Contents

1 INTRODUCTION TO MICROELECTRONICS 1
 1.1 Electronics versus Microelectronics 1
 1.2 Examples of Electronic Systems 2
 1.2.1 Cellular Telephone 2
 1.2.2 Digital Camera 5
 1.2.3 Analog Versus Digital 7

2 BASIC PHYSICS OF SEMICONDUCTORS 9
 2.1 Semiconductor Materials and Their Properties 10
 2.1.1 Charge Carriers in Solids 10
 2.1.2 Modification of Carrier Densities 13
 2.1.3 Transport of Carriers 15
 2.2 pn Junction 23
 2.2.1 pn Junction in Equilibrium 24
 2.2.2 pn Junction Under Reverse Bias 29
 2.2.3 pn Junction Under Forward Bias 33
 2.2.4 I/V Characteristics 36
 2.3 Reverse Breakdown 41
 2.3.1 Zener Breakdown 42
 2.3.2 Avalanche Breakdown 42
 Problems 43
 Spice Problems 45

3 DIODE MODELS AND CIRCUITS 46
 3.1 Ideal Diode 46
 3.1.1 Initial Thoughts 46
 3.1.2 Ideal Diode 48
 3.1.3 Application Examples 52
 3.2 pn Junction as a Diode 57

3.3 Additional Examples 59
3.4 Large-Signal and Small-Signal Operation 64
3.5 Applications of Diodes 73
 3.5.1 Half-Wave and Full-Wave Rectifiers 73
 3.5.2 Voltage Regulation 86
 3.5.3 Limiting Circuits 88
 3.5.4 Voltage Doublers 92
 3.5.5 Diodes as Level Shifters and Switches 96
 Problems 99
 Spice Problems 106

4 PHYSICS OF BIPOLAR TRANSISTORS 107
 4.1 General Considerations 107
 4.2 Structure of Bipolar Transistor 109
 4.3 Operation of Bipolar Transistor in Active Mode 110
 4.3.1 Collector Current 113
 4.3.2 Base and Emitter Currents 116
 4.4 Bipolar Transistor Models and Characteristics 118
 4.4.1 Large-Signal Model 118
 4.4.2 I/V Characteristics 120
 4.4.3 Concept of Transconductance 122
 4.4.4 Small-Signal Model 124
 4.4.5 Early Effect 129
 4.5 Operation of Bipolar Transistor in Saturation Mode 135
 4.6 The PNP Transistor 138
 4.6.1 Structure and Operation 139
 4.6.2 Large-Signal Model 139
 4.6.3 Small-Signal Model 142
 Problems 145
 Spice Problems 151
5 BIPOLAR AMPLIFIERS 153
5.1 General Considerations 153
 5.1.1 Input and Output Impedances 154
 5.1.2 Biasing 158
 5.1.3 DC and Small-Signal Analysis 158
5.2 Operating Point Analysis and Design 160
 5.2.1 Simple Biasing 162
 5.2.2 Resistive Divider Biasing 164
 5.2.3 Biasing with Emitter Degeneration 167
 5.2.4 Self-Biased Stage 171
 5.2.5 Biasing of PNP Transistors 174
5.3 Bipolar Amplifier Topologies 178
 5.3.1 Common-Emitter Topology 179
 5.3.2 Common-Base Topology 205
 5.3.3 Emitter Follower 222
Problems 230
Spice Problems 242

6 PHYSICS OF MOS TRANSISTORS 244
6.1 Structure of MOSFET 244
6.2 Operation of MOSFET 247
 6.2.1 Qualitative Analysis 247
 6.2.2 Derivation of I-V Characteristics 253
 6.2.3 Channel-Length Modulation 262
 6.2.4 MOS Transconductance 264
 6.2.5 Velocity Saturation 266
 6.2.6 Other Second-Order Effects 266
6.3 MOS Device Models 267
 6.3.1 Large-Signal Model 267
 6.3.2 Small-Signal Model 269
6.4 PMOS Transistor 270
6.5 CMOS Technology 273
6.6 Comparison of Bipolar and MOS Devices 273
Problems 274
Spice Problems 280

7 CMOS AMPLIFIERS 281
7.1 General Considerations 281
 7.1.1 MOS Amplifier Topologies 281
 7.1.2 Biasing 281
 7.1.3 Realization of Current Sources 285
7.2 Common-Source Stage 286
 7.2.1 CS Core 286
 7.2.2 CS Stage with Current-Source Load 289
 7.2.3 CS Stage with Diode-Connected Load 290
 7.2.4 CS Stage with Degeneration 292
 7.2.5 CS Core with Biasing 295
7.3 Common-Gate Stage 297
 7.3.1 CG Stage with Biasing 302
7.4 Source Follower 303
 7.4.1 Source Follower Core 304
 7.4.2 Source Follower with Biasing 306
Problems 308
Spice Problems 319

