Index

a
ABM. See Agent-based modeling
Access framework 35
ACCRN. See Asian Climate Change Resilience Network
Adapazari earthquake 237–40. See also Turkish earthquake case study
Adaptation. See also Climate change adaptation
in Central Europe flood events case study 169–70, 169f
limits of. See Limits of adaptation to messy problems 64–66
proactive 66
resilience building and 66–67
social learning and 55
Adaptive capacity 15
climate change and 67
development of 43
key dimensions of 43–44
resources and capacities types 84–86
social learning and 47
Adaptive cycle 15
Adaptive management 142
Agent-based modeling (ABM)
applications of 131–32
challenges for 14
of DP model 132–33
emBRACE and 13–14, 131
simulations with 135
SNM compared with 135
in Turkish earthquake case study 132–33

Alps. See Dolomite landslide case study;
Swiss Alpine valleys
Analytical dimension of resilience 81
Asian Climate Change Resilience Network (ACCRN) 20–21
Assets
in community resilience 38–39
disasters and 35
Awareness through past natural disasters, as partial resilience indicator 118
combination of three single factors 121–22
single factor distance 120–21, 121f
single factor intensity 120, 121f
single factor time 119, 120f

b
Badia landslide 197–201, 200f. See also Dolomite landslide case study
Barker, Bill 178, 191
Bavaria flooding 159–60, 160f.
See also Central Europe flooding case study
Betweenness 13
Biophysical resilience 14
Bird, Derrick 178
Bolzano landslide. See Dolomite landslide case study
Borrowdale, community resilience in 183
Bourdieu, Pierre 32
Braithwaite, community resilience in 183–84
Building Resilience Amongst Communities in Europe. See emBRACE resilience framework

Building structures, urban microclimates and 14

C
Capabilities, in Cumbria flooding case study 193

Capabilities
in community resilience 84–86
in Cumbria flooding case study 193
financial 86, 245t, 249
human 86, 245t, 248–49
indicator allocation to 145
natural 84–85, 245t, 250, 250f
physical 86, 245t, 249–50
in resilience 36–37
resources and 82
in SLA 6
sociopolitical 85–86, 244–47, 245t, 246f, 247f
in Turkish earthquake case study 244–50, 246f, 247f, 250f

CCA. See Climate change adaptation

CDR. See Community disaster resilience

Central Europe flooding case study 3, 159–60, 160f
community resilience and idea of transformation 172–73
key concepts 161–62
results of household survey attitudes towards participation 171–72
impacts of (multiple) flood experience 167–70, 168f, 168t, 169f, 170f
perception of responsibility in flood risk management 170–71, 171t
results of interviews 165–67
settings and methods background on flood risk management in Saxony and Bavaria 162–63
description of household survey 163, 165
description of interviews 163, 164t

Centre for Research on the Epidemiology of Disasters (CRED) 99

Circumstance, communities of 180t

City resilience framework 13, 17

City resilience index 17

Civil protection
community resilience focus on 11
in community setting 257
disaster risk management cycle 86–87
in Dolomite landslide case study 201
in emBRACE framework 38
in Northern England flooding case study 177–79, 179f
conceptualisation of community 179–81, 180t
discussion and conclusions 192–94
methods 181–82
rural resilience results 182–84
urban resilience results 185–92, 187f–88f, 190f

Class, social capital and 32

CLC database. See CORINE Land Cover database

Climate change
disaster risk reduction and 11
livelihoods perspectives and 30
social learning and 44
social networks and 47
as super-wicked problem 64

Climate change adaptation (CCA) clumsy solutions for 66–69, 68f
DRR/DRM and 64, 67–68, 68f
four principles of planning for 64

Climate mitigation 64

Climate-related disaster. See London heatwave case study

Clumsy solutions
challenges for 64
for climate change adaptation 66–69, 68f
history of 62–64
introduction to 61

