Index

a
absorption 4 ff
  – bandgap engineering 171, 174
  – bulk GaAs 155
  – coefficients 4, 83
  – cooling theory 151
  – cryocoolers 119
  – density of states engineering 172
  – Er³⁺-doped materials 103
  – fluoride single crystals 76, 83
  – luminescence 139 ff, 149
  – metal-ion impurities 46
  – microscopic theory 141 ff
  – mirror heating 129
  – rare-earth-doped materials 39
  – thermodynamics 222
absorption–emission cycle 36
absorption–luminescence cycle 151
absorption–re-emission processes 93
acceptors 162
active ions 35–40, 48
actual performance 214 ff
aerosol dust particles 51
ammonium pyrrolidine
dithiocarbamate (APDC)
chelate 52 ff, 57 f
annihilation operators 141
antireflection coating 124
anti-Stokes fluorescence 1, 198
  – design/applications 113, 117
  – rare-earth-doped materials 33
  – thermodynamics 228
anti-Stokes luminescence 75
applications 133–168
aqueous precursor route 49, 54 f
Auger recombination 140 ff
  – bandgap engineering 178
  – cooling theory 151
  – GaAs quantum wells 159 ff
  – surface plasmon polaritons 192
  see also recombination

b
background absorption 16, 21
  – bandgap engineering 178
  – cooling theory 151
  – Er³⁺-doped materials 112
  – GaAs quantum wells 161
  – metal-ion impurities 46
  – thermodynamics 222
background dielectric constant 140
band blocking 13, 20
band diagrams 182
band-edge transitions 187
band-filling effects 157
bandgap energy 204
bandgap engineering 169–196
bandgap semiconductors see semiconductors
bandgaps
  – Er³⁺-doped materials 97
  – shift/broadening 23
  – structures 22
band-tail states 18, 175
  see also Urbach tail
band-to-acceptor luminescence 163
basic concepts 1–33
BaY₂F₈ (BYF) 7, 35, 52
  – Czochralski growth 66 ff
  – fluoride single crystals 77–89
  – thermal properties 41 ff
Beth–Uhlenbeck formula 146
BIG (fluoroindate) fabrication 65
binding energies 162, 172
black precipitates 45, 57
black-body radiation
  – design/applications 119
  – thermal load 11

Edited by Richard Epstein and Mansoor Sheik-Bahae
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40876-4
Index

– thermodynamics 208, 212
Bloch wave functions 176
blueshift 170, 193
Boltzmann statistics 9, 12, 18, 199 ff
Bose function 142
Bose–Einstein condensates 1
Bose–Einstein distribution 19, 205
break-even cooling condition 21
break-even nonradiative decay 16
break-even nonradiative lifetime 155, 161
break-even recombination 170, 178
Bridgman–Stockbarger crystal growth 65, 99
brightness temperature 203 ff, 212 ff
broadening 148, 174
bromide crystals 48, 68
bulk cooling
– Er
+3-doped materials 105 ff
– fluoride single crystals 89 ff
– GaAs 153 ff
– thermodynamics 197–225
bulk semiconductors 162 ff

