Index

abiotic resources consumption 214, 220
– impact indicators 214–215
– indicator model and characterisation factors 215–220
acceptable daily intake (ADI) 272
acidification 208, 254–256
– characterisation/quantification 257–258
– impact indicator and characterisation factors 256–257
– potential (AP) 297, 303
– regionalisation 259–261
AFNOR (Association Française de Normalisation, France) 14
APME (Association of Plastic Manufacturers in Europe) 130
aquatic eutrophication 261–262
Association of Carton Packaging for liquid foods (FKN) 47, 49, 50
Austrian Ministry of Life 359
avoided burden approach 104

basket of benefit method 42
beverage cartons 138, 140, 141, 149–150
– comparison with PET bottle (juice, storage) 343–344
biochemical oxygen demand (BOD) 262, 265, 266
biotic resources consumption 222–224
black box method 29
Boustead Model (UK) 131
BUWAL (Swiss Federal Office for Environment, Forest and Landscape) 129, 136, 271

carbon footprint 238–239
casualties 289–290

chemical oxygen demand (COD) 203, 262, 265, 266
Cleaner Production (Elsevier) 131
climate change 234–235
– carbon footprint 238–239
– characterisation 237–238
– greenhouse effect 235–236
– impact indicator and characterisation factors 236–237
closed loop recycling 34, 70
– allocation and recycling 105–107
Comité Européen de Normalisation (CEN) 14
comparative analysis 337
contribution analysis 335, 336
goals and allocation
– approaches 101–102
– definition 92–93
– fair allocation 93–94
– allocation per mass 94–96
– system expansion 96–98
– proposed solutions 98–101
– system expansion 102–104, 105
goals and allocation
– co-products 33–34, 70
critical review 46–47, 57
critical volumes method 183–184
– criticism 185 186–187
– interpretation 184–185

crude oil equivalence factor (ROE) 298–300
CSA (Canadian Standards Association, Canada) 14
cumulative energy demand (CED) 8, 38, 39, 87, 182, 298, 301, 345
– balancing boundaries 79–80, 81
– definition 77
– exergy demand 220–222
– partial amounts 77–79

Walter Klöpffer and Birgit Grahl.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

d
data availability and depth of study 43–44, 55–56
data collection template 66
diamond paradox 100
DIN-NAGUS 1, 12, 16
disability adjusted lost life years (DALYs) 277, 278, 288
discernability analysis 337–338
distance-to-target criterion 198
dominance analysis 336
down cycling 113
Dual System Germany (DSD) 118, 140, 141, 142

e
ecoinvent (CH) 131, 132
ecological endangering 198
ECOSOL (European LCI Surfactant Study Group) 130
ecotoxicity 209
– chemicals and environment 280–282
– persistence and distribution inclusion to quantification 283–285
– protected objects 279, 280
– quantification without relation to exposure 282–283
electricity mix 85, 86
end-of-life (EOL) phase 113
enthalpy 82
environmental increments (EIs) 291
Eurostat 86
EUSES (European Union System for the Evaluation of Substances) 277
eutrophication 261
– aquatic eutrophication 261–262
– characterisation/quantification 267
– indicator and characterisation factor 263–267
– potential (EP) 296–297, 303
– regionalisation 267–268
– terrestrial eutrophication 267

f
flow-pulse problem 276
fossil fuels scarcity 298–300
fresh water use 224–227
fuels and biomass 80
functional unit
– example 40
– impairment factors on comparison and non-negligible added value 40–41
– reference flow 37–39, 55

g
GaBi (University of Stuttgart and PE International, DE) 132
GEMIS (total release model of integrated systems) 130, 131
generic data sets 45
geographical system boundary 34, 35, 54
German Federal Environment Agency (Umweltbundesamt, UBA) 10, 46, 89, 197, 198, 199, 201, 203, 289, 298–299, 311
goal definition 27–28
greenhouse effect 208, 211, 235–236, 290, 294
– and global warming potential (GWP) 294–295, 302