CN. See Curve number

Cockermouth, community resilience in 189–91, 190f

Coleman, James 32

Collaboration, gender and 33
Collective agency 51
Collective efficacy 51–52
Collective levels, of resilience 11–12
Communities of practice 180–81, 180t
Communities of support 180, 201, 216
in DRM 128–29
Community
definition and conceptualisations of 78, 80, 221–22
in London heatwave case study
concept of 221–22
elderly and 223–24
fragmented 230–31
heatwave management using 226–27
resilience from 223–25
representation of 19–20
in resilience research 10
resourcefulness and 21
social learning at level of 49–52
types of 179–81, 180t, 201, 216
Community actions, in disaster
resilience 37–38
Community disaster 125
Community disaster resilience (CDR)
assessment of 2
assets in 38–39
building of 2
in Central Europe flood events case study, idea of transformation and 172–73
climate change adaptation and 67
as common theme in resilience case studies 155
components of 11–12
conceptual framework for 84, 85f
conceptual tensions of 81–82
connectedness and 50
description of 69
in Dolomite landslide case study 197–98
discussion and conclusions 214–16
mixed-method approach to 201–3
risk perception, risk attitude, and response behaviour in 203–9, 205f, 207f, 208f
social networks in 209–14, 210f, 211f, 213f
emBRACE model of complex adaptive 69–71
as emergent property 69
extracommunity framing of
disaster risk governance 89–90
non-directly hazard-related context, social-ecological change, and disturbances 90–91
governance and 71
hazardous events and 79
indicator-based approaches to 140–43
institutional resilience compared with 36–37
intracommunity domains of
actions 86–87
learning 88–89
resources and capacities 84–86
in London heatwave case study 223–25
measurement of 77
conceptual framework for 80
messy problems of 62f, 63f
methodology of 12–13
in Northern England flooding case study 177–79, 179f
conceptualisation of community 179–81, 180t
discussion and conclusions 192–94
methods 181–82
rural resilience results 182–84
urban resilience results 185–92, 187f–88f, 190f
prominence of 81
social and political dimensions of 10–11
social methods for assessment of 13
social network and 43–44, 127–31
study of 125
in Turkish earthquake case study 237–38
aims and research questions 241
context of 239–41
discussion and conclusions 252–54
methodological approaches 241–42
perceptions of 242–52, 243f, 245f, 246f, 247f, 250f
wicked problems of 62f, 63f
Community learning 38
Complexity 61, 258
Complex system management
agent-based models 131–34
introduction to 125–27, 126f
qualitative data-structuring
methodologies 134
social network mapping 127–31
Complex systems theory 69
Composite indices 17, 113, 141
Connectedness
community resilience and 50
importance of 13
Connectivity 128
Conscientisation 21
Continuous planning principle 62
Control variables
in resilience 11
in SES resilience thinking 70
Cooperation, as common theme in
resilience case studies 156
Coordinated planning principle 62
CORINE Land Cover (CLC) database 99
HTI values and 100–101, 101t
landslides and
national scale 102–3, 102f
regional scale 103–7, 104f, 105f,
106f, 107f
CRED. See Centre for Research on the
Epidemiology of Disasters
Credit access, drought resilience and
114–15, 116t
Critical reflection 45, 88
Cultural aspects
of individual resilience 12
of livelihood assets 29
Cumbria
flooding in 177–79, 179f. See also
Northern England flooding case study
social network mapping in 126f,
129–30
Curve number (CN) 100, 101t