carbon impurities 162
Carnot coefficients 27, 197–225
casting 64 ff
cavities 11
cavity mirrors see mirrors
charge carriers 12, 139 ff
chelating agents 52 ff
chemical durability 40 ff
chemical potential 142–160, 176
chloride crystals
– KP
2Cl
3 77
– net optical refrigeration 35
– rare-earth-doped materials 68
chloride glass fabrication 48, 65 ff
chloride hydrolysis 98
chlorofluoride glasses 101
clean environment 51 ff
CNBZn (fluorochloride) glasses 65, 110
coefficient of performance (COP) see Carnot coefficients
coherent anti-Stokes Raman scattering (CARS) 230
collinear photothermal deflection spectroscopy 101
congestion quenching 40, 46
conductance 23
conduction band
– GaAs quantum wells 159
– luminescence 141 ff
– type II quantum wells 182
conductivity 42, 77
contaminations 50, 78
cooling by anti-Stokes emission (CASE) 105 ff
cooling coefficients 200, 224
cooling efficiency 1 ff, 6, 14
– bandgap engineering 169–196
– bulk GaAs 156
– design/applications 117
– Er
+3-doped materials 101–115
– fluoride single crystals 87 ff
– luminescence 140
– rare-earth-doped materials 36 ff, 40
– rare-earth-doped solids 7 ff
– surface plasmon polaritons 192
– type II quantum wells 180
– ZBLAN fabrication 63 ff
cooling elements 117, 131
cooling theory 151 ff, 162
copper impurities 10
correction factors 44
costs 136 ff
Coulomb interactions
– bulk semiconductors 153, 162
– GaAs quantum wells 159
– luminescence 139 ff, 145
– rare-earth-doped materials 37
Coulomb screening 13, 21, 152
creation operators 141
crucible materials 62
cryocoolers 1, 26
– fluoride single crystals 75
– modeling 119, 134 ff
crystal field splitting 10
crystal growth
– Er
+3-doped materials 101
– fluoride single crystals 77
– rare-earth-doped halides 65 ff
– ZBLAN 62
crystals 35
Cs
3Tl
2C
9 crystals 66
Czochralski growth 65, 77 ff
defects
– bandgap engineering 188
Index

– rare-earth-doped materials 36, 45
degeneracy factors 5, 38
degradation 117
density of states 171 ff, 204
density-matrix analysis 176
design
  – laser refrigerators 124 ff
  – rare-earth-doped materials 33–74
devitrification theory 59
dielectric constant 140 ff
dielectric mirrors 117, 121
diethyl dithiocarbamate (DDTC) chelate 52
differential luminescence thermometry (DLT) 23, 35, 58
dipole matrix 142
direct gap semiconductors 12 ff
dispersion 143, 190
dissolution 63 ff
distillation 55 ff
donor-acceptor transitions 171 ff, 183
doping 162, 172 ff
Doppler cooling 33, 197
drying 54 ff
Dyson equation 144
effective temperature 200
efficiency see cooling –, quantum efficiency etc.
Einstein relations 87
electrochemical purification 57 ff
electroluminescent cooler 204
electromagnetic noise 134 ff
electron configurations 37
electron–hole pairs 13, 20
  – bandgap engineering 171
  – GaAs quantum wells 159 ff
  – luminescence 139–150
  – type II quantum wells 180
electron–hole plasma 145
electronic domains 169–196
electron–phonon interaction 5 ff
emission 225
  – Er<sup>3+</sup>-doped materials 109
  – fluoride single crystals 77
  – reabsorption 87
energy accumulation 222
energy bands 139
energy flux 206
energy gaps 75
energy level separation 4, 82
energy migration 39
energy transfer 189
energy transfer upconversion (ETU) 109 ff
engineering
  – bandgap 169–196
  – density of states 171 ff
entropy/flux 197–212
epitaxial growth techniques 22
Er<sup>3+</sup>-doped materials 97–116
erbium-doped fiber amplifiers (EDFAs) 34
escape probability 14
evaporative losses 63 ff
excited state absorption (ESA) 108 ff
excited states
  – Er<sup>3+</sup>-doped materials 103, 109
  – hopping 119
  – population 221
  – rare-earth-doped materials 37
exciton density 146
exciton–exciton scattering 19
excitonic effects
  – bandgap engineering 176
  – cooling theory 151
  – GaAs 153, 161
  – quantum wells 161
excitonic resonances 141, 149
excitons–phonons coupling 148
expansion, thermal 43
experimentals
  – Er<sup>3+</sup>-doped materials 101 ff
  – fluoride single crystals 78 ff
  – semiconductors 21 ff
external quantum efficiency (EQE) 15–27
external resonant cavity 11
extraction coefficient 160
f
fabrication, rare-earth-doped materials 33–74
fast thermalization 110
Fermi fluid 153
Fermi functions 142 ff, 192
Fermi–Dirac distributions 12
fiberglass-epoxy support 119
filtration 51 ff
fining 63
fluorescence 7
Index

