Contents

List of Contributors xv
Preface xvii
Acknowledgments xix

Part I Theoretical and Practical Bases of Sex Control in Aquaculture 1

1 Sex Control in Aquaculture: Concept to Practice 3
Han-Ping Wang and Zhi-Gang Shen
1.1 Introduction 3
1.2 Establishment of Phenotypic Sex - “Promoter” to “Modulator” 5
1.2.1 Sex Determining Factors – the Promoter 7
1.2.2 Molecular Players in Sex Differentiation – the Modulator 12
1.3 Sex control Practice in Aquaculture 14
1.3.1 Large-Scale Monosex Production 15
1.4 Sex Control Practices in Fisheries 21
1.5 Future Perspectives 22
1.5.1 Population Level-Based Identification of the Sex Determining Mechanism 22
1.5.2 Targets of Sex Determining Factors and Molecular Networks Involved in Sex Differentiation 22
1.5.3 Environmental- and Consumer-Friendly Monosex Production 22
1.6 Conclusions 23

2 Sex Determination and Differentiation in Fish: Genetic, Genomic, and Endocrine Aspects 35
Yann Guiguen, Alexis Fostier, and Amaury Herpin
2.1 Introduction – Sex Determination in Fish: from Sex Control Applications in Cultured Fish Species to Basic Science Interests 35
2.2 From Genetic Sex Determination to Environmental Sex Determination and the Other Way Round 36
2.2.1 Genetic Sex Determination: “Usual Suspects, Newcomers, and Usurpers” 39
2.2.2 A Glimpse into Environmental Sex Determination in Fish 47
2.2.3 When GSD and TSD Blend 48
2.3 Sex Differentiation as a Threshold Phenotype Relying on Fine Regulations of a Plastic Gene Regulatory Network 49
Contents

2.3.1 The Classical Actors of the Fish Sex Differentiation Cascade 50
2.3.2 Endocrine Regulation of Fish Sex Differentiation 51
2.4 Mechanisms for the Emergence of New Master Sex-Determining Genes and Gene Regulatory Networks 52

3 Epigenetics of Sex Determination and Differentiation in Fish 65
Francesc Piferrer
3.1 Introduction 65
3.2 Definition of Epigenetics 66
3.3 Epigenetic Regulatory Mechanisms 66
3.3.1 DNA Methylation 66
3.3.2 Histone Modifications 67
3.3.3 Non-Coding RNAs 68
3.4 Transgenerational Effects 68
3.5 Epigenetics and sex – General Considerations 69
3.5.1 What Species can be More Fruitful to Study? 69
3.5.2 What is the Best Developmental Period to Target? 70
3.5.3 Are there Organs Other than the Gonads that should be Considered? 70
3.5.4 Links with Ecotoxicology 70
3.5.5 Does the Study of Epigenetics of Sex Determination-Differentiation have an Added Comparative Value? 70
3.6 Epigenetics and Sex in Gonochoristic Species – Case Studies 71
3.6.1 European Sea Bass 71
3.6.2 Half-Smooth Tongue Sole 72
3.6.3 Olive Flounder 72
3.6.4 Nile Tilapia 73
3.7 Epigenetics and Sex in Hermaphrodite Species – Case Studies 73
3.7.1 Ricefield Eel 74
3.7.2 Black Porgy 74
3.7.3 Barramundi 75
3.7.4 Mangrove Killifish 75
3.8 The “Conserved Model of Epigenetic Regulation of Sexual Development in Fish” 75
3.9 Epigenetics and Sex Control in Fish 77
3.10 Open Questions and Future Perspectives 78

4 Environmental Sex Determination and Sex Differentiation in Teleosts – How Sex Is Established 85
Zhi-Gang Shen and Han-Ping Wang
4.1 Introduction 85
4.2 Distinguishing TSD from GSD + TE 86
4.3 How sex is Determined in ESD 87
4.3.1 Epigenetics 89
4.3.2 Hormone-Gene-Cell Interactions 90
4.4 Temperature-Dependent Sex Differentiation 95
4.4.1 Independent Genes to Interactions, Networks, and Comparative Analysis 95
4.4.2 Yin and Yang in Sex Differentiation 99
4.5 ESD in Aquaculture and Fisheries 101
5 Gene Knockout and Its Principle and Application in Sex Control of Fish Species 117
 Ze-Xia Gao and Bruce W. Draper
5.1 Introduction 117
5.2 Approaches for Gene Knockout 118
5.2.1 ZFNs 118
5.2.2 TALENs 119
5.2.3 CRISPR/Cas9 120
5.3 Sex Control in Zebrafish 122
5.3.1 Sex Determination Mechanism of Zebrafish 122
5.3.2 Genes Required for Male Development 123
5.3.3 Genes Required for Female Development 124
5.3.4 Genes Required for General Fertility 125
5.4 Sex control in Medaka 127
5.5 Sex control in Economic Fish Species 128
5.6 Implications for Aquaculture 129