D
Department for International Development
(DfID) 28
Development, SLAs and 29–30
DfID. See Department for International Development
Difference HTI (DHTI) 101
Disaster 1
social capital and 34–35
social causes of 35–36
Disaster behavioural health 98
Disaster footprint 97–98
land feature maps and 100
susceptibility and 109–10
Disaster impact and land use data analysis
conclusions for, LULC and landslide relationship 108
data for 99
line of reasoning for 98–99
methodology for 99–102, 101t
results
national scale 102–3, 102f
regional scale 103–7, 104f, 105f,
106f, 107f
subnational scale: analysis of HTI changes 107
subnational scale: analysis of LULC changes 108
terminology for 97–98
Disaster Preparedness (DP) model 132–33
Disaster pressure and release model 35
Disaster resilience. See Resilience
Disaster Resilience Scorecard for Cities 142
Disaster risk governance 89–90
in Turkey 240–41
Disaster risk management (DRM)
agent-based modeling in 132
civil protection actions 86–87
climate adaptation and 64, 67–68, 68f
climate-related. See London heatwave case study
communities in 128–29
community resilience and 125
flood-related. See Flood risk management
integrative planning tools for 71
social-ecological systems framework in 65
Disaster risk reduction (DRR)
 climate adaptation and 64, 67–68, 68f
 climate change and 11
 collective efficacy and 51–52
 integrative planning tools for resilience and 9–10, 81
 responsibilisation agenda for social and environmental systems in 62f
Disaster vulnerability paradigm 35–36
Dissemination 88
Disturbance
 community resilience and 90–91
 resilience research and 34
Diversity, for social learning 49–50
Dolomite landslide case study 3, 197
 Alpine context of 198–201, 200f
 discussion and conclusions 214–16
 mixed-method approach to risk perception, risk attitude, and response behaviour in 203
 risk behaviour profiles 204–6, 205f
 temporal variation in perceptions of response and recovery actions 206–9, 207f, 208f
 social networks in 209–14, 210f, 211f, 213f
Double-loop learning 47
DP model. See Disaster Preparedness model
DRM. See Disaster risk management
Drought resilience, in East India 114–15, 116t
DRR. See Disaster risk reduction
Efficiency, resilience and 71
Elderly, resilience of 221–22
 community role in 223–25
 family, social networks, and community in 226–27
 rethinking social network and social capital as vulnerability factors in 227–30
 social capital, fragmented community, and new vulnerability in 230–31
emBRACE resilience framework
 agent-based modeling and 13–14, 131
 application and operationalisation in indicator-based assessments 91
 approach of 6
 background for 2
 biophysical resilience and 14
 case study research using. See Resilience case studies
 community actions in 37–38
 for community resilience to natural hazards 84, 85f. See also Community disaster resilience
 community types defined by 180t
 complexity in 61, 258
 control variables in 11
 critical reflection in 49
 development of deductive: structured literature review 82–83
 inductive: empirical case study research 83
 participatory assessment workshops with stakeholder groups 83
 synthesis: iterative process 83–84
 diversity of 258–59
 history of 257
 indicators for 16–17
 interlinkages between domains and extracommunity framing in 91
 justification of 9
 limits of findings of 91–92
 methodology of 91–92
emBRACE resilience framework (cont’d)
perceptions of resilience according
to 242–43, 243f, 245t
context 252
learning 250–51
resources and capacities 244–50,
246f, 247f, 250f
resource access and control in
resourcefulness and 21
results of 91–92
social capital in 66
social dimensions of 10–11, 13
to social learning 6, 38, 44, 47
outcomes of 52–54
specificity of 258
transformation and 21
EM-DAT 99
Emergency planning, in Dolomite
landslide case study 199, 201
Empowerment 32
Endowments 31–32
EnRiCH community resilience
framework 37
Entitlements 31
Entitlements analysis 31
Environmental entitlements
approach 31
Environmental movement 31
Eurac Research 129
Evolving resilience 56
Experiential learning 49
Experimentation, social learning
and 52
Extracommunity framing of community
resilience
disaster risk governance 89–90
non-directly hazard-related context,
social-ecological change, and
disturbances 90–91

F
FAG. See Flood action group
Family, in London heatwave case
study 226–27
Farming community resilience, in Northern
England flooding case
study 182–84
Feminist approach, to social capital 33
Financial capacities and resources 86
in Turkish earthquake case study 245t,
249
Financial capital, in sustainable livelihoods
framework 28f–29f
Flood action group (FAG)
in Northern England flooding case
study 181, 185–87, 187f–88f, 190,
192–93
social network map of 126, 126f,
187f–88f
Flooding
in Central Europe. See Central Europe
flooding case study
in Northern England. See Northern
England flooding case study
Flood risk management
in Central Europe flooding case study
attitudes towards participation
in 171–72
background on 162–63
community resilience and 172–73
perception of responsibility
for 170–71, 171t
transformation of 165–67
in Northern England flooding
case study
communities participating
in 179–81, 180t
discussion and conclusions
192–94
rural 182–84
urban 185–92, 187f–88f, 190f
Food insecurity, root causes of 31
Footprint 97–98
Functionalism 32
Functional stability 20

