Index

A
adsorption, 115–128

C
capillary
 pressure, 8, 14, 22, 28, 193, 194
 fracturing, 13-15
caprock flexure, 77
carbonation, 183–191
cement
 cement paste, 163-180, 182, 191, 194, 197, 202, 204, 215
 petroleum, 163, 169, 172, 179
 cementitious material, 182
chemo-mechanical coupling, 137, 148
crystallization, 226

D, F
dissolution, 135–159
failure, 43, 55, 61, 84, 169, 177
 capillary, 4, 12
 criterion, 84
 mechanism, 3, 5
 mechanical, 4, 6
 shearing, 172
fault, 43, 55, 61, 84, 169, 177
 reactivation, 60, 95
field experiment, 23–25, 34
fracturing,
 capillary, 13-15
 electrical shock, 44, 51, 55
 hydraulic, 44
 micro-, 14, 32, 33, 38
 rock, 59-61
 tensile, 4
 thermal, 4, 6

G, H
gas
 flow, 8, 13, 21-23, 26, 32, 38
 injection, 21-26, 29-32, 35-39
 steady flow rates
homogenization, 135–158
hydro-mechanical coupling, 146, 148, 152
Geomechanics in CO₂ Storage Facilities

I
injection
 pressure, 60, 66, 68, 84, 85, 223
 well, 210, 214, 222, 227
injectivity, 115, 116, 127, 128, 129
integrity, 3–14, 209–226
interfacial tension, 4

J, L
joint shear strength, 96, 107, 108, 112, 136
leaching, 43, 97, 112, 163–169, 173, 174, 187, 197, 198, 202, 218, 224
leakage, 85–90

M, N, P
mercury intrusion, 8, 43, 53
non-local damage, 59
permeability
 Darcy’s law, 27, 45, 46, 49, 51, 55, 85, 193, 194, 218
 Poiseuille’s law, 45, 46, 49, 55
poromechanics, 128, 209–212
pore size distribution (PSD), 43-48, 52-55
precipitation, 96, 135, 182, 187, 190, 197, 210-218, 227

R
reactive transport, 182, 204, 209, 210, 215, 222
rock
 seal, 3-5, 9, 12-15
 reservoir, 214
roughness, 95–112

S
saturation, 8, 11, 28, 30–36, 193, 194, 196, 212, 213
security
 geologic storage, 85
simulations
 molecular, 116, 122-129
 Monte Carlo, 122, 127, 129
swelling, 34, 116–118, 122, 125–127

T
thermo-hydro-chemo-mechanical coupling, 64, 137, 146, 148, 152
transport equation, 194, 204

U, W
upscaling, 43–55
Weibull model, 59, 61