– cryocoolers 117 f, 124 f
– design/applications 117
– fluoride single crystals 80, 87
– KPb3Cl5 crystal 98
– thermodynamics 198, 215
– type II quantum wells 183
– upconversion 1, 6

fluorescence quantum efficiency
– Er3+-doped materials 103
– thermodynamics 215, 221, 226

see also quantum efficiency

fluoride crystals/glasses
– chemical durability 42
– net optical refrigeration 35
– rare-earth-doped materials 65 ff
– single crystals 75–96

fluorination 54 ff
fluorochloride glass
– CNBZn:Yb3+ 34, 65
– Er3+-doped materials 101 ff
– net optical refrigeration 35

fluoroindate glasses (BIG) 65
fluorozirconate glasses (ZBLAN)
– chemical durability 42
– purity 45
– Yb-doped 75–89

fluorine gas 54 ff

GaAs 17, 21 ff
– absorption spectra/
photoluminescence 177
– cooling efficiency 17, 173
– luminescence 142
– photonic bandgap structure 187
– quantum wells 159 ff
– thermodynamics 204

GaN 189

Gaussian profiles 206
glasses
– Er3+-doped 101
– net optical refrigeration 35

– RE-doped 59 ff, 64 ff
– Yb3+-doped 7
– ZBLAN 64 ff
– ZrF4 systems 59 ff

Green’s function
– bulk semiconductors 156, 162
– luminescence 143–150

ground-state 9, 109
growth 22
– apparatus 78 ff
– Bridgman–Stockbarger 65 f, 99
– Czochralski 65 f, 77 ff
– epitaxial 22
– glass fabrication 65

h
halide crystals/glasses
– Er3+-doped 97
– rare-earth-doped 65 ff
Hamiltonian 140

hardness, fluoride single crystals 77
Hartree–Fock level 140, 144, 153
heat capacities 3 ff, 42
heat sink
– cryocooler 117 ff, 127 ff
– laser refrigerator 134
– microcoolers 136
– surface plasmon polaritons 189
– thermodynamics 197
heat transfer 119

heating by background absorption (HBA) 58
heat–light conversion 197
heavy metal fluoride glasses (HMFG) 34
– chemical durability 42
– fabrication 59
heavy metal halide systems 98
high-purity 21, 48 ff

see also purity
high-temperature limit 107
historicals 33 ff, 198 ff
holes density 163
homogenization 63 ff
host materials 7, 67
– cryocoolers 120
– Er3+-doped 97 ff, 107
– fluoride single crystals 76, 92
– future trends 67
– rare-earth-doped 40 ff
– vibrational impurities 45
hot mirror 218
humid environments 42
hydrogen fluoride gas 54 ff
hydrolysis 42, 98
hydroxyl
  – fluoride single crystals 78
  – precursors 48, 54, 62
hygroscopic materials 42

i
impurities 10
  – bandgap engineering 174
  – fluoride single crystals 76
  – hydroxyl 48, 54, 62, 78
  – precursor fabrication 50
  – rare-earth-doped materials 36, 45 ff, 57 ff
indium-based layers 181
InF₃ oxidizers 61
infrared devices 35, 118
infrared transparency 97
interband absorption 13 ff, 20
internal reflection 6, 11, 21, 26
  – mirror heating 130
  – rare-earth-doped materials 43
intra-laser-cavity 11
ion mobility 64
ionization 145, 172
iron impurities 10
irradiance 208
isotropic energy bands 141

j
Joule heating 204, 217

k
Keldysh contour 143, 164
kinetic holes 142
Knoop hardness 78
KPb₂Cl₅ crystal
  – Bridgman–Stockbarger growth 66
  – Er³⁺-doped materials 98 ff
  – excitation spectra 110
Kramers–Kronig relation 143, 149
Kubo–Martin–Schwinger (KMS) relation 14, 142, 159
KY(WO₄)₂:Yb³⁺) crystals 34