G
Gender, social capital and 33
General resilience 70–71
Geographical communities
in Dolomite landslide case study 201,
216
in DRM 128–29
German Water Law 163, 170–71, 171t
Governance
 community resilience and 71
 in resilience 10–11, 18–19, 82
 risk 89–90
 in Turkey 240–41
Green Revolution 30

h

Hazard-Territory Index (HTI)
 analysis of changes to 101
 calculation of 100, 101t
 definition of 99
 evaluation of changes in 101
 at local scale 99
 CLC relationship with 103–7, 104f, 105f, 106f, 107f
 at national scale 99
 CLC relationship with 102–3, 102f
 subnational scale changes in 107

Hazard threats
 community actions and 37
 community resilience and 79, 81
 disasters and 35
 LULC data and 98
 social learning and 46

Hazard zone maps, in Dolomite landslide case study 199, 201

HDI. See Human Development Index

Heat stress
 social capital and resilience to 10
 vegetation and 14

Heatwave. See London heatwave case study

Heatwave Plan for England (HWP) 221–22, 225

HTI. See Hazard-Territory Index

Human behaviour, disastrous losses and 1

Human capacities and resources 86
 in Turkish earthquake case study 245t, 248–49

Human capital
 social networks and 32
 in sustainable livelihoods framework 28f–29f

Human Development Index (HDI) 123

Hurricane Katrina 35

HWP. See Heatwave Plan for England

Hyogo Framework for Action (HFA) 68

i

Identity, communities of 180t, 182

IFFI database 99, 101

Impact 98

Indian Ocean tsunami in India 35

Indicators for resilience 15–17, 113.
 See also Mixed indicators; Partial resilience indicator; Quantitative resilience indicators
 applications of 139, 151
 community resilience assessment with 140–43
 concurrent approach to 148
 contextualisation of 147
 derivation of 148, 149t–50t, 151
 difficulties with 140
 grounding of 143–45, 144f
 misunderstandings with 139–40
 operationalisation of 143
 resources and capacities allocation of 145
 sequential approach to 148
 systematisation of 145–47, 146t, 259
 transferability of 146

Individual levels
 of resilience 11–12
 social learning at 49

Individual resilience, in Turkish earthquake case study 237–38
 aims and research questions 241
 context of 239–41
 discussion and conclusions 252–54
 methodological approaches 241–42
 perceptions of 242–52, 243f, 245t, 246f, 247f, 250f

Influence and access box 29

Innovation, social learning and 52, 88

Institutional resilience, community resilience compared with 36–37

Integrated planning principle 62

Interest, communities of 180t

International Strategy for Disaster Reduction (ISDR) 68

Interventions, in urban resilience framework 38
Intracommunity domains of community resilience
actions 86–87
learning 88–89
resources and capacities 84–86
ISDR. See International Strategy for Disaster Reduction

Japan, Kobe earthquake in 35

Kander valley 117–18, 117f, 118f
Keswick, community resilience in 185–88, 187f–88f
Knowledge
for adaptive capacity 43–44
local, in Dolomite landslide case study 204, 215
social change and 21
Kobe earthquake in Japan 35

Land cover/land use (LULC)
analysis of 101–2
application of 110
subnational scale 108
in Europe from CORINE Land Cover database 99
hazardous event and 98
Hazard-Territory Index and 100
national scale 102–3, 102f
regional scale 103–7, 104f, 105f, 106f, 107f
landslides and 98–99, 108–9
in South Tyrol from Reakart 99
Landslides. See also Dolomite landslide case study
analysis of 101–2
LULC data and 98–99
national scale 102–3, 102f
regional scale 103–7, 104f, 105f, 106f, 107f
relationship between 108–9
subnational scale: changes in 108
subnational scale: HTI change analysis 107