6 Chromosome Manipulation Techniques and Applications to Aquaculture 137
 Katsutoshi Arai and Takafumi Fujimoto
6.1 Introduction 137
6.2 Induced Triploidy 138
6.2.1 Induction of Triploid Fish and Shellfish 138
6.2.2 Performance of Triploid Fish and Shellfish 139
6.2.3 Reversion of Triploids to Diploids – Newly Recognized Problem in Shellfish 140
6.3 Induced Gynogenesis 140
6.3.1 Induction of Gynogenetic Haploids by Using Irradiated Sperm 140
6.3.2 Induction of Gynogenetic Diploids by Inhibition of Meiosis 140
6.4 Induced Tetraploidy 142
6.4.1 Induction of Tetraploid Fish 142
6.4.2 Induction of Tetraploid Shellfish 143
6.4.3 Cellular Mechanisms Responsible for Whole Genome Doubling 143
6.4.4 Performance of Tetraploids 143
6.4.5 Mosaics Including Tetraploid Cells 144
6.5 Gynogenetic Doubled Haploids (DHs) 144
6.5.1 Induction of Gynogenetic DHs 144
6.5.2 Complete Homozygosity of Gynogenetic DHs 145
6.5.3 Performance of Gynogenetic DHs 145
6.6 Induced Androgenesis 145
6.6.1 Induction of Androgenetic Haploids by Using Irradiated Eggs 145
6.6.2 Induction of Androgenetic Doubled Haploids 146
6.6.3 Androgenesis by Diploid Sperm and Dispermic Fertilization 146
6.6.4 Cold Shock-Induced Androgenesis 147
6.6.5 Nucleo-Cytoplasmic Hybrids by Androgenetic Techniques 148
6.7 Clonal Lines Using Isogenic Gametes of DHs 149
6.8 Distant Hybridization and Chromosome Manipulation 150
6.8.1 Allotetraploid Hybrid Strain of Crucian Carp × Common Carp 150
6.8.2 Allopolyploid Hybrid Strain of Crucian Carp × Blunt Snout Bream 151
6.8.3 Natural Nucleo-Cytoplasmic Hybrid Clonal Strain of Crucian Carp 151
Contents

6.8.4 Applications of Atypical Reproduction of Artificial Hybrid and Hybrid-Origin Species 151
6.9 Sex Determination Inferred from Results of Chromosome Manipulation 153
6.10 Conclusions and Perspectives 154

7 Hybridization and Its Application in Aquaculture 163
M. Aminur Rahman, Sang-Go Lee, Fatimah Md. Yusoff, and S.M. Rafiquzzaman
7.1 Introduction 163
7.2 Inter-specific Hybrids and Their Applications in Aquaculture 164
7.2.1 Improved Growth Performances 164
7.2.2 Production of Sterile Animals 166
7.2.3 Manipulation of Sex Ratio 167
7.2.4 Overall Improvement 167
7.2.5 Disease Resistance and Environmental Tolerances 168
7.2.6 Hybrid Polyploidization 168
7.2.7 Experimental Hybridization 169
7.2.8 Unplanned/Accidental Hybridization 170
7.3 Discussion 171
7.4 Conclusion 172

8 Population Consequences of Releasing Sex-Reversed Fish: Applications and Concerns 179
Claus Wedekind
8.1 Introduction 179
8.1.1 The Threats of Distorted Population Sex Ratios 179
8.1.2 Sex Determination and Sex Differentiation Fish 180
8.2 Sex reversal and "Trojan" Genetic Elements 180
8.3 Trojan Chromosome Carriers Produced in Brood Stocks 182
8.4 Consequences of Releasing Sex-Reversed Fish 184
8.5 Public and Legal Acceptance of Releasing Sex-Reversed Fish 184