l
Lambert’s law 206
laser cooling/refrigerating 1
  – design/applications 117–138
  – fluoride single crystals 75–96
  – rare-earth-doped materials 3, 33–74
  – semiconductors 12 ff, 134 ff, 169–196
laser dye solutions 139
laser excitation 4
lattice interactions 1, 6
lattice temperature 19
layers 162, 181
leakage 120 ff, 124 ff, 131
lifetime 134 ff
light extraction efficiency 117, 169
see also extraction efficiency
light field, quantized 142
light propagation effects 150
light-emitting diodes (LEDs) 21
lineshape profile 208
Liouville’s theorem, s 200
LiYF₄ (YLF) fluoride single crystals 77–89
load 2
longitudinal acoustic phonons 148
longitudinal optical phonons 148, 176
losses 19, 139
  – luminescence 150
  – ZBLAN fabrication 63 ff
low phonon energy 97 ff
luminescence 21
  – bandgap engineering 174
  – Er³⁺-doped materials 108
  – fluoride single crystals 87
  – microscopic theory 139–168
  – rare-earth-doped materials 37
  – thermodynamics 199
  – upconversion 1, 13

m
magnetic noise 134 ff
manybody interactions 12, 20
  – bandgap engineering 174
  – cooling theory 151
  – luminescence 139
mass, cryocoolers 134 ff
materials/purity
  – Er³⁺-doped 97–116
  – fluoride glasses 65 ff, 75–96
  – rare-earth-doped 33–74
matrix elements 171
maximum allowable nonradiative decay 16
McNamara–Mair devitrification 59
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mechanical coolers</td>
<td>133</td>
</tr>
<tr>
<td>mechanical properties</td>
<td></td>
</tr>
<tr>
<td>– fluoride single crystals</td>
<td>76</td>
</tr>
<tr>
<td>– rare-earth-doped materials</td>
<td>40</td>
</tr>
<tr>
<td>melt quenching</td>
<td>61</td>
</tr>
<tr>
<td>metal halides</td>
<td>56</td>
</tr>
<tr>
<td>metal organic chemical vapor deposition</td>
<td>22</td>
</tr>
<tr>
<td>metal–dielelectric interface</td>
<td>189</td>
</tr>
<tr>
<td>metal-ion impurities</td>
<td>46 ff, 54</td>
</tr>
<tr>
<td>see also impurities</td>
<td></td>
</tr>
<tr>
<td>methyl-isobutyl-ketone (MIBK)</td>
<td>52 ff, 57</td>
</tr>
<tr>
<td>microcooling applications</td>
<td>136 ff</td>
</tr>
<tr>
<td>microhardness</td>
<td>78</td>
</tr>
<tr>
<td>microscopic luminescence theory</td>
<td>139–168</td>
</tr>
<tr>
<td>mirrors</td>
<td></td>
</tr>
<tr>
<td>– design/applications</td>
<td>117</td>
</tr>
<tr>
<td>– dielectric</td>
<td>7, 10 f</td>
</tr>
<tr>
<td>– heating</td>
<td>129 ff</td>
</tr>
<tr>
<td>– hot</td>
<td>218</td>
</tr>
<tr>
<td>– rare-earth-doped materials</td>
<td>43</td>
</tr>
<tr>
<td>– thermodynamics</td>
<td>224</td>
</tr>
<tr>
<td>modeling/design</td>
<td>119 ff</td>
</tr>
<tr>
<td>modulation beams</td>
<td>103</td>
