Index

a
- absorption, for VOCs removal 135
- acetylene production 374–377
- acid–base reactions 244–251
 - conductivity changes 246–251
 - pH changes 246–251
- activated carbon (AC) 290–291
- active oxides, in catalysts preparation 55–56
- adsorption 175–177
 - for VOCs removal 135
- aerosols, plasma chemistry induced by discharge plasmas in 215–217
- aliphatic compounds 275–279
 - dimethylsulfoxide 277–279
 - methanol 275–277
 - tetranitromethane 279
- alumina (Al$_2$O$_3$), in catalysts preparation 49–50
 - flame hydrolysis 49
 - neutralization 49
 - spray pyrolysis 49
 - transition alumina synthesis by thermal treatment 49
- aluminum phosphate (APO) 53
- anode directed streamers 13
- aqueous-phase chemistry of electrical discharge plasma 243–293, See also organic dyes; plasmachemical decontamination of water
 - aliphatic compounds 275–279
 - in water and in gas–liquid environments 243–293
- aqueous-phase plasma-catalytic processes 279–292
 - activated carbon (AC) 290–291
 - iron 280–284
 - platinum 284–286
 - silica gel 291
 - titanium dioxide 288–290
 - tungsten 286–288
 - zeolites 291–292
- aqueous-phase plasmachemical reactions 243–259
 - acid–base reactions 244–251
 - oxidation reactions 244, 251–256
 - photochemical reactions 245, 257–259
 - reduction reactions 244, 256–257
 - aromatic hydrocarbons 260–267
 - phenol 260–263
 - aryl carbonium ion dyes 271–275
 - diarylmethanes 271
 - malachite green (MG) 271–272
 - methylene blue (MB) 273
 - triphenylmethanes 271
- atmospheric pressure glow discharges (APGDs) 21
 - attrition milling 59
 - autothermal reforming 356
 - of liquid fuels 378–381
 - of methane 378
 - reforming with carbon dioxide and oxygen 381
- azo dyes 268–270

b
- background ionization 16
- bacterial inactivation, post-discharge phenomena in 327–330
 - temporal post-discharge reaction phenomenon 327
- ball-formed catalysts 68
- ball-milling-assisted hydrothermal synthesis 59
- barrier discharges 2–3
 - discharges at atmospheric pressure 2
bioelectrics 335–336
biofiltration, for VOCs removal 135
biological effects of electrical discharge plasma 309–337

– microbial inactivation by nonthermal plasma 310–317
– in water and in gas–liquid environments 309–337

Birkeland–Eyde process 207
branching, streamers 18–20
breakdown field 5
bubbles, plasma chemistry induced by discharge plasmas in 214–215
bulk ionization mechanisms 4–5

capillary impregnation 60
carbon dioxide dry reforming 369–373
– coupling to higher hydrocarbons 372
– of higher hydrocarbons 372–373
– of methane to syngas 369–372
carbon dioxide reforming (CDR) 357, 381
carbon nanotubes 74
carboxyl dyes 270–271
catalysis and plasma catalysis, comparison 160–161
catalysts forming 67–73
– ball-formed catalysts 68
– extrusion 70–72
– foams 72
– metal textile catalysts 73
– pelletization 69–70
– spherudizing 69
– tabletting 67–68
catalytic NOx remediation from lean model exhausts gases, NTP-assisted 112–123
– composite catalyst concept 117
– consumption of oxygenates and RNOx 112–114
– conversion of NOx and total HC versus temperature 112–113
– GC/MS analysis 113–114
– NTP advantages 114–117
– NTP reactor coupling with catalyst reactor for catalytic-assisted deNOx 116–117
catalytic processes 45–77, See also plasma-assisted catalytic processes
– oxidation, for VOCs removal 134
cathode directed streamers 13
chemical energy efficiency 360
chemical mechanisms of electrical discharge plasma 317–330
– interactions with bacteria in water 317–330
– bacterial structure 319–320
– peroxynitrite 325–327
– reactive nitrogen species 324–327
– reactive oxygen species 320–324
chemical processes induced by discharge plasma directly in water 217–224
– issues in 221–222
– plasma characteristics effect 222–224
– solution properties effect 222–224
– water dissociation by discharge plasma in water 217–221
chemical vapor infiltration (CVI) 64
Chick–Waston approach 316
cold atmospheric pressure (CAP) plasma 27
cold nonthermal discharge 4
colony forming unit (CFU) 311
combined heat powers (CHPs) 90