Part II Sex Determination and Control in Cichlidae 189

9 Sex Control in Tilapias 191
Jean-François Baroiller and Helena D'Cotta
9.1 Tilapia Species and their Aquaculture 191
9.2 Is Sex Control Always Necessary for Tilapia Farming? 193
9.2.1 Survey on Sex Control Methods in Tilapia Aquaculture and Interest in a Sexing Kit 194
9.3 Genetic Sex Determination in the Four Most Important Tilapia Species 196
9.3.1 Genetic Sex Determination in Nile Tilapia, O. niloticus 197
9.3.2 Genetic Sex Determination in the Blue Tilapia, O. aureus 200
9.3.3 Genetic Sex Determination in the Mozambique Tilapia, O. mossambicus 201
9.3.4 Genetic Sex Determination in the Black-Chin Tilapia, Sarotherodon melanotheron 201
9.4 Thermosensitivity: a Hereditary Factor that Affects Gonad Differentiation 202
9.5 Sex Differentiation in Nile Tilapia: Molecular Markers for Selection of the Phenotypic Sex 206
9.6 Current Approaches for Sex Control in Tilapias 206
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6.1</td>
<td>Sex Reversal Through Hormonal Treatments</td>
<td>206</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Genetic Approaches</td>
<td>215</td>
</tr>
<tr>
<td>9.7</td>
<td>Future Approaches for Sex Control in Tilapias</td>
<td>219</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Precocious Identification of the Sexual Phenotype</td>
<td>219</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Genotypic Sexing</td>
<td>220</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Epigenetics of Sex</td>
<td>220</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Genome Editing: CRISPR/Cas9 Technology</td>
<td>222</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusions and Perspectives</td>
<td>222</td>
</tr>
<tr>
<td>10</td>
<td>Quantitative Genetics of Sexual Dimorphism in Tilapia and Its Application to Aquaculture</td>
<td>235</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>10.2</td>
<td>Variation Between Species</td>
<td>236</td>
</tr>
<tr>
<td>10.3</td>
<td>Differences Among Populations Within a Species</td>
<td>237</td>
</tr>
<tr>
<td>10.4</td>
<td>Heritability for Growth-Related Traits in Females and Males</td>
<td>237</td>
</tr>
<tr>
<td>10.5</td>
<td>Genetic Correlations Between Sexes</td>
<td>240</td>
</tr>
<tr>
<td>10.6</td>
<td>Can Sexual Size Dimorphism be Altered by Selection for High Growth?</td>
<td>241</td>
</tr>
<tr>
<td>10.7</td>
<td>Do Genetic Parameters for Sexual Dimorphism Differ Between Culture Environments?</td>
<td>243</td>
</tr>
<tr>
<td>10.8</td>
<td>Sexual Dimorphism in Other Traits of Economic Importance</td>
<td>244</td>
</tr>
<tr>
<td>10.9</td>
<td>Concluding Remarks and Suggestions</td>
<td>245</td>
</tr>
</tbody>
</table>

Part III Sex Determination and Control in Salmonidae

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Sex Determination and Sex Control in Salmonidae</td>
<td>251</td>
</tr>
<tr>
<td>11.1</td>
<td>Salmonids Family</td>
<td>251</td>
</tr>
<tr>
<td>11.2</td>
<td>Salmonid Aquaculture</td>
<td>252</td>
</tr>
<tr>
<td>11.3</td>
<td>Why Control the Sex of Salmonids?</td>
<td>253</td>
</tr>
<tr>
<td>11.4</td>
<td>Genetic Sex Determination in Salmonids</td>
<td>254</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Sex Chromosomes</td>
<td>254</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Gynogenesis, Androgenesis and Sex Inversion</td>
<td>255</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Genetic Sex Markers and the Sex-Determining Gene</td>
<td>256</td>
</tr>
<tr>
<td>11.5</td>
<td>Effect of Environmental Factors on Sex Differentiation</td>
<td>257</td>
</tr>
<tr>
<td>11.6</td>
<td>Gonad Sex Differentiation in Salmonids</td>
<td>258</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Histological Differentiation</td>
<td>258</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Molecular Differentiation</td>
<td>260</td>
</tr>
<tr>
<td>11.7</td>
<td>Methods of Sex Control</td>
<td>261</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Selective Sorting Based on Secondary Sexual Characters</td>
<td>261</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Direct Feminization</td>
<td>261</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Gynogenesis and Diploidization</td>
<td>262</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Production and Use of Neomales</td>
<td>263</td>
</tr>
<tr>
<td>11.8</td>
<td>Conclusions and Future Perspectives</td>
<td>266</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Development and Application of Sex-Linked Markers in Salmonidae</td>
<td>281</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>12.2</td>
<td>Development of Sex-Linked Markers in Salmonids</td>
<td>282</td>
</tr>
</tbody>
</table>
Contents

12.2.1 OtY1/OtY8 283
12.2.2 GH-Ψ/GH-2 Genes 283
12.2.3 OmyP9 284
12.2.4 Omy-163 284
12.2.5 OtY2/OtY3/OmyY1 285
12.2.6 Microsatellite Markers 285
12.2.7 sdY Gene 286
12.3 Evaluation of Sex Marker Applications in Salmonids 288

13 Polyploidy Production in Salmonidae 297
 James J. Nagler
 13.1 Introduction 297
 13.2 Triploid Production 298
 13.3 Tetraploid Production 300
 13.4 Conclusion 300