</tr>
<tr>
<td>molecular beam epitaxy (MBE)</td>
<td>25</td>
</tr>
<tr>
<td>momentum space</td>
<td>142</td>
</tr>
<tr>
<td>monochromatic light</td>
<td>1</td>
</tr>
<tr>
<td>monoclinic crystalline structures</td>
<td>77, 98</td>
</tr>
<tr>
<td>Mott transition</td>
<td>146, 149</td>
</tr>
<tr>
<td>multimode fiber-coupled laser</td>
<td>2</td>
</tr>
<tr>
<td>multiphonon decay</td>
<td>8</td>
</tr>
<tr>
<td>multiphonon relaxation</td>
<td></td>
</tr>
<tr>
<td>– chemical durability</td>
<td>42</td>
</tr>
<tr>
<td>– Er&lt;sup&gt;3+&lt;/sup&gt;-doped materials</td>
<td>97, 108</td>
</tr>
<tr>
<td>– rare-earth-doped materials</td>
<td>37, 40 ff</td>
</tr>
<tr>
<td>– thermodynamics</td>
<td>224</td>
</tr>
<tr>
<td>– vibrational impurities</td>
<td>45</td>
</tr>
<tr>
<td>see also relaxation</td>
<td></td>
</tr>
<tr>
<td>multipoles</td>
<td>37</td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>nanogaps</td>
<td>22, 26</td>
</tr>
<tr>
<td>narrowband light</td>
<td>197–213</td>
</tr>
<tr>
<td>net optical refrigeration</td>
<td>35</td>
</tr>
<tr>
<td>non-Lorentzian exciton lineshape</td>
<td>148</td>
</tr>
<tr>
<td>nonradiative recombination</td>
<td></td>
</tr>
<tr>
<td>– bandgap engineering</td>
<td>169</td>
</tr>
<tr>
<td>– cooling theory</td>
<td>151</td>
</tr>
<tr>
<td>see also recombination</td>
<td></td>
</tr>
<tr>
<td>nonradiative relaxation</td>
<td></td>
</tr>
<tr>
<td>– rare-earth-doped materials</td>
<td>33</td>
</tr>
<tr>
<td>– thermodynamics</td>
<td>214</td>
</tr>
<tr>
<td>– vibrational impurities</td>
<td>45</td>
</tr>
<tr>
<td>– ZBLAN fabrication</td>
<td>62</td>
</tr>
<tr>
<td>see also relaxation</td>
<td></td>
</tr>
<tr>
<td>nonradiative transitions</td>
<td>76</td>
</tr>
<tr>
<td>normalization</td>
<td>210</td>
</tr>
<tr>
<td>numerical aperture</td>
<td>130</td>
</tr>
<tr>
<td>p</td>
<td></td>
</tr>
<tr>
<td>parasitic absorption</td>
<td>3 ff, 10 ff, 151</td>
</tr>
<tr>
<td>see also background absorption</td>
<td></td>
</tr>
<tr>
<td>parasitic heating</td>
<td>3 ff, 10 ff</td>
</tr>
<tr>
<td>– fluoride single crystals</td>
<td>81</td>
</tr>
<tr>
<td>– microcoolers</td>
<td>136</td>
</tr>
<tr>
<td>parasitic loads</td>
<td>120</td>
</tr>
<tr>
<td>partial entropy</td>
<td>211</td>
</tr>
<tr>
<td>Pauli exclusion principle</td>
<td>153</td>
</tr>
<tr>
<td>Peltier devices</td>
<td>8</td>
</tr>
<tr>
<td>performance coefficient see Carnot</td>
<td></td>
</tr>
<tr>
<td>coefficients</td>
<td></td>
</tr>
<tr>
<td>periodically poled lithium niobate (PPLN)</td>
<td>39</td>
</tr>
<tr>
<td>phase-space filling</td>
<td>152</td>
</tr>
</tbody>
</table>
Index