– DBD effect on methane oxidation in 106–107
complex package 61
composite catalyst concept 117–119
– propene-deNOx on ‘Al2O3 /// Rh–Pd/ Ce0.68Zr0.32O2 /// Ag/Ce0.68Zr0.32O2’ composite catalyst 118–119
– GC/MS analysis of gas compounds at the outlet of catalyst reactor 119
– NOx and C3H6 global conversion versus temperature 118–119
condensation, for VOCs removal 136
conventional solid state reaction 59
conversion 139
coprecipitation-impregnation 59, 61
coprecipitation method 57, 59
– coupled with reactive grinding 58
coprecipitation-sedimentation 61
corona discharges 137
corona streamer discharges 2–3
coronas 9–20
– applications 9–11
– continuous corona discharges 10
corona discharges 10
– occurrence 9–11
– positive-polarity-pulsed corona 11
– pulsed corona 11
d
deNOx reaction, plasma-assisted 90–96
– NTP-assisted deNOx reaction 95
– release of N2 90
– function F1 91
– function F2 90
– function F3 90, 93
– three-function catalyst model 90
– $T_{HC} = T_{NO}$ 92
density functional theory (DFT) 277
deposition by electroless plating 61
deposition–precipitation method 66
diarylmethanes 271
dichloroacetyl chloride (DCAC) 162
dielectric barrier discharges (DBDs) 4, 26–32, 89, 173, 353
– applications of 31–32
– basic geometries 26–28
– effect on methane oxidation 106–107
– main properties 29–30
diffusional impregnation 60
dimethylsulfoxide 277–279
discharge with water spray 314
discharges at atmospheric pressure 2
– barrier discharges 2–3
– corona streamer discharges 2–3
dry carbon dioxide reforming 357
dry gas plasma 311–313
dry mixing 61
electric field effects 335–336
electrical discharge plasma in gas–liquid environments and in liquids 185–224,
See also aqueous-phase chemistry of electrical discharge plasma
– in bubbles and foams 214–215
– chemical processes induced by discharge plasma directly in water 217–224,
See also individual entry
– electrode configurations 186
– elementary chemical phenomena in 185–224
– elementary physical phenomena in 185–224
– gas-phase chemistry with water molecules 201–210
– emission spectra 205
– hydroxyl radicals in 204–205
– optical emissions spectroscopy 205
– in gas phase with water vapor 188–189
– discharge in bubbles 191–192
– discharge with droplets and particles 192–193
– in gas–liquid systems 189–193
– point-to-plane discharge 191
– plasma–chemical reactions at gas–liquid interface 210–214
– plasma generation
– discharge over water 189–191
– in gas–liquid environments and liquids 188–199
– physical mechanisms 188–199
– plasma generation directly in liquids 193–199
– physical observations 198
– point-to-plane discharge 195–196
– thermal energy balance 197–199
– primary chemical species formation by discharge plasma in contact with water 199–217
– chemical species in gas phase with water vapor 199–210
– in water spray and aerosols 215–217
electrical discharge plasma in water and in gas–liquid environments 309–337
– biological effects of 309–337, See also under biological effects
electrical discharge plasma interactions with living matter 330–336
electron energy distributions 1–2
electroplating 62–64
electroporation 335
electrostatic precipitator (ESP) 10
electrosurgical plasmas 334–335
Eley–Rideal mechanism 284
embedded nanoparticles 62
extracorporeal shockwave lithotripsy (ESWL) 333
extrusion 70–72
– cylinders 71
– honeycombs 71
– miniliths 71
Fenton’s process 280–281, 285–286
flame hydrolysis 49–51
foams 72
– plasma chemistry induced by discharge plasmas in 214–215
fuel production efficiency 359
full width at half maximum (FWHM) pulses 98
fullerenes 74
gas discharge in bubbles 314
gas hourly space velocity (GHSV) 108, 356, 360–361
gas–liquid interface, plasma-chemical reactions at 210–214
– emissions spectroscopy of 212
– glow discharge electrolysis 211
– hydrogen peroxide formation 213
gas–liquid interface, plasma-chemical reactions at (contd.)
– laser-induced fluorescence (LIF) spectroscopy of 212
– reactions of ozone 213
gas to liquid hydrocarbon fuels (GTL) 355
gliding arc plasma reactor 376
gliding arcs 32–34

global warming 132
glow discharge plasma electrolysis 364
glow discharges at higher pressures 4, 20–26
– glow-to-spark transition 20
– high-pressure glow discharges 21
– instabilities 25–26
– low-pressure glow discharge 20
– properties 21–22
– spark/arc formation 20
– studies 22–25
– – DC glow 23
– – microglow discharges 23
– – microplasmas 24
– – nanosecond-pulsed discharges 25
– – Townsend mode 3
glycerol 377

