CONTENTS

List of Contributors xxi
Preface xxvii

1 Studies On Biocompatible Surface-Active Silica Aerogel and Polyurethane–Siloxane Cross-Linked Structures for Various Surfaces 1
K. Seeni Meera, R. Muruli Sankar, S. N. Jaisankar, and Asit Baran Mandal

1.1 Introduction, 1
1.1.1 Silica Aerogel, 1
1.1.2 Ionic Liquids, 2
1.1.3 Polyurethane–Siloxane Cross-Linked Structures, 2

1.2 Experimental Section, 3
1.2.1 Preparation of Silica Aerogel Using Choline Formate, 3
1.2.2 Preparation of Polyurethane–Siloxane Cross-Linked Films, 3
1.2.3 Characterization, 4

1.3 Results and Discussion, 5
1.3.1 Results of Surface-Active Silica Aerogel, 5
1.3.2 Results of Polyurethane–Siloxane Cross-Linked Structures, 8

1.4 Conclusions, 12
Acknowledgment, 14
References, 14

2 Interaction of Anesthetics with Globular Proteins 17
Makoto Nishimoto, Michio Yamanaka, and Hitoshi Matsuki

2.1 Introduction, 17
2.2 Anesthetic Effect on FFL, 18
2.3 Anesthetic Effect On Mgb, Lys, and BSA, 22
2.4 Intrinsic Interaction Mode of an Anesthetic with Proteins, 29

2.5 Conclusions, 32
Acknowledgments, 33
References, 33
CONTENTS

3 Lipid Monolayer and Interaction with Anesthetics 36
Yasushi Yamamoto and Keijiro Taga

3.1 Introduction, 36
3.2 Monolayer Formation, 36
 3.2.1 Dipalmitoyl Phosphatidyl Choline (DPPC), 37
 3.2.2 Dimyristoyl Phosphatidyl Choline (DMPC), 39
 3.2.3 Cholesterol, 40
 3.2.4 DPPC and Cholesterol Mixture, 41
 3.2.5 Usefulness of Dropping Method, 44
3.3 Interaction between Lipid Monolayer and Anesthetics, 44
 3.3.1 Quartz Crystal Oscillator (QCO) Method, 45
 3.3.2 Apparatuses and Procedure, 46
 3.3.3 Time Course of Frequency (QCM) and Resistance (QCI), 48
 3.3.4 Concentration Dependence of Frequency (QCM) and Resistance
 (QCI), 49
 3.3.5 True Anesthesia Phenomenon, 56
Acknowledgment, 56
References, 57

4 Atomic Force Microscopy for Measuring Interaction Forces in Biological
 Materials and Cells 59
Naoyuki Ishida, Yasuyuki Kusaka, Tomonori Fukasawa, and Hiroyuki Shinto

4.1 Introduction, 59
4.2 Measurement of Interaction Forces Using AFM, 60
4.3 Interaction of Model Membranes, 61
4.4 Interaction of Proteins, 62
4.5 Interaction of Cells, 63
4.6 Concluding Remarks, 65
References, 65

5 Bacterial Interactions 68
Masanori Toyofuku, Yosuke Tashiro, Tomohiro Inaba, and Nobuhiko Nomura

5.1 Introduction, 68
5.2 Gram-Positive and Gram-Negative Bacteria, 68
5.3 Cell-Cell Communication in Bacteria, 69
 5.3.1 Cell-Cell Communication in Gram-Negative Bacteria, 69
 5.3.2 Cell-Cell Communication in Gram-Positive Bacteria, 71
 5.3.3 A Common Language for Gram-Negative and Gram-Positive
 Bacteria: AI-2, 71
5.4 Membrane Vesicles, 72
 5.4.1 Components of MVs, 72
 5.4.2 Biological Roles of MVs, 73
 5.4.3 Surface Characteristics of MVs, 73
 5.4.4 Future Perspectives in MV Research, 74
5.5 Biofilm Formation, 74
 5.5.1 Surface-Attached Biofilms, 75
 5.5.2 Bacterial Aggregates, 76
5.6 Concluding Remarks, 77
References, 77
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2D and 3D Biocompatible Polymers for Biomedical Devices</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Masaru Tanaka</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Biofilm</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Hisao Morisaki</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Use of Microorganisms for Complex ORE Beneficiation: Bioflotation as an Example</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Akira Otsuki</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Biofouling</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Kazuho Nakamura</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