h
hemerobic level approach 227–229
higher heating value (HHV) 82, 83
human toxicity
– harmonised LCIA toxicity model 277, 278–279
– problem definition 269–270
– simple weighting using occupational exposure limit and indicative values 270–273
– supplementary exposure estimation characterisation 273–277
hydropower 80

i
IMPACT2002+ 269
impact assessment type 44–45, 56–57
flammable materials energy content
– fossil fuels 81
– infrastructure 84–85
– quantification 81–84
input-related impact categories 212–214
– abiotic resources consumption 214, 220
– impact indicators 214–215
– indicator model and characterisation factors 215–220
– biotic resources consumption 222–224
– cumulative energy and exergy demand 220–222
– fresh water use 224–227
– land use 227
– advanced concepts 231–233
– characterisation using hemerobic level concept 229–231
Index

393

Institute for Energy and Environmental Research (IFEU Heidelberg) 47, 347

Integrated Environmental Assessment and Management (IEAM) 131

International Energy Agency (IEA) 85

International Institute for Applied Systems Analysis (IIASA) 8

International Journal of Life Cycle Assessment 17, 18, 131, 135

ISO 14043 330

ISO 14046 226

ISO 14048 134

ISO 14071 343

Journal of Industrial Ecology (Wiley) 131

land use 227

– advanced concepts 231–233
– characterisation using hemerobic level concept 229–231

life cycle assessment (LCA). See also individual entries

– component interpretation illustration using practice example 343
– comparison based on impact indicator results 343–344
– comparison based on normalisation results 344
– completeness, consistency, and data quality 346
– critical review 351–352
– differences significance 347–348
– recommendations 351
– restrictions 350–351

– hemerobic level approach 227–229

– sectoral analysis 344–346

– sensitivity analyses 348–350

– critical review 340–342

– outlook 342–343

– definition and limitations 1, 2

– early applications according to ISO 14040 13

– functional unit 3

– history

– 1980s 8, 9

– early stages 6–7

– energy analysis 8

– environmental policy background 7–8

– SETAC 9–10

– interpretation phase

– development and rank 329–330

– evaluation 333–334

– ISO 14040 331

– ISO 14044 331–332

– significant issues identification 332–333

– literature and information 17–18

– operational input–output analysis (gate-to-gate) 5–6

– product life cycle 2–3

– reporting 338–340

– result analysis techniques

– mathematical methods 335, 336–338

– non-numerical methods 338

– scientific background 334–335

– standardisation

– formation process 14–16

– status quo 16–17

– structure

– according to ISO 11–12

– according to SETAC 10–11

– valuation 12, 14

– as system analysis 4–5

life cycle based sustainability assessment (LCSA) 365

life cycle impact assessment (LCIA)

– basic principles 181–183

– critical volumes method 183–184

– criticism 185, 186–187

– interpretation 184–185

– environmental problem fields 201–202

– historical list 202–206

– stressor-effect relationships and indicators 206–212

– impact categories, impact indicators, and characterisation factors 212

– accidents and radioactivity 289–291

– input-related impact categories 212–233

– nuisances by chemical and physical emissions 286–289

j

Journal of Industrial Ecology (Wiley) 131

I

land use 227

– advanced concepts 231–233
– characterisation using hemerobic level concept 229–229

life cycle assessment (LCA). See also individual entries

– component interpretation illustration using practice example 343
– comparison based on impact indicator results 343–344
– comparison based on normalisation results 344
– completeness, consistency, and data quality 346
– critical review 351–352
– differences significance 347–348
– recommendations 351
– restrictions 350–351

– hemerobic level approach 227–229

– sectoral analysis 344–346

– sensitivity analyses 348–350

– critical review 340–342

– outlook 342–343

– definition and limitations 1, 2

– early applications according to ISO 14040 13

– functional unit 3

– history

– 1980s 8, 9

– early stages 6–7

– energy analysis 8

– environmental policy background 7–8

– SETAC 9–10

– interpretation phase

– development and rank 329–330

– evaluation 333–334

– ISO 14040 331

– ISO 14044 331–332

– significant issues identification 332–333

– literature and information 17–18

– operational input–output analysis (gate-to-gate) 5–6

– product life cycle 2–3

– reporting 338–340

– result analysis techniques

– mathematical methods 335, 336–338

– non-numerical methods 338

– scientific background 334–335

– standardisation

– formation process 14–16

– status quo 16–17

– structure

– according to ISO 11–12

– according to SETAC 10–11

– valuation 12, 14

– as system analysis 4–5

life cycle based sustainability assessment (LCSA) 365

life cycle impact assessment (LCIA)