H
Haber-Weiss process 282
heterocyclic aromatic hydrocarbons 265–267
homogeneous breakdown 14
Hül's process 358, 374–375
humid gas plasma 313
hybrid models 14
hydrocarbons, hydrogen and syngas production from 353–384
– autothermal reforming 356
– description and evaluation of the process 358–360
– dry carbon dioxide reforming 357
– energy balance 359–360
– efficiency 359–360
– energy requirement 359–360
– materials balance 358–359
– conversion 358–359
– selectivity 358–359
– yield 358–359
– partial oxidation (POX) 356–357
– plasma-assisted reforming 360–382
– autothermal reforming of liquid fuels 378–381
– autothermal reforming of methane 378
– carbon dioxide dry reforming 369–373
– combined processes 377–382
– partial oxidation 365–369
– plasma pyrolysis 373–377
– steam reforming 360–365
– pyrolysis 357–358
– steam reforming (SR) 355–356
hydrogen peroxide 254, 321–324
– OH radical attack on proteins 322
hydrogen production from hydrocarbons 353–384
– current state of 354–358
hydrogen radical 256–257
hydrothermal reactions 48, 51–53, 56, 59
hydroxyl radical 252–253, 320–321

I
ignition method 59
impact ionization 4–5
impregnation 59, 61, 66
– capillary 60
– diffusional 60
– incipient wetness impregnation 60
– wet impregnation 60
inception voltage 14
incipient wetness impregnation 60
initiation cloud 16–18
in-plasma catalysis (IPC) 97, 141, 171
interaction, streamers 18–20
intimate mixed oxides 56
iron 280–284
– catalytic cycle, in plasmachemical degradation of phenol 282–284

L
Langmuir–Hinshelwood (LH) model 179
late streamers 16–18
living matter, electrical discharge plasma interactions with 330–336
– electric field effects and bioelectrics 335–336
– physical mechanisms of 330–336
– shockwaves 332–334
– UV radiation 331–332
– x-ray emission 332
thermal effects and electro surgical plasmas 334–335
local field approximation 5
lumped resistor approach 22

M
malachite green (MG) 271–272
mechanical mixing 59, 61
membrane separation, for VOCs removal 136
metal catalysts 62–67
– preparation
 – via chemical vapor infiltration 64
 – via electroplating 62–64
 – embedded nanoparticles 62
 – metal wires 64–65
 – nanowires 65
 – supported metals 65–66
 – supported noble metals 66–67
metal-containing molecular sieves 53–55
metal oxides on metal foams and metal textiles 61–62
metal textile catalysts 73
metal wires 64–65
methane catalytic oxidation, NTPs in 105–112, See also under nonthermal plasmas (NTPs)
 – effect of catalyst composition 107–110
 – effect of support 107–108
 – effect of noble metals 108–109
 – palladium-based catalysts 108–109
 – platinum-based catalysts 109
 – influence of water in CHP conditions 109–110
 – coupled plasma–Pt(X)/Al2O3 or plasma–Pd(X)/Al2O3 110
 – influence of wet mixture on support 110
 – on palladium-based catalysts 110
 – on platinum-based catalysts 110
methanol 275–277
 – methanol pyrolysis 377
methylene blue (MB) 273–274
microbial inactivation by nonthermal plasma 310–317
 – by DBD plasma 312
 – by glow discharge plasma 312
 – by microwave plasma 311
 – dry gas plasma 311–313
 – gas plasma in contact with liquids 313–314
 – discharge over water and hydrated surfaces 313–314
 – discharge with water spray 314
 – gas discharge in bubbles 314
 – humid gas plasma 313
 – kinetics of 315–317
 – sterilization 316–317
 – viability tests 316–317
 – plasma directly in water 314–315
microdischarges 29, 96
microscopic discharge mechanisms 4–6
 – bulk ionization mechanisms 4–5
 – surface ionization mechanisms 6
microwave discharge 3
minimal streamers 17
mixed oxides, in catalysts preparation 56–59
 – intimate mixed oxides 56
 – perovskites 56–59
Monte Carlo model 14
moving boundary models 14
multi-walled nanotubes (MWCNTs) 75
n
N-acetylglycosamine (NAG) 319
N-acetylmuramic acid (NAM) 319
nanosecond pulsed DBD reactor coupled with a catalytic deNOx reactor 97–99
nanowires 65
neutralization 49
noble metal catalysts, in VOCs removal 140
nonequilibrium plasmas at atmospheric pressure 1–34, See also microscopic discharge mechanisms
 – barrier discharges 2, See also coronas; streamers
 – chemical activity 6–8
 – ozone production 6–7
 – cold nonthermal discharge 4
 – corona streamer discharges 2
 – diagnostics 8–9
 – nitrogen-containing discharges 9
 – optical emission spectroscopy 9
 – electron energy distributions 1–2
 – gliding arcs 32–34
 – glow discharges at higher pressures 20–26, See also individual entry
 – nonthermal plasmas 1–2, See also nonthermal discharges
 – barrier discharges 2
 – chemical activity 6–8
 – ozone production 6–7
 – cold nonthermal discharge 4
 – corona streamer discharges 2
 – diagnostics 8–9
 – nitrogen-containing discharges 9
 – optical emission spectroscopy 9
 – glow discharges 4
 – microwave discharge 3
 – Townsend discharge 4
 – transient discharges 3
 – transition to sparks, arcs, or leaders 4
 – nonthermal plasmas (NTPs) 89, 137–139
 – catalytic NOx remediation from lean model exhausts gases 112–123, See also individual entry
 – chemistry 100–102
 – for environmental applications 89
Index