239

phenomenological cooling model 111 ff
phonons 1
  – Er³⁺-doped materials 97 ff
  – fluoride single crystals 77
  – GaAs quantum wells 159
  – rare-earth-doped materials 34
  – transitions 174 ff
photoluminescence 18, 178
photic bandgap engineering 169–196
photons 2 ff
  – cryocoolers 119
  – cycles 139
  – propagation 204
  – tunneling 26
  – waste recycling 27
photothermal deflection (PTD)
  – cryocoolers 124
  – Er³⁺-doped materials 101 ff
  – rare-earth-doped materials 35
photovoltaic converters 227
physical consistency conditions 149
physical properties 77 ff
Planck distribution 203 ff, 206, 211
Planckian thermal radiation 197
plasma fraction 145
plasma screening 153
polariton effects 151
polarization 85, 88, 124
population dynamics 103, 111
power density 12
power efficiency 123
ppb-level impurities 50, 57
precipitates 45, 60
precursors 48 ff
probabilities 120, 210
process equipment/conditions 50 ff
propagation constant 189
pulse tube coolers 133
pumping
  – absorption 11
  – bandgap engineering 179
  – cryocooler modeling 128
  – design/applications 117
  – Er³⁺-doped materials 102–114
  – fluoride single crystals 87 ff
  – luminescence frequency 139 f
  – mirror heating 130
  – resonant 108
  – thermodynamics 202–227
  – wavelengths 7
Purcell factors 189
purity/purification
  – fluoride single crystals 78 ff
  – K Pb₂Cl₅ crystal 99
  – precursor fabrication 50 ff
  – rare-earth-doped materials 46–60
q
quantitative radiation thermodynamics 204 ff
quantized light field 142
quantum efficiency 4 ff
  – bandgap engineering 179
  – density of states engineering 171
  – design/applications 117
  – Er³⁺-doped materials 103
  – fluoride single crystals 76
  – rare-earth-doped materials 37–45
  – thermodynamics 198–226
  – type II quantum wells 182
  – vibrational impurities 46
quantum wells
  – GaAs 159 ff
  – type II 180 ff
quantum-confined systems 140
quasi-thermal equilibrium 142, 160
quenching centers 77
r
radiance 205
radiation temperatures 197
radiation thermodynamics 204 ff
radiative lifetime 182
radiative recombination 139 ff
rare-earth ions 37 ff
rare-earth-doped materials 12 ff
  – BaY₂F₈/LiYF₄ 7, 35, 41–68, 77–85
  – design/fabrication 33–74
  – glasses 139
  – solids 3, 7 ff
reactive atmosphere processing 60
recombination 6, 13 f, 21
  – cooling theory 151
  – emission 204
  – GaAs 153, 157 ff
  – radiative 139 ff
recrystallization 51 ff
reddening effect 120
reflectance 125
reflection 6, 214
refractive index 19
  – fluoride single crystals 77
  – luminescence 142
  – rare-earth-doped materials 40 ff
refrigeration technologies 133 ff
relaxation
  – Er\(^{3+}\)-doped materials 97, 108
  – rare-earth-doped materials 34 ff
  – thermodynamics 214
  – vibrational impurities 45
  see also multiphonon relaxation
reliability 134 ff
renormalizations 145
retroreflectors 130
Roosbroeck–Shockley relation 14
ruggedness 134 ff
s
Saha equation 146
saturation 13
  – bandgap engineering 173
  – cryocooler modeling 122
  – thermodynamics 223
scattering 45, 214
scheelite structure (YLF) 77
screened Hartree–Fock (SHF) model 154
second-order \( T \) matrix 147
self-energies 140–156
SEM micrographs 26
semiconductors 2 ff
  – bandgap engineering 169–196
  – bulk 162 ff
  – direct gap 12 ff
  – efficiency 134 ff, 169–196
  – luminescence 139–168
separation techniques 52
Shannon entropy 210
Sheik-Bahae–Epstein (SB–E) theory 153 f, 157 f
shielding 37
Shockley–Reed–Hall recombination 169