Learning. See also Social learning
for adaptive capacity 43–44
in Central Europe flood events case study
definition of concept 161
household survey results demonstrating 169–70, 169f
interview results demonstrating 165–67
as common theme in resilience case studies 155
in Cumbria flooding case study 193
in Dolomite landslide case study 215
in emBRACE framework 88–89
indicator allocation to 145
in resilient systems 15
resources and 82
social change and 21
in Turkish earthquake case study 250–51
Learning capacity 47
Limits of adaptation, in Central Europe flood events case study
definition of concept 161
household survey results demonstrating 167–72, 168f, 168t, 169f, 170f, 171t
Livelihoods thinking. See also Sustainable livelihoods approach
criticisms of 30
disaster vulnerability and 35–36
evolution of 30–31
origins of 27–29
resilience and 34
community actions 37–38
community learning 38
resources and capacities 36–37
Local knowledge, in Dolomite landslide case study 204, 215
Local Resilience Forum (LRF) 180–81
London heatwave case study 3, 221
community role in resilience 223–25
conclusion 231–32
methodology 222–23
rethinking normatives in heatwave management 225
family, social networks, and community in management 226–27
social capital, fragmented community, and new vulnerability 230–31
social network and social capital as vulnerability factors 227–30
social inequalities in 226
social learning in 50, 53, 55–56
Loneliness, in London heatwave case study 228–31
Lorton, community resilience in 183–84
Loss perception, in social learning 88
Lötschen valley 117–18, 117t, 118f
LRF. See Local Resilience Forum
LULC. See Land cover/land use

m
Making Space for Water 89
Material variables 70
Mean of difference HTI (MDHTI) 101
Merological anthropology 71
Messy problems
of community resilience 62f, 63f
history of 62–64
integrative planning tools for 71
introduction to 61
resilient and adaptive responses to 64–66
of socio-ecological systems 70
MFAG. See Morpeth Flood Action Group
Mitigation, in prehazard event phase 145
Mixed indicators 140, 258
Mixed-method approaches, added value generated by 202–3
Modernisation theory 30
Monitoring and review 88
Morpeth Flood Action Group (MFAG) 53

n
Natural capacities and resources 84–85
in Turkish earthquake case study 245t, 250, 250f
Natural capital, in sustainable livelihoods framework 28f–29f
Natural disasters 1
Natural hazards. See Hazard threats
Natural resource management (NRM)
social capital in 33
social learning in 44
NetLogo software 132
Net-Map approach 129
Network centrality 13
Non-hazard-related conditions for community resilience 90
Normative dimension of resilience 81
Northern England flooding case study 3, 177–78, 179f
centralisation of community 179–81, 180t
discussion and conclusions 192–94
methods 181–82
results
rural resilience 182–84
urban resilience 185–92, 187f–88f, 190f
NRM. See Natural resource management

o
Open systems theory 69
Operationalisation of quantitative resilience indicators 114–15, 116t, 123
of resilience 140
of resilience indicators 143
Ordinary value (OV) 100, 101t