nonthermal plasmas (NTPs) (contd.)
– kinetics 100–102
– methane catalytic oxidation on alumina-supported noble metal catalysts 105–112
– DBD effect in CHP conditions 106–107
– effect of catalyst composition 107–110
– effect of dielectric material 106
– effect of water 106
– microbial inactivation by 310–317
– NO\textsubscript{x} remediation 89–90, 96–105
– nanosecond pulsed DBD reactor coupled with a catalytic deNO\textsubscript{x} reactor 97–99
– UHCs presence, importance 96–97
– NTP assisted catalytic deNO\textsubscript{x} reaction in presence of multireductant feed 119–123
– conversion of NO\textsubscript{x} and global HC versus temperature 119–120
– GC/MS analysis 120–123
– NTP-assisted deNO\textsubscript{x} reaction 95
– plasma energy deposition and energy cost 102–105
NO\textsubscript{x} abatement by plasma catalysis 89–125
– general deNO\textsubscript{x} model over supported metal cations 90–96, See also deNO\textsubscript{x} reaction, plasma-assisted
– nonthermal plasma-assisted catalytic NO\textsubscript{x} remediation 89–90, See also nonthermal plasmas (NTPs)

o
organic dyes 267–275
– aryl carbonium ion dyes 271–275
– azo dyes 268–270
– carbonyl dyes 270–271
oxidation reactions 251–256
– hydrogen peroxide 254
– hydroxyl radical 252–253
– organic radicals 253
– ozone 253–254
– peroxynitrite 255–256
oxides and oxide supports, in catalysts preparation 49–52, See also alumina (Al\textsubscript{2}O\textsubscript{3}); silica (SiO\textsubscript{2}); titanium dioxide (TiO\textsubscript{2}); zirconium oxide (ZrO\textsubscript{2}) oxygen, reforming with 381
ozone 253–254