Part IV Sex Determination and Control in Moronidae 305

14 Genetic and Environmental Components of Sex Determination in the European Sea Bass 307
 Marc Vandeputte and Francesc Piferrer
 14.1 Introduction to European Sea Bass Ecology and Reproductive Biology 307
 14.2 Karyotype, Genome 308
 14.3 Sex ratios in Farmed Populations 309
 14.4 Sex Ratios in Natural Populations 309
 14.5 The Genetic Component of Sex Determination in the European Sea Bass 310
 14.6 The Relationship Between Sex and Growth 312
 14.7 Influence of Manipulation of Early Growth on Sex Ratios 313
 14.8 Effects of Temperature on Sex Ratios 314
 14.9 Epigenetic Regulation of Sex Ratios 316
 14.10 Selection for Sex Ratio 318
 14.11 Concluding Remarks 320

15 Morphological and Endocrine Aspects of Sex Differentiation in the European Sea Bass and Implications for Sex Control in Aquaculture 327
 Mercedes Blázquez and Eric Saillant
 15.1 Introduction 327
 15.2 Morphological Aspects of Gonad Differentiation 328
 15.2.1 Chronology and Timing of Morphological Events 328
 15.2.2 Juvenile Intersexuality 329
 15.3 Relationship Between Growth and Sex Differentiation 331
 15.4 Endocrine Control of Sex Differentiation 333
 15.5 Sex Determination and Sex Control 336
 15.6 Molecular Markers of Sex Differentiation 338
 15.7 Transcriptomic Studies 339
 15.8 Concluding Remarks 340
16 The Induction of Polyploidy, Gynogenesis, and Androgenesis in the European Sea Bass 347
Alicia Felip and Francesc Piferrer
16.1 Introduction 347
16.2 Induction of Triploidy 348
16.3 Effects of Triploidy on Growth and Reproductive Performance 349
16.4 Perspectives on the Use of Triploids 349
16.5 Induction of Gynogenesis 350
16.6 Effects of Gynogenesis on Growth, Gonadal Development, and Sex Ratios 351
16.7 Perspectives on the Use of Gynogenetic Diploids 353
16.8 Induction of Androgenesis 353
16.9 Conclusions 354

Part V Sex Determination and Control in Centrarchidae 359

17 Sex Determination, Differentiation, and Control in Bluegill 361
Han-Ping Wang, Zhi-Gang Shen, Ze-Xia Gao, Hong Yao, Dean Rapp, and Paul O’Bryant
17.1 Introduction 361
17.2 Sex Differentiation 363
17.2.1 Gonadal Differentiation and Development 363
17.2.2 Relationship of Gonadal Differentiation with Fish Size and Age 366
17.2.3 The role of foxl2 and cyp19a1a Genes in Early Sex Differentiation in Bluegill 367
17.3 Sex Determination 370
17.3.1 Genotypic Sex Determination (GST) 370
17.3.2 Temperature Effects on Sex Determination 373
17.4 Sex Reversal 374
17.4.1 Effects of Steroids and Nonsteroidal Aromatase Inhibitor on Sex Reversal and Gonadal Structure of Bluegill 374
17.4.2 Effects of Nonsteroidal Aromatase Inhibitor on Gonadal Differentiation of Bluegill 375
17.4.3 Summary of Bluegill Sunfish Sex-Reversal 376
17.5 Large-Scale Production of All-Males or Mostly-Males 379
17.5.1 Develop GMB-Producing Brood Stock for Large-Scale All-Male Production 379
17.5.2 Growth Performance of Genetically Male Bluegill 379
17.5.3 Establishment of Mostly-Male Groups of Bluegill by Grading Selection 380
17.6 Conclusions and Future Perspectives 380

18 Sex-Determining Mechanisms and Control of Sex Differentiation in Largemouth Bass and Crappies 385
Tulin Arslan
18.1 Significance of Largemouth Bass and Crappies for Recreational Fishery and Aquaculture 385
18.2 Reproductive Characteristics of Largemouth Bass and Crappies 386
18.3 Benefits of Sex Control in Largemouth Bass and Crappie Culture 386
18.4 Strategies Evaluated for Sex Control in Largemouth Bass and Crappies 387
18.4.1 Interspecific Hybridization 387
18.4.2 Triploidy 388
Contents

18.4.3 Gynogenesis 389
18.4.4 Hormonal Sex-Reversal 390
18.5 Sex Determination Mechanisms in Largemouth Bass and Crappies 395
18.6 Conclusion and Future Projections 396

19 Hybridization and its Application in Centrarchids 405
Zhi-Gang Shen and Han-Ping Wang
19.1 Introduction 405
19.2 Phylogeny and Phylogeography 405
19.3 Hybridization in Nature 409
19.4 Artificial Hybridization and Sex Ratio of Hybrids 410
19.5 Driving Forces of Hybridization 415
19.6 Aquaculture of Sunfish Hybrids 418
19.6.1 Hybrid Bluegill 1 – Green Sunfish ♀ × Bluegill ♂ (GB Hybrids) 418
19.6.2 Hybrid Bluegill 2 – Redear Sunfish ♀ × Bluegill ♂ (RB Hybrids) 419
19.6.3 Hybrid Crappie 419
19.6.4 Hybrid Largemouth Bass 420
19.7 Conclusion 420
Contents