9.3.3 Biofilms in Wastewater Treatment Processes, 120
9.3.4 Biofouling in Membrane Processes, 121
References, 121

10 Bioinspired Microemulsions and Their Strategic Pharmacological Perspectives 122

10.1 Introduction, 122
10.2 A Brief Outline of Microemulsion Systems, 123
10.2.1 Types of Microemulsion Systems, 124
10.2.2 Role of Surfactant in Formation of Microemulsions, 124
10.2.3 Role of Cosurfactant in Formation of Microemulsions, 124
10.2.4 Role of Oil in Formation of Microemulsions, 125
10.2.5 Solubilization in Microemulsions, 125
10.2.6 Characterization of Microemulsions, 125
10.2.7 Stability of Microemulsions, 125
10.3 Design Strategy for Bioinspired Microemulsion Systems, 126
10.3.1 Selection of Ingredients, 126
10.3.2 Types of Bioinspired Microemulsions, 127
10.3.3 Decisive Factors for Pharmaceutical Applications, 129
10.4 Recent Advances in Bioinspired Microemulsions in Pharmaceutical Science, 129
10.4.1 Microemulsions as in Vitro Drug Delivery Systems, 129
10.4.2 Microemulsions as in Vivo Drug Delivery Systems, 131
10.4.3 Microemulsions in Cancer Therapy, 132
10.4.4 Microemulsions in Biotechnology, 133
10.4.5 Antimicrobial Activity of Microemulsions, 134
10.4.6 Biocompatible Ionic Liquid Microemulsions in Drug Delivery and Biotechnology, 135
10.4.7 Patents in Microemulsion Drug Delivery Systems, 136
10.5 Biocompatibility and Toxicity Issues, 137
10.6 Future Outlook, 138
Acknowledgment, 138
References, 138

11 Development of Nonfouling Biomaterials 145
Ruey-Yug Tsay and Toyoko Imae

11.1 Introduction, 145
11.2 Why Nonfouling is Relevant in Biomaterials, 145
11.2.1 Antithrombogenesis and Anti-inflammatory Response, 145
11.2.2 Host Response to Biomaterials, 146
11.2.3 Antibacterial Property, 147
11.3 Protein Adsorption and Material Properties, 148
11.3.1 Adsorption Mechanism of Protein, 148
11.3.2 Protein–Surface Interactions, 148
11.3.3 Surface Hydration, 149
11.3.4 Strategies for Nonfouling Design, 149
11.4 Nonfouling Biomaterials, 150
11.4.1 Surface Immobilization Techniques, 151
11.4.2 Nonionic Hydrophilic Materials, 153
11.4.3 Zwitterionic Materials, 154
11.4.4 Amphiphilic Materials, 156
CONTENTS

11.5 Conclusions and Future Perspectives, 157
References, 157

12 Surface Characterization of Silver and Fe3O4 Nanoparticles Incorporated into Collagen-based Scaffolds as Biomaterials for Tissue Regeneration: State-of-the-Art and Future Perspectives 161
Abhishek Mandal, N. Chandrasekaran, Amitava Mukherjee, and Thothapalli P. Sastry

12.1 Introduction, 161
12.2 Structural Information, 163
12.2.1 SDS-PAGE Analysis, 163
12.2.2 Circular Dichroism (CD) Studies, 164
12.2.3 Differential Scanning Calorimetry (DSC), 165
12.2.4 X-Ray Diffraction (XRD), 166
12.3 Chemical Information, 167
12.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy, 167
12.3.2 X-Ray Photoelectron Spectroscopy (XPS), 168
12.4 Morphological Information, 171
12.4.1 Scanning Electron Microscopy (SEM), 171
12.4.2 Atomic Force Microscopy (AFM), 173
12.5 Conclusions and Future Perspectives, 175
Acknowledgment, 175
References, 175