– basic principles 181–183

– critical volumes method 183–184

– criticism 185, 186–187

– interpretation 184–185

– environmental problem fields 201–202

– historical list 202–206

– stressor-effect relationships and indicators 206–212

– impact categories, impact indicators, and characterisation factors 212

– accidents and radioactivity 289–291

– input-related impact categories 212–233

– nuisances by chemical and physical emissions 286–289
life cycle impact assessment (LCIA) (contd.)
– – output-based impact categories (global and regional impacts) 233–268
– – toxicity-related impact categories 268–286
– phase impact assessment illustration by practical example 291–293
– – characterisation 300–305
– – classification 300
– – grouping 310–311
– – impact categories selection 293–300
– – normalisation 305–310
– – weighting 311
– structure according to ISO 14040 and 14044
– – mandatory elements 187–192
– – optionalelements 187, 192–201
life cycle inventory (LCI) 10, 29, 30, 35, 41, 43, 44, 45, 46, 55
– allocation 117–118
– – by co-production example 92–104, 105
– – fundamentals 92
– – recycling for open-loop recycling 107–113
– – recycling in closed-loops and reuse 105–107
– – rules definition on process level 153, 156–157
– – rules definition on system level for open-loop recycling 157
– – within waste-LCAs 113–117
– calculation 158–159
– – input 159–161
– – output 162–170
– data aggregation and units 134, 135, 136
– data estimations 132, 133
– data procurement 119–127
– – preparation and system flow chart refining 118–119
– data quality and documentation 133–134
– energy analysis 74–77
– – cumulative energy demand (CED) 77–81
– – electricity supply 85–87
– – inflammable materials energy content 81–85
– – transports 88–91
– flow charts 69–72
– generic data 127–129
– – purchasable databases and software systems 131–132
– – reports, publications, and web sites 129–131
– literature on fundamentals 64–65
– phase illustration by example 137–138
– – allocation 153, 156–157
-- – collection and sorting of used packaging 148–149
-- – differentiated system flow chart with reference flows 153
-- – distribution 148
-- – electricity supply 152–153
-- – examined product systems differentiated description 138–143
-- – production by materials 146–148
-- – production procedures of materials 143–146
-- – recovery technologies (recycling) 149–151
-- – system modelling 157–158
-- – transportation by truck 152
-- – transport packaging recycling 151
-- – reference values 72–74
-- – results presentation 136
-- – scientific principles 63–64
-- – studies 7
-- – unit process as smallest cell
-- – balancing 67–68
-- – integration into system flow chart 65–67
life cycle working time (LCWT) 367
life support function (LSF) 232
lower heating value (LHV) 81, 82, 83

m
Mackay model 276
Mass Intensity per Service Unit (MIPS) 136
material flow analysis (MFA) 73–74
maximum incremental reactivity (MIR) 249, 251–252
maximum working site concentration (MAK) 270, 271, 272
multi-input processes 156–157
multi-output processes 153, 156

n
noise 287–289
non-negligible added value
– impairment factors on comparison 40–41
– procedure 41–42
nuclear energy 80
nuisances by chemical and physical emissions 286
– noise 287–289
– smell 286–287

o
open loop recycling 34, 70
– allocation and recycling
– – allocation per equal parts 109–111
Index

– cut-off rule 111–113
– overall load to system B 113
– problem definition 107–109
– allocation rules definition on system level 117

