CONTENTS

Preface ix
Preface to the First Edition xi

PART I PROBLEMS WITH PERIODIC SOLUTIONS 1

1. Model Equations 3
 1.1. Periodic Gridfunctions and Difference Operators, 3
 1.2. First-Order Wave Equation, Convergence, and Stability, 10
 1.3. Leap-Frog Scheme, 20
 1.4. Implicit Methods, 24
 1.5. Truncation Error, 27
 1.6. Heat Equation, 30
 1.7. Convection–Diffusion Equation, 36
 1.8. Higher Order Equations, 39
 1.9. Second-Order Wave Equation, 41
 1.10. Generalization to Several Space Dimensions, 43

2. Higher Order Accuracy 47
 2.1. Efficiency of Higher Order Accurate Difference Approximations, 47
 2.2. Time Discretization, 57

3. Well-Posed Problems 65
 3.1. Introduction, 65
 3.2. Scalar Differential Equations with Constant Coefficients in One Space Dimension, 70
 3.3. First-Order Systems with Constant Coefficients in One Space Dimension, 72
 3.4. Parabolic Systems with Constant Coefficients in One Space Dimension, 77
 3.5. General Systems with Constant Coefficients, 80
3.6. General Systems with Variable Coefficients, 81
3.7. Semibounded Operators with Variable Coefficients, 83
3.8. Stability and Well-Posedness, 90
3.9. The Solution Operator and Duhamel’s Principle, 93
3.10. Generalized Solutions, 97
3.11. Well-Posedness of Nonlinear Problems, 99
3.13. The Principle of Linearization, 107

 4.1. The Method of Lines, 109
 4.2. General Fully Discrete Methods, 119
 4.3. Splitting Methods, 147

5. Hyperbolic Equations and Numerical Methods 153
 5.1. Systems with Constant Coefficients in One Space Dimension, 153
 5.2. Systems with Variable Coefficients in One Space Dimension, 156
 5.3. Systems with Constant Coefficients in Several Space Dimensions, 158
 5.4. Systems with Variable Coefficients in Several Space Dimensions, 160
 5.5. Approximations with Constant Coefficients, 162
 5.6. Approximations with Variable Coefficients, 165
 5.7. The Method of Lines, 167
 5.8. Staggered Grids, 172

6. Parabolic Equations and Numerical Methods 177
 6.1. General Parabolic Systems, 177
 6.2. Stability for Difference Methods, 181

7. Problems with Discontinuous Solutions 189
 7.1. Difference Methods for Linear Hyperbolic Problems, 189
 7.2. Method of Characteristics, 193
 7.3. Method of Characteristics in Several Space Dimensions, 199
 7.4. Method of Characteristics on a Regular Grid, 200
 7.5. Regularization Using Viscosity, 208
 7.6. The Inviscid Burgers’ Equation, 210
 7.7. The Viscous Burgers’ Equation and Traveling Waves, 214
 7.8. Numerical Methods for Scalar Equations Based on Regularization, 221
CONTENTS

7.9. Regularization for Systems of Equations, 227
7.10. High Resolution Methods, 235

PART II INITIAL–BOUNDARY VALUE PROBLEMS 247

8. The Energy Method for Initial–Boundary Value Problems 249
 8.1. Characteristics and Boundary Conditions for
 Hyperbolic Systems in One Space Dimension, 249
 8.2. Energy Estimates for Hyperbolic Systems in One Space
 Dimension, 258
 8.3. Energy Estimates for Parabolic Differential Equations in One
 Space Dimension, 266
 8.4. Stability and Well-Posedness for General Differential
 Equations, 271
 8.5. Semibounded Operators, 274
 8.6. Quarter-Space Problems in More than One
 Space Dimension, 279

9. The Laplace Transform Method for First-Order Hyperbolic
 Systems 287
 9.1. A Necessary Condition for Well-Posedness, 287
 9.2. Generalized Eigenvalues, 291
 9.3. The Kreiss Condition, 292
 9.4. Stability in the Generalized Sense, 295
 9.5. Derivative Boundary Conditions for First-Order Hyperbolic
 Systems, 303

10. Second-Order Wave Equations 307
 10.1. The Scalar Wave Equation, 307
 10.2. General Systems of Wave Equations, 324
 10.3. A Modified Wave Equation, 327
 10.4. The Elastic Wave Equations, 331
 10.5. Einstein’s Equations and General Relativity, 335

 11.1. Hyperbolic Problems, 339
 11.2. Parabolic Problems, 350
 11.3. Stability, Consistency, and Order of Accuracy, 357
 11.4. SBP Difference Operators, 362

12. The Laplace Transform Method for Difference Approximations 377
 12.1. Necessary Conditions for Stability, 377
CONTENTS

12.2. Sufficient Conditions for Stability, 387
12.3. Stability in the Generalized Sense for Hyperbolic Systems, 405
12.4. An Example that Does Not Satisfy the Kreiss Condition But is Stable in the Generalized Sense, 416
12.5. The Convergence Rate, 423

13. The Laplace Transform Method for Fully Discrete Approximations 431

13.2. The Method of Lines and Stability in the Generalized Sense, 451

Appendix A Fourier Series and Trigonometric Interpolation 465

A.1. Some Results from the Theory of Fourier Series, 465
A.2. Trigonometric Interpolation, 469
A.3. Higher Dimensions, 473

Appendix B Fourier and Laplace Transform 477

B.1. Fourier Transform, 477
B.2. Laplace Transform, 480

Appendix C Some Results from Linear Algebra 485

Appendix D SBP Operators 489

References 499

Index 507