List of Contributors xv
Preface xix
Acknowledgments xxi

Part VI Sex Determination and Sex Control in Percidae 429

20 Sex Determination and Monosex Female Production in Yellow Perch 431
Han-Ping Wang, Zhi-Gang Shen, Hong Yao, Paul O’Bryant, and Dean Rapp
20.1 Introduction 431
20.2 Sexual Dimorphism 432
20.2.1 Sexual Size Dimorphism (SSD) 432
20.2.2 Sex-Specific Gene Expression Related to SSD 432
20.3 Sex Ratio 433
20.4 Sex Differentiation and Gonadal Morphogenesis 433
20.5 Sex Determination 435
20.5.1 Genome and Sex Chromosomes 435
20.5.2 Search for Sex-Specific Markers 436
20.5.3 Sex Determining System 437
20.6 Sex Reversal 438
20.7 Large-Scale Production of Monosex Populations Through Breeding 439
20.7.1 Creating Large-Scale Monosex Population Through Progeny Testing 439
20.7.2 Creating Large-Scale Monosex Population Without Progeny Testing 439
20.7.3 Development of all-Female-Producing Brood Stock 440
20.7.4 Performance of Genetically All-Female Populations 440
20.8 Chromosome Manipulation 440
20.8.1 Gynogenetic Approach for Monosex Populations 440
20.8.2 Triploidy Induction 440
20.9 Conclusions and Future Perspectives 441

21 Sex Determination and Control in Eurasian Perch 445
Carole Rougeot
21.1 Introduction 445
21.2 Sex Determination Process in Eurasian Perch 446
21.2.1 Gonad Morphogenesis 446
21.2.2 Sex Chromosomes 446
21.2.3 Sex-Determining Genes 448
21.2.4 Sex Steroids 448
21.2.5 Temperature Effect on Sex Determination 449
21.3 Sex Control and All-Female Eurasian Perch Production 452
21.3.1 Hormonal Control of Sex 452
21.3.2 Production of XX Males 453
21.3.3 Sperm Quality of Hormonally Sex-Reversed Males and Cryopreservation 454
21.3.4 All-Female Production and Performances 455
21.4 Sex Control by Chromosomes Set and Ploidy Manipulations 455
21.4.1 Triploidization 455
21.4.2 Gynogenesis 456
21.5 Conclusions 456

22 Sexual Dimorphism in Body Size and Form in Yellow Perch 461
Hong-Wei Liang, Han-Ping Wang, Yan Meng, Hong Yao, Zhi-Gang Shen, and Gui-Wei Zou
22.1 Introduction 461
22.2 Examination of Sexual Dimorphism in Body Size 462
22.3 Examination of Sexual Dimorphism in Body Form 463
22.4 Growth Dimorphism in Different Culture Conditions 466
22.5 Morphometric Traits for Analysis of Body Form 468
22.6 Principal Component Analysis 468
22.7 Discriminant Analysis 470
22.8 Perspectives and Applications 471

Part VII Sex Determination and Sex Control in Catfish 477

23 Sex Determination, Gonadal Sex Differentiation, and Sex Control in Channel Catfish 479
Reynaldo Patiño
23.1 Introduction 479
23.2 Sex Determination 479
23.3 Morphological and Cytological Indices of Gonadal Sex Differentiation 480
23.4 Signaling Mechanisms of Gonadal Sex Differentiation 481
23.4.1 Feminizing Signals 481
23.4.2 Masculinizing Signals 481
23.4.3 Thyroid Hormone: a New Masculinizing Signal? 486
23.5 Paradoxical Sex Reversal 486
23.5.1 Paradoxical Feminization 486
23.5.2 Paradoxical Masculinization 487
23.6 Integrated Model of Signaling Mechanisms 487
23.7 Sex Control 488
23.7.1 Current Status 488
23.7.2 Future Outlook 489

24 Sexual Size Dimorphism, Sex Determination, and Sex Control in Yellow Catfish 495
Jie Mei and Jian-Fang Gui
24.1 Sexual Dimorphism and Sex Determination 495
24.1.1 The Phenotype and Molecular Mechanism of Sexual Size Dimorphism 495
24.1.2 Sex Determination System 497
24.2 Sex Control and All-Male Production 498
24.2.1 Production of YY Super-Male 498
24.2.2 Establishment of YY Female 498
24.2.3 Development of Sex Chromosome-Linked DNA Markers 499
24.2.4 Mass Production of XY All-Male 500
24.3 Genetic Mechanism of Sex Determination 501
24.3.1 Identification of Sex-Biased mRNA and miRNAs in the Testis and Ovary 501
24.3.2 Differential Gene Expression Between XY and YY Testis 501
24.4 Prospectives 502
24.4.1 A Prospective Way to Improve the Quality of All-Male 502
24.4.2 The Future Direction on Studying the Molecular Mechanism of Sex Determination 503

