavior of, 18
ultimate failures of, 525
Tow strength, 12
Tow tensile behavior, fiber properties and, 13
Tow testing technique, 16
Tow thickness, 540
Tow ultimate strength, 14
Trace operator, 469
Traction energy, 474
Traditional acoustic emission (TAE), 572–573
Transient-liquid-phase bonding (TLPB) method, 555
Transient regime, 382
Transition layer, 460
Transmission electron microscopy (TEM), 28, 29–31
Transverse band test, 57
Transverse compaction behavior, 72
Transverse cracks, 75, 497, 522, 523, 540
Transverse intra-yarn crack opening, modeling of, 482–490
Transverse matrix cracks, 484
Transverse tensile test, 57
Transverse tows, multiple cracking in, 539–541
Treated fibers, 50, 52
Tribological applications, 655–657, 668–669
Triplex cladding, 637
Truncation, 525
Turbine component demonstrations, on military engines, 599–600
Turbine components, CMC research and development for, 602–603
Turbine technology, 603
Turbotastic structure, 28
2D braiding, 633
2D C/C testing, in plasma jet and in oxidation furnace, 362
2D CMC composites, 634 See also
Chemical vapor infiltration (CVI)
2D fabric-based composites, 185–187
2D fabrics, 75, 152–154
INDEX

Yarn matrix damage, 510–511
Yarn prepreg process, 92
Yarns, 65. See also Transverse intra-yarn crack opening
Young’s modulus, 27, 185, 189, 278–279, 289, 624
crystallite orientation and, 34
deflection criteria and, 45
high temperature behavior of, 35–36
 high tensile, 33
 of carbon fibers, 33
 Ytterbium (Yb) silicates, 445, 446
 Yttria-stabilized zirconia (YSZ), 438, 440, 446
 Yttrium (Y) silicates, 445, 459
 Zircaloy cladding, 638
 Zirconia, 249
 Zirconia coatings, 260, 261. See also
 ZrO₂ coating
 Zirconium diborides (ZrB₂), 273–290
 ZrB₂-based ceramic matrix composites, 286–288
 ZrB₄ composites, 273–290
 ZrC-SiC multilayer coating, 459
 ZrO₂ coating, 459. See also Zirconia coatings