Open Source Software 134
output-based impact categories (global and regional impacts) 233–234
– acidification 254–256
– characterisation/quantification 257–258
– impact indicator and characterisation factors 256–257
– regionalisation 259–261
– climate change 234–235
– carbon footprint 238–239
– characterisation 237–238
– greenhouse effect 235–236
– impact indicator and characterisation factors 236–237
– eutrophication 261
– aquatic eutrophication 261–262
– characterisation/quantification 267
– indicator and characterisation factor 263–267
– regionalisation 267–268
– terrestrial eutrophication 267
– photo oxidants formation (summer smog) 246–248
– characterisation/quantification 252
– impact indicator regionalisation 252–253
– indicators and characterisation factors 249–252
– stratospheric ozone depletion 240–241
– causing substances 241
– characterisation 245–246
– impact indicator and characterisation factors 242–245
– ozone hole and legal measures 241–242

ozone depletion potential (ODP) 193, 243–245

ozone hole and legal measures 241–242

– impact indicator regionalisation 252–253
– indicators and characterisation factors 249–252
– photo voltaic energy 80
potentia l environmental impact 183
practice example and definition of goal and scope illustration 47–48
– goal definition 48–50
– scope 50–57
ProBas (process orientated base data for environmental management instruments) 130
Product Sustainability Assessment (PROSA) 359
product systems 28–29, 50–53
product tree 28
pseudo improvement, by outsourcing 5–6

r
radioactivity 290–291
RAINS (regional air pollution information and simulation) model 252, 253, 260
relative toxicity scale 271
resident equivalents (REQs) 195–197, 305, 308, 309, 310
Resource and Environmental Profile Analysis (REPA) 7
resource demand 298
– energy resources 298–300
– land use 300

s
sectoral analysis. See contribution analysis
SimaPro (Pré Consultants, NL) 132, 200
smell 286–287
Society of Environmental Toxicology and Chemistry (SETAC) 1, 9–11, 32, 45, 46, 202, 203, 207, 213, 223, 252, 262, 269, 274, 275, 329, 335, 357, 359, 361, 364, 365
– Code of Practice 12, 329
soil organic carbon (SOC) 232
SPINE (Swedish data format) 134
SPOLD (Society for the Promotion of LCA Development) 131, 133, 134
stratospheric ozone depletion 240–241
– causing substances 241
– characterisation 245–246
– impact indicator and characterisation factors 242–245
– ozone hole and legal measures 241–242
– stressor-effect relationship and indicators 206
– impacts hierarchy 207–209
– potential versus actual impacts 209–212

p
perturbation analysis 336
PET bottle 139–140, 141–142, 143, 147, 150–151
– comparison with beverage cartons 343–344
photochemical ozone creation potential (POCP) 249–251, 252, 253, 295–296, 302
photo oxidants formation 246–248, 295–296
– characterisation/quantification 252

Index | 395
sustainability 357–358
 – dimensions 358–360
 – life cycle assessment options 368–370
 – state of the art of methods
 – – life cycle assessment 361–364
 – – life cycle costing (LCC) 364–366
 – – product-related social life cycle assessment (SCLA) 366–368
system boundaries 4, 5, 6, 32

technical system boundary
 – cut-off criteria 29, 30, 31, 32, 53
 – demarcation towards system surrounding 32–33, 53–54
 – – co-products 33–34
 – – secondary raw material 34
temporal system boundary 55
 – and time horizon 35–36
terrestrial eutrophication 267
toxicity-related impact categories 268–269, 285–286
 – ecotoxicity
 – – chemicals and environment 280–282
 – – persistence and distribution inclusion to quantification 283–285
 – – protected objects 279, 280
 – – quantification without relation to exposure 282–283
 – human toxicity
 – – harmonised LCIA toxicity model 277, 278–279
 – – problem definition 269–270
 – – simple weighting using occupational exposure limit and indicative values 270–273
 – – supplementary exposure estimation characterisation 273–277
transportation processes for distribution 157
Transport Emission Model (TREMOD) 90
trippage rate (TR) 105–106

Umberto (Ifu, DE) 132
uncertainty analysis 336–337
Union for the Coordination of Transmission of Electricity (UCTE) 85
unit-world-box model 276
USES Dutch model 276–277
USEtox model 278, 279, 284–285

valuation (weighting), assumptions and value 45–46

waste disposal
 – options, comparison 116–117
 – of product, modelling 114–116
wind power 80
World Business Council for Sustainable Development (WBCSD) 238
World Resources Institute (WRI) 238