p
Panarchy 15
Partial resilience indicator awareness through past natural disasters as 118
combination of three single factors 121–22
single factor distance 120–21, 121f
single factor intensity 120, 121f
single factor time 119, 120f
residence time as 117–18, 117t, 118f
warning services as 122
Participation, in Central Europe flood events case study
attitudes towards 171–72
definition of concept 162
Participative planning principle 62
Participatory mapping methods 135
Personal agency 51
Physical capacities and resources 86
 in Turkish earthquake case study 245t, 249–50
Physical capital, in sustainable livelihoods framework 28f–29f
Physical environment, social environment relationship with 36
Physical footprint of disaster 98
Place-based capacities and resources 84–85
Pluralism 32
Political capital, in sustainable livelihoods framework 28–29, 29f
Political ecology studies 31
Political geography studies 31
Political resilience 10–11
 methodology of 12–13
Posthazard event phase 145
Poverty
 environmental movement and 31
 as resilient phenomenon 18
 sustainable livelihoods framework and 28–29
Power
 disastrous losses and 1
 heterogeneities in structures of 31
 in resilience 18–19, 82
 sustainable livelihoods framework and 28–29
 transformation and 20–21
Practice, communities of 180–81, 180t
Preparedness
 in Central Europe flood events case study 169–70, 169f
 in prehazard event phase 145
Proactive adaptation 66
Protection. See also Civil protection; Social protection
 in Central Europe flood events case study 165–67
 attitudes towards participation in 171–72
 community resilience and 172–73
 household survey results demonstrating 169–70, 169f
 perception of responsibility for 170–71, 171t
 as common theme in resilience case studies 156
Proxy agency 51
Psychological aspects, of resilience 11–12
Psychological footprint of disaster 98
Putnam, Robert 32
q
Q-methodology 134
Q-sort 134
Qualitative data
 in agent-based modeling 132
 in social network analysis 202–3
Qualitative resilience indicators
 quantitative resilience indicators and 139, 143, 259
 selection of 148, 149t–50t
Quantitative data, in social network analysis 202–3
Quantitative resilience indicators 113
 application of 114
 development of 115–17
 operationalisation of 114–15, 116t, 123
 qualitative resilience indicators and 139, 143, 259
 selection of 148, 149t–50t
 social sciences and 258
r
Rational choice theory, social capital and 32
Reakart 99, 101
Recovery, in posthazard event phase 145
Reflectivity, in social learning 49
Relational variables 70
Religious aspects, of community 19
Reorganization, in resilient systems 15, 34
Requisite competencies 51
Residence time, as partial resilience indicator 117–18, 117t, 118f
Resilience 1. See also Community disaster resilience; Political resilience; Social resilience; Individual resilience
 adaptation and building of 66–67
 analytical dimension of 81
 as boundary term 5
in Central Europe flood events case study
definition of concept 161
household survey results on 167–72, 168f, 168t, 169f, 170f, 171t
idea of transformation and interview results on 165–67
on collective levels 11–12
concepts of 5, 9–10, 80, 161, 238
conceptual vagueness of 5–6
core compared with context of 161
disaster footprint and susceptibility for 109–10
efficiency and 71
evolution of 34, 56
gaps and challenges in community representation 19–20
resourcefulness 21
role of power in 18–19, 82
transformation 20–21
in transition from ecology to social science 17–18
general 70–71
governance in 10–11
indicators for. See Indicators for resilience
on individual levels 11–12
livelihoods perspectives in 30
livelihoods thinking and 34
community actions 37–38
community learning 38
resources and capacities 36–37
in London heatwave case study 221–22
community role in 223–25
family, social networks, and community role in 226–27
rethinking social network and social capital as vulnerability factors 227–30
social capital, fragmented community, and new vulnerability 230–31
measurement of 113–14
to messy problems 64–66
methodologies of 12–14
negatives of 12
normative dimension of 81
as outcome 5, 11
as process 5, 11
scales of research on 80
social interactions and 80
social learning and 43–45, 47, 55
social science perspective for 257–58
specific 70–71
in Turkish earthquake case study 242–43, 243f, 245t
conceptualisation of 238
context 252
learning 250–51
resources and capacities 244–50, 246f, 247f, 250f
urban climate 13
Resilience-based risk reduction policy 81
Resilience case studies
Central Europe flood events 3, 159–60, 160f
community resilience and idea of transformation 172–73
key concepts 161–62
results of household survey 167–72, 168f, 168t, 169f, 170f, 171t
results of interviews 165–67
settings and methods 162–65, 164t
common themes in 155–56
Dolomite landslide 3, 197
Alpine context of 198–201, 200f
discussion and conclusions 214–16
mixed-method approach to 201–3
risk perception, risk attitude, and response behaviour in 203–9, 205f, 207f, 208f
social networks in 209–14, 210f, 211f, 213f
London heatwave 3, 221
community role in resilience 223–25
conclusion 231–32
methodology 222–23
rethinking normatives in heatwave management 225–31
social inequalities in 226
social learning in 50, 53, 55–56
Northern England flooding 3, 177–78, 179f
conceptualisation of community 179–81, 180t
discussion and conclusions 192–94
Resilience case studies (cont’d)