8 OPERATIONAL AMPLIFIER AS A BLACK BOX 321
8.1 General Considerations 322
8.2 Op-Amp-Based Circuits 324
 8.2.1 Noninverting Amplifier 324
 8.2.2 Inverting Amplifier 326
 8.2.3 Integrator and Differentiator 329
 8.2.4 Voltage Adder 335
8.3 Nonlinear Functions 336
 8.3.1 Precision Rectifier 336
 8.3.2 Logarithmic Amplifier 338
 8.3.3 Square-Root Amplifier 339
8.4 Op Amp Nonidealities 339
 8.4.1 DC Offsets 339
 8.4.2 Input Bias Current 342
 8.4.3 Speed Limitations 346
Contents

8.4.4 Finite Input and Output Impedances 350
8.5 Design Examples 351
Problems 353
Spice Problems 358

9 CASCADE STAGES AND CURRENT MIRRORS 359
9.1 Cascode Stage 359
9.1.1 Cascode as a Current Source 359
9.1.2 Cascode as an Amplifier 366
9.2 Current Mirrors 375
9.2.1 Initial Thoughts 375
9.2.2 Bipolar Current Mirror 376
9.2.3 MOS Current Mirror 385
Problems 388
Spice Problems 397

10 DIFFERENTIAL AMPLIFIERS 399
10.1 General Considerations 399
10.1.1 Initial Thoughts 399
10.1.2 Differential Signals 401
10.1.3 Differential Pair 404
10.2 Bipolar Differential Pair 404
10.2.1 Qualitative Analysis 404
10.2.2 Large-Signal Analysis 410
10.2.3 Small-Signal Analysis 414
10.3 MOS Differential Pair 420
10.3.1 Qualitative Analysis 421
10.3.2 Large-Signal Analysis 425
10.3.3 Small-Signal Analysis 429
10.4 Cascode Differential Amplifiers 433
10.5 Common-Mode Rejection 437
10.6 Differential Pair with Active Load 441
10.6.1 Qualitative Analysis 442
10.6.2 Quantitative Analysis 444
Problems 449
Spice Problems 459

11 FREQUENCY RESPONSE 460
11.1 Fundamental Concepts 460
11.1.1 General Considerations 460
11.1.2 Relationship Between Transfer Function and Frequency Response 463
11.1.3 Bode’s Rules 466
11.1.4 Association of Poles with Nodes 467
11.1.5 Miller’s Theorem 469
11.1.6 General Frequency Response 472
11.2 High-Frequency Models of Transistors 475
11.2.1 High-Frequency Model of Bipolar Transistor 475
11.2.2 High-Frequency Model of MOSFET 476
11.2.3 Transit Frequency 478
11.3 Analysis Procedure 480
11.4 Frequency Response of CE and CS Stages 480
11.4.1 Low-Frequency Response 480
11.4.2 High-Frequency Response 481
11.4.3 Use of Miller’s Theorem 482
11.4.4 Direct Analysis 484
11.4.5 Input Impedance 487
11.5 Frequency Response of CB and CG Stages 488
11.5.1 Low-Frequency Response 488
11.5.2 High-Frequency Response 489
11.6 Frequency Response of Followers 491
11.6.1 Input and Output Impedances 495
11.7 Frequency Response of Cascode Stage 498
11.7.1 Input and Output Impedances 502
11.8 Frequency Response of Differential Pairs 503
11.8.1 Common-Mode Frequency Response 504
Problems 506
Spice Problems 512

12 FEEDBACK 513
12.1 General Considerations 513
12.1.1 Loop Gain 516
12.2 Properties of Negative Feedback 518
12.2.1 Gain Desensitization 518
12.2.2 Bandwidth Extension 519
12.2.3 Modification of I/O Impedances 521
12.2.4 Linearity Improvement 525
12.3 Types of Amplifiers 526
12.3.1 Simple Amplifier Models 526
12.3.2 Examples of Amplifier Types 527
12.4 Sense and Return Techniques 529
12.5 Polarity of Feedback 532
12.6 Feedback Topologies 534
12.6.1 Voltage-Voltage Feedback 534
12.6.2 Voltage-Current Feedback 539
12.6.3 Current-Voltage Feedback 542
12.6.4 Current-Current Feedback 547
12.7 Effect of Nonideal I/O Impedances 550
12.7.1 Inclusion of I/O Effects 551
12.8 Stability in Feedback Systems 563
12.8.1 Review of Bode’s Rules 563
12.8.2 Problem of Instability 565
12.8.3 Stability Condition 568
12.8.4 Phase Margin 571
12.8.5 Frequency Compensation 573
12.8.6 Miller Compensation 576
Problems 577
Spice Problems 587