25 Mechanisms of Feminization and Sex Differentiation in Southern Catfish 509
Si-Ping Deng, Zhi-Hao Liu, and De-Shou Wang
25.1 Mechanisms of Feminization in Southern Catfish 509
25.1.1 Feminization by Micro-Environmental Changes? 509
25.1.2 Feminization by Gynogenesis 510
25.1.3 Complete Feminization by Feeding Limnodilus spp 511
25.2 Sex Reversal in Southern Catfish 512
25.2.1 Female-to-Male Sex Reversal 512
25.2.2 Sex Reversal by the Blockage of Estrogen Production and Function 513
25.3 Sex Differentiation in Southern Catfish 514
25.3.1 Time of Sex Differentiation 514
25.3.2 Genes Involved in Sex Differentiation 516
25.4 Future Directions 518
25.4.1 Genetic Sex Determination (GSD) or Environmental Sex Determination (ESD) 518
25.4.2 Sex Determining Gene and Sex Determination Cascade 518

Part VIII Sex Determination and Sex Control in Flatfishes 525

26 Genomic and Epigenetic Aspects of Sex Determination in Half-Smooth Tongue Sole 527
Song-Lin Chen, Qian Zhou, and Chang-Wei Shao
26.1 Introduction to Sex Determination of the Half-Smooth Tongue Sole 527
26.2 Genomic Foundation of Sex Determination in the Half-Smooth Tongue Sole 528
26.2.1 Whole-Genome Sequencing 528
26.2.2 Genomic Organization and Evolution of Sex Chromosomes 531
26.2.3 Male Sex-Determining Gene dmrt1 534
26.2.4 Other Sex-Related Genes 534
26.3 Role of Epigenetic Regulation in Sex Determination and Sex Reversal in the Half-Smooth Tongue Sole 538
26.3.1 Epigenetic Regulation Mechanism of Sex Determination 538
26.3.2 Epigenetic Regulation Mechanism of Sex Reversal 541
26.4 Conclusions and Future Directions 543
27 Sex Identification and Control in Half-Smooth Tongue Sole 547
Song-Lin Chen and Wen-Teng Xu
27.1 Isolation of Sex-Specific Marker and Identification of Genetic Sex 547
27.1.1 Discovery of Female-Specific Amplified Fragment Length Polymorphism Marker and Identification of ZZ Male and ZW Female 547
27.1.2 Discovery of Sex-Specific Simple Sequence Repeat Marker and Identification of ZZ Male, ZW Female and WW Superfemale 549
27.1.3 Application of Sex-Specific Markers in Production of Fry with High Female Proportion 552
27.2 Artificial Propagation 552
27.2.1 Technical Principle 552
27.2.2 Methods and Applications 553
27.3 Artificial Gynogenesis 553
27.3.1 Meiogynogenesis 554
27.3.2 Mitogynogenesis 556
27.4 Polyploid Induction 559
27.4.1 Technical Principle 559
27.4.2 Methods 559
27.5 Future Perspectives for Sex Control in Half-Smooth Tongue Sole 560

28 Reproduction and Sex Control in Turbot 565
Xoana Taboada, Diego Robledo, Carmen Bouza, Francesc Piferrer, Ana María Viñas, and Paulino Martínez
28.1 Introduction to Turbot Biology and Aquaculture 565
28.2 Sex Determination in Turbot 566
28.3 Sex Differentiation in Turbot 569
28.4 Sex Control in Turbot 571
28.4.1 Environmental Control 571
28.4.2 Hormone Treatments 573
28.4.3 Triploidy 574
28.4.4 Gynogenesis 574
28.4.5 Molecular Tool for Sex Identification 576
28.5 Concluding Remarks and Future Perspectives 577