- definition of concept 161–62
- household survey results on perception of 170–71, 171t
- as common theme in resilience case studies 156
- in Dolomites landslide case study 203–4, 214–15
- Risk 113, 258
- Risk attitude, in Dolomites landslide case study 202–4, 214–15
- Risk behaviour, in Dolomites landslide case study 202–3, 214–15
- profiles of 204–6, 205f
- temporal variability of 206–9, 207f, 208f
- Risk management. See Disaster risk management
- Risk perception
 - in Dolomites landslide case study 202–4, 214–15
 - in social learning 88
- Risk reduction, resilience and 9–10
- R statistical programming 132
- Rural appraisals 30
- Rural resilience, in Northern England flooding case study 182–84

S

- Sakarya earthquake 240. See also Turkish earthquake case study
- Saxony flooding 159–60, 160f. See also Central Europe flooding case study
- Saxony’s Water Law 89
- Scalar analysis 16
- SCT. See Social cognitive theory
- SDHTI. See Sum of difference HTI
- Self-assessments 141
- Self-efficacy 46, 51
- Sen, Amartya 31
- SE problems. See Socio-ecological problems
- SES framework. See Social-ecological systems framework
- Shocks, resilience and 15
- Single-loop learning 47
- Situational complexity 61
- SLA. See Sustainable Livelihoods Approach
- SLF. See Sustainable Livelihood Framework
SNA. *See* Social network analysis

SNM. *See* Social network mapping

Social capital
 background and key critiques of 31–33
 disasters and 34–35
 in emBRACE 66
 heat stress resilience and 10
 in London heatwave case study
 new vulnerability and 230–31
 as vulnerability factor 227–30
 structural social resources in 85–86
 in sustainable livelihoods
 framework 28f–29f

Social cognitive theory (SCT) 51

Social complexity 61

Social-ecological resilience 70

Social-ecological systems (SES) framework
 application of 70
 climate change adaptation and 66
 in disaster risk management 65
 fundamental flaws of 6
 limitations of 5
 for social resilience 65–66

Social environment, physical environment
 relationship with 36

Social equity, resources and 82

Social isolation, disaster fatalities and 36

Social learning
 adaptive capacity and 47
 adaptive thinking and practice
 and 54–56
 capacities for 46–49
 at community level 49–52
 in community setting 257
 critical reflection for 6, 45
 critiques of 45–46
 definition of 44
 development of 54–55
 emBRACE project and 6, 52–54
 at individual level 49
 in livelihoods perspectives 38
 maximisation of 48, 48f
 prospects of 258
 resilience building and 43–45, 47, 55
 success of 88
 transformation and 44

Social network analysis (SNA) 13, 135

Social network mapping (SNM) 13

ABM compared with 135
 correlations of 135
 costs with 128
 in Cumbria 126f, 129–30
 of flood action groups 126, 126f, 187f–88f
 purposes of 127–28
 resilience assessment with 128–31
 in South Tyrol 129

Social networks
 climate change and 47
 community resilience and 43–44, 127–31
 in disaster risk management 36
 diversity and 50
 in Dolomite landslide case study
 discussion and conclusions 215–16
 mixed-method approach to 202–3
 results 209–14, 210f, 211f, 213f
 gender and 33
 human capital and 32
 in London heatwave case study
 226–27
 as vulnerability factor 227–30
 in Northern England flooding
 case study 181–82, 187, 187f–88f, 193
 power relationships in 18
 resourcefulness and 21
 social learning and 88
 structural holes in 13

Social protection
 in community setting 257
 in emBRACE framework 38, 87
 in Northern England flooding case study 177–79, 179f
 conceptualisation of
 community 179–81, 180t
 discussion and conclusions 192–94
 methods 181–82
 rural resilience results 182–84
 urban resilience results 185–92, 187f–88f, 190f