silver layers 124
simplified fluoride glasses 67 ff
single crystal fluorides 75–96
single-pass configuration 89 ff
SnF\(_4\) oxidizer 61
sodium spectrum 198
sol–gel synthesis routes 49
solids 1–33
solvent extraction 52 ff
spacecraft applications 135
specific power 135
spectral energy flux density 206
spectroscopy
  – Er\(^{3+}\) upconversion properties 108 ff
  – fluoride single crystals 80–86
spin–orbit interaction 37
spontaneous emission 3, 189
stability parameters 59
Stark sublevels 82
steady-state solution 5
Stefan–Boltzmann constant 210
Stirling’s approximation 133, 210
sublimation 55 ff
sulfide glass fabrication 65 ff
surface plasmon polaritons 13, 189 ff
surface recombination 22
  – bandgap engineering 169
  – bulk semiconductors 162
  see also recombination
susceptibility 145, 162
system mass 134 ff
temperature dependence 6
  – Auger coefficients 152
  – bandgap energy 148
  – SB–E theory 155 ff
temperatures
  – bulk GaAs 153
  – bulk matter 197
  – cryocooler modeling 120
  – Er\(^{3+}\)-doped materials 106
  – fluoride single crystals 76, 82, 89
  – \( T \) matrix 144 ff, 153
  – ZBLAN fabrication 62
ternary phase diagram, ZBLAN 60
thermal energy accumulation 222
thermal link concept 2, 127
thermal properties 23, 77
  – fluoride single crystals 76
  – rare-earth-doped materials 40–45
thermalization 6, 20
  – Er\(^{3+}\)-doped materials 110
  – fluoride single crystals 87
thermocouples 35
thermodynamics 197–225
thermoelectric coolers (TECs) 8, 133
Thermometry methods 35
Thulium-doped materials 8
Tm$^{3+}$ fluoride crystals 67
Tm$^{3+}$ system (ZBLAN:Tm$^{3+}$) 34
Total internal reflection (TIR) 42
Trace impurity levels 57 ff
Transition-metals 36, 46, 52
Transitions 4, 7 ff
- Bandgap engineering 171
- Fluoride single crystals 76
- Luminescence frequency 139
- Type II quantum wells 182
Translational invariance 159
Transmission 214
Transparency 77, 97
Trapping 4 ff, 14
- Bandgap engineering 169
- Design/applications 117
- Mirror heating 130
Two-band luminescence model 141
Type II quantum wells 180 ff
U
Ultratransparency 97
Upconversion 108 ff, 139
Urbach tail 17
- Bandgap engineering 174
- Luminescence 148
V
Valence band
- Bulk semiconductors 162
- GaAs 159
- Luminescence 141
- Type II quantum wells 182
Van Roosbroeck–Shockley relation 14
Vapor pressure 63
Vertex corrections 147
Vibrational impurities 45 ff
Vibrational lattice modes 1, 107, 133 ff
Viscosity optimum cooling rate 64 ff
W
Wavefunctions 37
Wavelength-dependent temperature change 7, 91, 121
Y
Y$_2$O$_3$ oxide crystals 41
Y$_3$Al$_5$O$_{12}$ (YAG) crystals
- Rare-earth-doped materials 33, 41
- Thermal properties 43
Yb$^{3+}$ fluoride crystals 67
Yb$^{3+}$-doped fluorozirconate glass (Yb$^{3+}$:ZBLAN) 33
- Design/applications 117
- Optical cooler 208, 213
- Thermodynamics 216, 220 ff
See also ZBLAN glass
Yb$^{3+}$ doping 7
YLiF$_4$ 43
Ytterbium-based optical refrigeration 1
Ytterbium-doped fluorozirconate glass (ZBLANP) 7, 75
Z
ZBLAN glass
- Chelating agents 53
- Design/applications 117
- Electrochemical purification 57
- Fabrication 62 ff
- Mirror heating 129
- Precursor fabrication 48
- Rare-earth-doped materials 7, 33–74
- Ternary phase diagram 60
- Thermal properties 43
- Thermodynamics 208–224
See also Yb$^{3+}$:ZBLAN
Zero-density exciton lineshape 148
Zirconium 62
ZnCl$_2$-based glasses 65
ZnS/ZnSe 19, 22
Zone refining 100
ZrF$_4$ glass formation 59 ff
ZrOCl$_2$ recrystallization 51