29 Sex Control in Southern and Summer Flounder 583
Xiang-Shan Ji, Song-Lin Chen, Yan Zhao, Jamie Mankiewicz Honeycutt, Russell J. Borski, and J. Adam Luckenbach
29.1 Introduction 583
29.1.1 Life Histories of Southern and Summer Flounder 583
29.1.2 Commercial Aquaculture 584
29.1.3 Sexually Dimorphic Growth 584
29.1.4 Sex Determination 585
29.2 Larval Development and Sex Differentiation 585
29.2.1 Embryonic and Larval Development of Southern Flounder 585
29.2.2 Sex Differentiation and Sexual Maturity of Southern Flounder 585
29.2.3 Embryonic and Larval Development of Summer Flounder 586
29.2.4 Sex Differentiation and Sexual Maturity of Summer Flounder 586
29.2.5 Early Markers of Sex Differentiation in Flounder 587
29.3 Sex Control in Southern Flounder 588
29.3.1 Gynogenesis 588
29.3.2 Temperature Induced Sex Control 591
29.3.3 Hormone Treatment for Sex Reversal 592
29.4 Sex Control in Summer Flounder 592
29.4.1 Meiotic Gynogenesis 592
29.4.2 Temperature Induced Sex Control 594
29.4.3 Hormone Treatment for Sex Reversal 595
29.5 Other Factors Influencing Sex 595
29.6 Conclusions and Future Directions 596

30 Gynogenesis and Sex Control in Japanese Flounder 603
 Ji‐Lun Hou and Hai‐Jin Liu
30.1 Introduction 603
30.2 Artificially Induced Gynogenesis 604
30.2.1 Induced Meiogynogenesis in the Japanese Flounder 604
30.2.2 Induced Mitogynogenesis in the Japanese Flounder 605
30.3 Production of Clones 607
30.3.1 Production of Homozygous Clones 607
30.3.2 Production of Heterozygous Clones 610
30.4 Sex Control 613
30.5 Perspectives 615

31 Sex Determination, Differentiation, and Control in Atlantic Halibut and Pacific Halibut 621
 Tillmann J. Benfey
31.1 Introduction 621
31.2 Sex Determination 622
31.3 Sexual Differentiation 623
31.4 Sex Control 625
31.5 Conclusions 627

32 Sex‐Specific Markers, Gynogenesis, and Sex Control in Spotted Halibut 631
 Hong‐Yu Ma, Song‐Lin Chen, and Xiang‐Shan Ji
32.1 Introduction 631
32.2 Methods and Applications 632
32.3 Isolation of Sex‐Specific AFLP Markers 633
32.4 Construction and Characterization of a Genetic Linkage Map 634
32.5 Development and Evaluation of Gynogenesis Technique 634
32.6 Comparison of Current Technologies 637

Part IX Sex Determination and Sex Control in Sturgeons 645

33 Sex Determination in Sturgeon 647
 Sven Wuertz, Hilal Güralp, Martin Pšenička, and Mikhail Chebanov
33.1 Introduction 647
33.2 Sex Determination and Differentiation 649
33.2.1 Cyto-anatomical Gonad Differentiation 649
33.2.2 Sex Determining Genes Controlling Early Cyto-Anatomical Sex Differentiation 652
33.3 Genetic Sex Determination (GSD) 654
33.4 Sexing in Aquaculture 656
33.5 Control of Sex – All-Female Stocks? 657
33.6 Conclusions 660

34 Hybridization and Polyploidization in Sturgeon 669
Miloš Havelka and Katsutoshi Arai
34.1 Introduction 669
34.2 Chromosome Manipulation 670
34.2.1 Gynogenesis 670
34.2.2 Androgenesis 674
34.2.3 Polyploidization 676
34.3 Hybridization 679
34.4 Induced Sex Reversion 680
34.5 Conclusions and Future Perspectives 681

Part X Sex Determination and Sex Control in Crustaceans 689

35 Sex Control in Cultured Decapod Crustaceans 691
Tom Levy, Eliahu D. Aflalo, and Amir Sagi
35.1 Sex Determination and Differentiation in Decapod Crustaceans 691
35.2 Regulation of Decapod Sexual Development 694
35.3 Monosex Aquaculture of Decapod Crustaceans 695
35.4 Commercial Biotechnologies to Achieve Monosex Aquaculture of Decapod Crustaceans 696

36 Sex Reversal and Determination and Sex Control in Shrimp and Prawn 705
Danitzia A. Guerrero-Tortolero and Rafael Campos-Ramos
36.1 Introduction 705
36.2 Sex Reversal Techniques and Male Monosex Aquaculture in Freshwater Species 706
36.2.1 Sex Reversal in M. Rosenbergii 706
36.2.2 Sex Reversal in Crayfish 706
36.2.3 Sex Reversal Techniques Changed from “Manual” to Molecular Biotechnology 707
36.3 Sex Reversal Techniques in Penaeids 708
36.4 Sex Determination 708
36.4.1 Sex Determination System in Freshwater Species, and Interspecific Hybrids 709
36.4.2 Sex Determination System in Penaeid Species (Triploid and Tetraploid Shrimp) 709
36.5 Sex Determination Mechanisms in Insects 712
36.5.1 Sex Determining Insect Genes Identified in Class Branchiopoda; Daphniidae 713
36.5.2 Sex Determining Insect Genes Identified in Macrobrachium nipponense 713
36.5.3 Sex Determining Insect Genes Identified in Penaeids 713
36.5.4 Sex Determining Insect Genes Identified in Crabs 714
36.6 Sex Determination Mechanisms in C. elegans 714
36.6.1 Fem Genes in Macrobrachium nipponense 714
Part XI Sex Determination and Sex Control in Other Fish Species 723

