Contents

List of Figures xvi
List of Tables xvii
List of Algorithms xviii
Preface xix

1 Introduction 1
 1.1 Anatomy of Computer Games 4
 1.2 Game Development 5
 1.2.1 Phases of development 7
 1.2.2 Documentation 8
 1.2.3 Other considerations 9
 1.3 Synthetic Players 10
 1.3.1 Humanness 11
 1.3.2 Stance 12
 1.4 Multiplaying 12
 1.5 Interactive Storytelling 13
 1.5.1 Approaches 14
 1.5.2 Storytelling in games 15
 1.6 Outline of the Book 17
 1.6.1 Algorithms 17
 1.6.2 Networking 18
 1.7 Summary 18
 Exercises 19

Part I Algorithms 23

2 Random Numbers 25
 2.1 Linear Congruential Method 26
 2.1.1 Choice of parameters 29
 2.1.2 Testing the randomness 30
 2.1.3 Using the generators 31
 2.2 Discrete Finite Distributions 33
 2.3 Random Shuffling 38
 2.4 Summary 41
 Exercises 41
Contents

3 Noise
- 3.1 Applying Noise 47
- 3.2 Origin of Noise 49
- 3.3 Visualization 51
- 3.4 Interpolation 52
- 3.4.1 Utility routines for value conversions 53
- 3.4.2 Interpolation in a single parameter 56
- 3.4.3 Interpolation in two parameters 58
- 3.5 Composition of Noise 60
- 3.6 Periodic Noise 62
- 3.7 Perlin Noise 63
- 3.8 Worley Noise 68
- 3.9 Summary 76

Exercises 76

4 Procedural Generation
- 4.1 Terrain Generation 82
- 4.2 Maze Algorithms 88
- 4.2.1 Depth-first algorithm 91
- 4.2.2 Randomized Kruskal's algorithm 91
- 4.2.3 Randomized Prim's algorithm 93
- 4.3 L-Systems 93
- 4.3.1 Examples 95
- 4.3.2 City generation 96
- 4.4 Hierarchical Universe Generation 99
- 4.5 Summary 101

Exercises 102

5 Tournaments
- 5.1 Rank Adjustment Tournaments 107
- 5.2 Elimination Tournaments 112
- 5.3 Scoring Tournaments 119
- 5.4 Summary 122

Exercises 125

6 Game Trees
- 6.1 Minimax 130
- 6.1.1 Analysis 132
- 6.1.2 Partial minimax 134
- 6.2 Alpha-Beta Pruning 137
- 6.2.1 Analysis 139
- 6.2.2 Principal variation search 140
- 6.3 Monte Carlo Tree Search 142
- 6.4 Games of Chance 149
- 6.5 Summary 153

Exercises 153
7 Path Finding 159
7.1 Discretization of the Game World 160
7.1.1 Grid 160
7.1.2 Navigation mesh 162
7.2 Finding the Minimum Path 164
7.2.1 Evaluation function 165
7.2.2 Properties 165
7.2.3 Algorithm A* 167
7.3 Realizing the Movement 169
7.4 Summary 171
Exercises 171

8 Group Movement 175
8.1 Flocking 175
8.2 Formations 180
8.2.1 Coordinating formations 181
8.2.2 Behaviour-based steering 183
8.2.3 Fuzzy logic control 184
8.2.4 Mass–spring systems 186
8.3 Summary 187
Exercises 187

9 Decision-Making 189
9.1 Background 189
9.1.1 Levels of decision-making 190
9.1.2 Modelled knowledge 191
9.1.3 Methods 192
9.2 Finite State Machines 196
9.2.1 Computational FSM 198
9.2.2 Mealy and Moore machines 202
9.2.3 Implementation 203
9.2.4 Discussion 205
9.3 Influence Maps 208
9.4 Automated Planning 210
9.5 Summary 214
Exercises 215

10 Modelling Uncertainty 221
10.1 Statistical Reasoning 221
10.1.1 Bayes’ theorem 221
10.1.2 Bayesian networks 223
10.1.3 Dempster–Shafer theory 224
10.2 Fuzzy Sets 227
10.2.1 Membership function 228
10.2.2 Fuzzy operations 229
10.2.3 Defuzzification 231
10.3 Fuzzy Constraint Satisfaction Problem 231
Contents

10.3.1 Modelling the criteria as fuzzy sets 233
10.3.2 Weighting the importance of criteria 235
10.3.3 Aggregating the criteria 235
10.3.4 Making a decision 236
10.4 Summary 238
Exercises 238

Part II Networking 241

11 Communication Layers 243
11.1 Physical Platform 244
11.1.1 Resource limitations 245
11.1.2 Transmission techniques and protocols 246
11.2 Logical Platform 247
11.2.1 Communication architecture 247
11.2.2 Data and control architecture 249
11.3 Networked Application 250
11.4 Summary 251
Exercises 252

12 Compensating Resource Limitations 255
12.1 Aspects of Compensation 256
12.1.1 Consistency and responsiveness 256
12.1.2 Scalability 258
12.2 Protocol Optimization 262
12.2.1 Message compression 262
12.2.2 Message aggregation 263
12.3 Dead Reckoning 263
12.3.1 Prediction 264
12.3.2 Convergence 266
12.4 Local Perception Filters 268
12.4.1 Linear temporal contour 271
12.4.2 Adding bullet time to the delays 275
12.5 Synchronized Simulation 277
12.6 Interest Management 279
12.6.1 Aura-based interest management 279
12.6.2 Zone-based interest management 280
12.6.3 Visibility-based interest management 280
12.6.4 Class-based interest management 281
12.7 Compensation by Game Design 282
12.7.1 Short active turns 283
12.7.2 Semi-autonomous avatars 284
12.7.3 Interaction via proxies 284
12.8 Summary 285
Exercises 286
Contents

13 Cheating Prevention 289
 13.1 Technical Exploitations 290
 13.1.1 Packet tampering 291
 13.1.2 Look-ahead cheating 292
 13.1.3 Cracking and other attacks 297
 13.2 Collusion 298
 13.2.1 Classification 299
 13.2.2 Collusion detection 301
 13.3 Rule Violations 303
 13.4 Summary 304
 Exercises 304

14 Online Metrics 307
 14.1 Players 310
 14.2 Monetization 311
 14.3 Acquisition 312
 14.4 Game Session 313
 14.5 Summary 313
 Exercises 314

Appendices 315

A Pseudocode Conventions 317
 A.1 Changing the Flow of Control 320
 A.1.1 Expressions 320
 A.1.2 Control structures 322
 A.2 Data Structures 325
 A.2.1 Values and entities 325
 A.2.2 Data collections 326
 A.3 Format of Algorithms 330
 A.4 Conversion to Existing Programming Languages 332

B Practical Vectors and Matrices 337
 B.1 Points and Vectors 338
 B.2 Matrices 347
 B.3 Conclusion 353

Bibliography 357
Ludography 375
Index 377