P
packed-bed discharges 30–31, 138
palladium-based catalysts 108–109
partial oxidation (POX) 356–357, 365–369
– conversion of higher hydrocarbons 367–369
– conversion of methane 365–367
pelletization 69–70
perhydroxyl radical (HO••) 257
perovskites 56–59
– attrition milling 59
– conventional solid state reaction 59
– coprecipitation 57, 59
– coupled with reactive grinding 58
– hydrothermal synthesis 59
– ball-milling-assisted 59
– ignition method 59
– reactive grinding of single oxides 58
– sol–gel route 57
– solid state reaction of mixed oxides 57
– sol–precipitation method 59
– spray pyrolysis 57
peroxone process 254
peroxynitrite 255–256, 325–327
– reactivity with lipids 326
phenol 260–263
– nitration of 263
– nitrination of 263
– nitrosation of 263
– OH• radical attack on phenol ring 261
– ozone radical attack on phenol ring 261
photocatalysis, for VOCs removal 134
photochemical reactions 245, 257–259
– photolysis of ozone 258
– use of UV radiation 258
photochemical smog 132
photo-Fenton reaction 282
photoinitization 15–16
placed postplasma (PPC) 97
plasma-activated water (PAW) 327
plasma-assisted catalytic processes 45–77, See also catalysts forming: metal catalysts
– activation 45–77
– catalysts preparation methodologies 49–67
– active oxides 55–56
– mixed oxides 56–59
– oxides and oxide supports 49–52
– supported oxides 59–62
– zeolites 52–55
– chemical composition and texture 47–48
– hydrothermal syntheses 48
– precipitation 48
– template-assisted syntheses 48
– elements used 48
– features generated by 46–47
– plasma discharge, catalysts changes generated by 46–47
– preparation 45–77
– regeneration 45–77
Index