37 Sex Determination, Differentiation, and Control in Atlantic Cod 725
 Tillmann J. Benfey
 37.1 Introduction 725
 37.2 Sex Determination 725
 37.3 Sexual Differentiation 728
 37.4 Sex Control 729
 37.5 Triploidy 730
 37.6 Conclusions 731
 37.7 Future Studies 731

38 Sex Differentiation, Sex Change, and Sex Control in Groupers 735
 Masaru Nakamura and Yasuhisa Kobayashi
 38.1 Introduction 735
 38.2 Sex Differentiation in Grouper 736
 38.2.1 Histological Characteristics of Sex Differentiation 736
 38.2.2 Endocrine Mechanism of Sex Differentiation 737
 38.2.3 Role of Gonadotropin in Sex Differentiation 738
 38.3 Sex Change of Grouper 739
 38.3.1 Histological Characteristics of Gonads During Sex Change 739
 38.3.2 Endocrine Mechanism of Sex Change 740
 38.3.3 Role of Gonadotropin in Sex Change 741
 38.4 Artificial Induction of Sex Reversal 742
 38.4.1 Artificial Induction of Sex Reversal in Juveniles 742
 38.4.2 Artificial Sex Reversal in Adults 744
 38.5 Discussion 745

39 Artificial Gynogenesis and Sex Control in Large Yellow Croaker 751
 Zhi-Yong Wang and Ming-Yi Cai
 39.1 Introduction 751
 39.2 Sexual Growth Dimorphism 751
 39.3 Induction and Genetic Analysis of Artificial Gynogenesis 752
 39.3.1 Meio-Gynogenesis 752
 39.3.2 Mito-Gynogenesis 758
 39.4 Sex Determination in Large Yellow Croaker 763
 39.4.1 Elucidation of Sex-Determining Systems Without the Use of Markers 763
 39.4.2 Karyotypical Analysis 764
 39.4.3 DNA Markers for Sex 764
 39.5 Histological Observation on Gonadal Sex Differentiation 767
 39.6 Effects of Exogenous Hormone and Temperature on Sex Differentiation of Large Yellow Croaker 768
 39.7 Conclusions and Perspectives 771
 39.7.1 Culture Platforms and Technology 771
39.7.2 Parameters of Sex Control 771
39.7.3 Mechanism of Sex Determination and Differentiation 771
39.7.4 Relations Between Growth and Gonad Development 772

40 Sex Determination and Control in Eels 775
Xian-Cheng Qu

40.1 Introduction 775
40.2 Biology of the Rice Field Eel 775
40.2.1 Basic Biology 775
40.2.2 Genome and Karyotype 776
40.2.3 Life Cycle 776
40.2.4 Histology of Gonadal Development 776
40.3 Sex Determination and Differentiation in the Rice Field Eel 777
40.3.1 Roles of Certain Key Genes in Sex Determination and Differentiation 777
40.3.2 Summary and Perspectives 781
40.4 Sex Control 781
40.4.1 Sex Control in the Rice Field Eel 782
40.4.2 Sex Control in the Other Eels 782
40.4.3 Summary and Perspectives 785

41 Sex Control and Chromosome Manipulation in Cyprinidae: Common Carp and Grass Carp 793
Boris Gomelsky and William L. Shelton

41.1 Introduction 793
41.2 Management of Reproduction – Artificial Propagation and Sex Manipulation 793
41.3 Common Carp 796
41.3.1 Genetic Sex Determination 796
41.3.2 Sex Differentiation 796
41.3.3 Inducement of Sex Reversal by Androgens and Aromatase Inhibitors 797
41.3.4 Genetic Sex Regulation and Advantage of Raising All-Female Progenies 803
41.3.5 Induced Gynogenesis 804
41.3.6 Induced Triploidy 805
41.4 Grass Carp 806
41.4.1 Artificial Propagation and Sex Manipulation 806
41.4.2 Sex Determination 808
41.4.3 Sex Differentiation 809
41.4.4 Age-Size Effects on Gonadal Differentiation 809
41.4.5 Density-Dependent Growth Management 810
41.4.6 Grass Carp Sex Manipulation – Initial Development (1973–1984) 810
41.4.7 Integrated Monosex Breeding Program Verification: Albino Grass Carp Model (1994–2000) 814
41.4.8 Commercial Triploid Production in the United States 816

Index - Species 825
Index - Subjects 832