13 OSCILLATORS 588
13.1 General Considerations 588
13.2 Ring Oscillators 591
13.3 LC Oscillators 595
13.3.1 Parallel LC Tanks 595
13.3.2 Cross-Coupled Oscillator 599
13.3.3 Colpitts Oscillator 601
13.4 Phase Shift Oscillator 604
13.5 Wien-Bridge Oscillator 607
13.6 Crystal Oscillators 608
13.6.1 Crystal Model 608
13.6.2 Negative-Resistance Circuit 610
13.6.3 Crystal Oscillator Implementation 611
Problems 614
Spice Problems 617

14 OUTPUT STAGES AND POWER AMPLIFIERS 619
14.1 General Considerations 619
14.2 Emitter Follower as Power Amplifier 620
14.3 Push-Pull Stage 623
14.4 Improved Push-Pull Stage 626
14.4.1 Reduction of Crossover Distortion 626
14.4.2 Addition of CE Stage 629
14.5 Large-Signal Considerations 633
14.5.1 Biasing Issues 633
14.5.2 Omission of PNP Power Transistor 634
14.5.3 High-Fidelity Design 637
14.6 Short-Circuit Protection 638
14.7 Heat Dissipation 638
14.7.1 Emitter Follower Power Rating 639
14.7.2 Push-Pull Stage Power Rating 640
14.7.3 Thermal Runaway 641
14.8 Efficiency 643
14.8.1 Efficiency of Emitter Follower 643
14.8.2 Efficiency of Push-Pull Stage 644
14.9 Power Amplifier Classes 645
Problems 646
Spice Problems 650

15 ANALOG FILTERS 651
15.1 General Considerations 651
15.1.1 Filter Characteristics 652
15.1.2 Classification of Filters 653
15.1.3 Filter Transfer Function 656
15.1.4 Problem of Sensitivity 660
15.2 First-Order Filters 661
15.3 Second-Order Filters 664
15.3.1 Special Cases 664
15.3.2 RLC Realizations 668
15.4 Active Filters 673
15.4.1 Sallen and Key Filter 673
15.4.2 Integrator-Based Biquads 679
15.4.3 Biquads Using Simulated Inductors 682
15.5 Approximation of Filter Response 687
15.5.1 Butterworth Response 688
15.5.2 Chebyshev Response 692
Problems 697
Spice Problems 701

16 DIGITAL CMOS CIRCUITS 702
16.1 General Considerations 702
16.1.1 Static Characterization of Gates 703
16.1.2 Dynamic Characterization of Gates 710
16.1.3 Power-Speed Trade-Off 713
16.2 CMOS Inverter 714
16.2.1 Initial Thoughts 715
16.2.2 Voltage Transfer Characteristic 717

16.2.3 Dynamic Characteristics 723
16.2.4 Power Dissipation 728
16.3 CMOS NOR and NAND Gates 731
16.3.1 NOR Gate 732
16.3.2 NAND Gate 735
Problems 736
Spice Problems 740

17 CMOS AMPLIFIERS 742
17.1 General Considerations 742
17.1.1 Input and Output Impedances 743
17.1.2 Biasing 747
17.1.3 DC and Small-Signal Analysis 748
17.2 Operating Point Analysis and Design 749
17.2.1 Simple Biasing 751
17.2.2 Biasing with Source Degeneration 753
17.2.3 Self-Biased Stage 756
17.2.4 Biasing of PMOS Transistors 757
17.2.5 Realization of Current Sources 758
17.3 CMOS Amplifier Topologies 759
17.4 Common-Source Topology 760
17.4.1 CS Stage with Current-Source Load 765
17.4.2 CS Stage with Diode-Connected Load 766
17.4.3 CS Stage with Source Degeneration 767
17.4.4 Common-Gate Topology 779
17.4.5 Source Follower 790
Problems 796
Spice Problems 806

Appendix A INTRODUCTION TO SPICE 809
Index 829