– – of catalysts 73
– single-stage plasma catalysis reactor 47
– sputtering processing 47
– VOC removal from air by 131–165, See also volatile organic compounds (VOCs)
plasma bullets 28
plasma display panel (PDP) 27
plasma-driven catalysis (PDC) 141
plasma produced catalysts and supports 74–76
– sputtering 76
plasma pyrolysis 373–377
– acetylene production 374–377
– methane pyrolysis to hydrogen and carbon 373–374
– pyrolysis of oxygenates 377
plasmachemical decontamination of water 259–279
– aromatic hydrocarbons 260–267
– – heterocyclic 265–267
– – phenol 260–263
– – polycyclic 265–267
– – substituted 263–265
plasmajet 3
platinum 284–286
– as catalyst in Fenton’s reaction 285–286
platinum-based catalysts 109
polychlorinated biphenyl (PCB) compound 266
polycyclic aromatic hydrocarbons 265–267
positive-polarity-pulsed corona 11
positive streamer propagation 15–16
– background ionization 16
– electron sources for 15–16
– photoionization 15–16
post-discharge phenomena in bacterial inactivation 327–330
postplasma catalysis configuration (PPC) 97, 171
precipitation 48, 50
primary streamers 16–18
pulsed corona 11
pyrogenic titania 52
pyrolysis 357–358, See also plasma pyrolysis
– of oxygenates 377
r
Raether–Meek criterion 14
reactive grinding 58
reactive nitrogen species (RNS) 310, 324–327
reactive oxygen species (ROS) 310, 320–324
– hydrogen peroxide 321–324
– hydroxyl radical 320–321
– reduction reactions 244, 256–257
– hydrogen radical 256–257
– perhydroxy/superoxide radical 257
s
secondary streamers 16–18
– physical mechanism of 18
selective catalytic reduction (SCR) 89
separate package 61
shockwaves 332–334
silica (SiO2), in catalysts preparation 50–51
– flame hydrolysis 50–51
– hydrothermal reactions 51
– precipitation 50
– sol–gel methodology 50
– sol–gel processes 50
silica gel 291
silicalite 51
silicon-aluminum phosphate (SAPO) 53
single-stage plasma catalysis reactor 47
single-stage plasma-catalytic systems 141–150
– acetone 143
– benzene 144–145
– dichloromethane 144
– formaldehyde 143
– isopropanol 143
– noble metal catalysts 147–148
– phenol 145
– propane 143
– TiO2 147
– toluene 145–146
– transition metal oxides 148
– trichloroethylene 144
– and two-stage plasma catalysis, comparison, 161–162
single-walled nanotubes (SWCNTs), 75
sol–gel processes 50, 57, 59
sol-precipitation method 59
specific input energy (SIE) 139
spherudizing 69
spray pyrolysis 49, 57
sputtering 76
steam reforming (SR) 355–356, 360–365
– conversion of higher hydrocarbons 362–363
– conversion of methane 360–362
– conversion of oxygenates 363–365
– microwave plasma 363
– toluene 363
sterilization 316–317
streamers 9–20
– applications 9–11
streamers (contd.)
- gas and water cleaning 10
- ozone generation 10
- particle charging 10
- branching 18–20
- homogeneous breakdown 14
- initiation 14
- initiation cloud 16–18
- interaction 18–20
- late streamers 16–18
- negative streamers 12–13
- occurrence 9–11
- positive streamers 12
- primary streamers 16–18
- propagation 15–16, See also positive streamer propagation
- properties 11–14
- hybrid models 14
- Monte Carlo model 14
- moving boundary models 14
- secondary streamers 16–18
substituted aromatic hydrocarbons 263–265
superoxide radical 257
supported metals 65–66
supported noble metals 66–67
- deposition–precipitation method 66
- impregnation 66
supported oxides, in catalysts preparation 59–62
- complex package 61
- coprecipitation 59–60
- coprecipitation-impregnation 59, 61
- coprecipitation-sedimentation 61
- dry mixing 61
- impregnation 59
- mechanical mixing 59, 61
- metal oxides on metal foams and metal textiles 61–62
- separate package 61
- sol–gel 59
- wet mixing 61
surface discharge 26–32
- basic geometries 26–28
- main properties 29–30
- and packed beds 30–31
surface ionization mechanisms 6
syngas production from hydrocarbons 353–384
tableting 67–68
technical scale plasma reactor 370
temperature-programmed desorption (TPD) 90
template-assisted syntheses 48
temporal post-discharge reaction
phenomenon 327
tetranitromethane (TNM) 256, 279
thermal activation 177–178
thermal oxidation, for VOCs removal 133–134
thermal treatment, transition alumina synthesis by 49
three-function catalyst model 89–91
titanium dioxide (TiO₂) 51–52, 288–290
Townsend discharge 4
Townsend impact ionization coefficient 5
transient discharges 3
transition metal oxides, in VOCs removal 140
trichloroacetaldehyde (TCAA) 162
triphenylmethanes 271
tungsten 286–288
two-stage plasma-catalytic systems 141–142, 150–153
- adsorbent materials 153
- benzene 151
- butyl acetate 151
- cyclohexane 151
- dichloromethane 151
- ozone role 150
- propane 151
- toluene 151–152
- transition metal oxides 150
- trichloroethylene 151
unburned hydrocarbons (UHCs) 89, 96–97
UV radiation 331–332
viability tests 316–317
volatile organic compounds (VOCs) 131–165
- decomposition in plasma-catalytic systems 142–164
- - catalyst loading effect 157–159
- - chemical structure, effect of 154
- - experimental conditions, effect of 155–159
- - humidity effect 155–156
- - inorganic by-products 163–164
- - organic by-products 162–163
- - oxygen partial pressure effect 156–157
- - plasma catalysis and adsorption combination 159–160
- - reaction by-products 162–164
- - single-stage plasma-catalytic systems 142–150, See also individual entry
– VOC initial concentration, effect of 155
– emission in atmosphere, sources 131
– anthropogenic 131
– biogenic 131
– environmental problems related to 132–133
– global warming 132
– photochemical smog 132
– health problems related to 132–133
– chronic effects 132
– eye and respiratory tract irritation 132
– plasma-catalytic hybrid systems for VOC decomposition 137–142
– catalysts types 140–141
– corona discharges 137
– noble metal catalysts 140
– nonthermal plasma reactors 137–139
– packed-bed discharges 138
– process selectivity considerations 139
– single-stage plasma-catalytic systems 141
– transition metal oxides 140
– two-stage plasma-catalytic systems 141–142, 150–153, See also individual entry
– removal from air by plasma-assisted catalysis 131–165, 171–180
– adsorption 175–177
– catalyst influence in plasma processes 172–174
– catalyst properties 174–175
– interactions between plasma and catalysts 171–180
– mechanisms 171–180
– physical properties of discharge 172–174
– plasma influence on catalytic processes 174–177
– plasma–catalyst combinations 172
– plasma-catalytic mechanisms 179–180
– plasma-mediated activation of photocatalysts 178–179
– reactive species production 174
– thermal activation 177–178
– removal techniques 133–137
– adsorption 135
– biofiltration 135
– catalytic oxidation 134
– condensation 136
– membrane separation 136
– photocatalysis 134
– thermal oxidation 133–134

w
water gas shift (WGS) reaction 355
water spray, plasma chemistry induced by discharge plasmas in 215–217
wet impregnation 60
wet mixing 61
wetness impregnation 62

x
x-ray emission 332

Z
Zeldovich mechanism 207
zeolites 291–292
– in catalysts preparation 52–55
– hydrothermal method 53
– hydrothermal synthesis 52
– metal-containing molecular sieves 53–55
– structure of 54–55
zirconium oxide (ZrO2), in catalysts preparation 52
– flame hydrolysis 52
– precipitating agents 52