Social-psychological resilience 12
 in SES research 70
Social reform 81–82
Social relationship model 128
Social resilience 10–11
biophysical links with 14
building of 1
community and 19–20
credit access in East India and 115
description of 69
ecology transition to 17–18
methodology of 12–13
social-ecological systems framework for 65–66
Social resources and capacities, in Turkish earthquake case study 245t, 247–48
Social science perspective 257–58
Social solidarity 54
Social statistical methods 128
Social support, as common theme in resilience case studies 156
Social sustainability 142
Social transformation, social-ecological systems framework and 66
Social trust relations 86
Social vulnerability
approaches to 35
resilience and 142
SLAs and 29
Social welfare 32
Socio-ecological (SE) problems 62f, 63f
messiness of 70
Socioecological resilience framework 38
Sociopolitical capacities and resources 85–86
in Turkish earthquake case study 244–47, 245t, 246f, 247f
South Tyrol
communities in 128–29
HTI variation over 101
changes in 107
IFFI database for 99
landslides in. See Dolomite landslide case study
LULC in 99, 102
changes in 108–9
social network mapping in 129
Spatial-explicit scales 147
Spatial planning process, in Dolomite landslide case study 199, 201
Specific resilience 70–71
Stability, resilience and 81
Structural holes, in social networks 13
Structural social resources 85
Subjective variables 70
Successive limited comparisons 62–63
SUEWS. See Surface urban energy and water balance scheme model
Sum of difference HTI (SDHTI) 101
Super-wicked problems 64
Support, communities of 180, 201, 216
in DRM 128–29
Surface urban energy and water balance scheme model (SUEWS) 14
Susceptibility
during crisis 1
disaster footprint and 109–10
Sustainability
resources and 82
social learning for 44
Sustainable Livelihood Framework (SLF) 82
Sustainable Livelihoods Approach (SLA) 178
access framework compared with 35
in community setting 257
criticisms of 30
in disaster context 6
evolution of 30–31
fundamental elements of 6
origins of 28
resources and capacities types 84–86
social capital in 31–33
successes of 29–30
summary for 33–34
Sustainable livelihoods framework with political capital 28–29, 29f
without political capital 28, 28f
Swiss Alpine valleys
awareness through past natural disasters as partial resilience indicator 118
combination of three single factors 121–22
Index

single factor distance 120–21, 121f
single factor intensity 120, 121f
single factor time 119, 120f
quantitative indicator
development 115–17
residence time as partial resilience indicator in 117–18, 117t, 118f
warning services as partial resilience indicator in 122
Systematisation, of resilience indicators 145–47, 146t
System of problems 62
System resilience 65

t
TAPAS approach 132
TCIP. See Turkish Catastrophe Insurance Plan
TL. See Transformative learning
Transformation 20–21
in Central Europe flood events case study community resilience and 172–73
definition of concept 161
interview results demonstrating 165–67
in community resilience 69
resilience and 81
social-ecological systems framework and 66
social learning and 44
in social resilience 69
Transformative learning (TL) 45, 49, 55
Tsunami, Indian Ocean 35
Turkish Catastrophe Insurance Plan (TCIP) 133, 241
Turkish earthquake case study 3, 237–38
agent-based modeling in 132–33
aims and research questions 241
context of risk governance setting in Turkey 240–41
sociodemographic 239–40
discussion and conclusions 252–54
methodological approaches 241
focus groups 242
in-depth interviews 242
perceptions of resilience according to emBRACE framework 242–43, 243f, 245t
context 252
learning 250–51
resources and capacities 244–50, 246f, 247f, 250f
social learning in 55
social solidarity in 54

u
UNISDR self-assessment tool 11
Unsafe conditions, vulnerability to 30
Urban climate modeling 14
Urban climate resilience 13
Urban community 223–24
Urban microclimates, building structures and 14
Urban resilience, in Northern England flooding case study Cockermouth 189–91, 190f
Keswick 185–88, 187f–88f
Workington 191–92
Urban resilience framework 38

v
Van earthquakes 237–40. See also Turkish earthquake case study
Vegetation, urban heat stress and 14
Village studies tradition 30
Vulnerability 1, 113
approaches for disaster resilience studies 35–36
in London heatwave case study community and 224–25
concept of 221–22, 226
rethinking social network and social capital as factors of 227–30
social capital, fragmented community, and new 230–31
political economy of 226
social approaches to 35
resilience and 142
SLAs and 29
Vulnerability (cont’d)
 underlying causes for 1
to unsafe conditions 30
Vulnerability assessments 142

Well-being, community resilience
 focus on 11
Wicked problems
 of community resilience 62f, 63f
 history of 62–64
 introduction to 61
 resilience concept as 5, 258
 super-wicked problems 64
Workington, community resilience in 191–92
WRF. See Weather research and forecasting model