13 Biomimetic Polymer Aggregates: Self-Assembly Induced by Chemical Reactions 181
Eri Yoshida

13.1 Introduction, 181
13.2 Self-Assembly Induced by Electron Transfer, 181
13.2.1 Oxidation-Induced Self-Assembly, 182
13.2.2 Reduction-Induced Self-Assembly, 184
13.3 Self-Assembly Induced by Irreversible Photoreactions, 186
13.3.1 Photolysis-Induced Self-Assembly, 188
13.3.2 Photo-Claisen Rearrangement-Induced Self-Assembly, 189
13.3.3 Photoelectron Transfer-Induced Self-Assembly, 190
13.4 Conclusions, 191
References, 191

14 Molecular Interaction in Biomimetics and Biosystems: Chirality and Confinement at Nanodimension 195
Nilashis Nandi and Saheb Dutta

14.1 Introduction, 195
14.2 Methods of Theoretical Calculation, 198
14.3 Chiral Discrimination in Biomimetic Monolayers, 198
14.4 Experimental Studies on Chiral Discrimination in Peptide Synthesis and Aminoacylation Reaction, 199
14.5 Computational Analysis of Chiral Discrimination in Aminoacylation Reaction, 202
14.6 Computational Studies of the Chiral Discrimination in Peptide Bond Formation Reaction, 204
CONTENTS

14.7 Concluding Remarks, 206
Acknowledgments, 207
References, 207

15 Softinterface on Biosensing
Yukichi Horiguchi and Yukio Nagasaki

15.1 Introduction, 211
15.2 Advantages of Suppressing the Nonspecific Adsorption on a Surface by PEGylation, 212
15.3 Peg Chain Behavior on Surfaces, 212
15.4 Functionalization of PEG End for PEGylation on Surface, 214
15.5 Hybrid Immobilization of PEG with Ligand Molecules, 215
15.6 Conclusion, 217
References, 217

16 Bioseparation Using Thermoresponsive Polymers
Kenichi Nagase and Teruo Okano

16.1 Introduction, 220
16.2 Thermoresponsive Chromatography with Hydrophobic Interactions, 220
16.3 Thermoresponsive Chromatography with Electrostatic Interactions, 222
16.4 Thermoresponsive Chromatography Using Volume Exclusion Effect of PIPAAm, 224
16.5 Thermoresponsive Chromatography for High-Speed Separation, 226
16.6 Thermally Modulated Cell Separation Using PIPAAm, 227
16.7 Conclusions, 228
Acknowledgment, 229
References, 229

17 Biosurfactants
Etsuo Kokufuta

17.1 Introduction, 231
17.2 Classification, 231
17.3 Chemical and Physical Properties, 239
17.4 Applications, 242
References, 243

18 Structure and Regulation of the Blood–Brain Barrier
Yung-Chih Kuo, Chin-Lung Lee, and Jyh-Ping Hsu

18.1 Introduction, 244
18.2 Cellular System of the BBB, 244
18.2.1 Tight Junctions, 244
18.2.2 Neurovascular Unit, 245
18.2.3 BMECs, 245
18.2.4 Astrocytes, 245
18.2.5 Pericytes, 246
18.3 In Vitro BBB Model, 246
18.3.1 Primary Culture, 247
18.3.2 Coculture, 247
18.4 ABC Transporters in the BBB, 247
18.4.1 Mechanism of ABC Transporters, 247
CONTENTS

18.5 Secreted Factors for BBB Regulation: Mechanism and Inhibitor, 247
 18.5.1 TGFβ1, 248
 18.5.2 VEGF, 248
 18.5.3 MMP-9, 248
18.6 Nanoparticles for Delivering Pharmaceuticals Across the BBB, 248
Acknowledgments, 250
Abbreviations, 250
References, 250

19 Boron Tracedrugs as Theranostic Agents for Neutron Dynamic Therapy 255
Hitoshi Hori and Hiroshi Terada
 19.1 The Real Crisis for Twenty-First-Century Medicinal Chemists in Pharmaceutical Industries and Academia, 255
 19.2 Boron Tracedrugs as a Challenge to Traditional Drug Design Methodology, 255
 19.3 Boron Tracedrugs for Neutron Dynamic Therapy (NDT), as Physician-Friendly Tools, 257
 19.4 Conclusions, 258
Acknowledgment, 259
References, 259

20 Carbohydrates as Biocolloids in Nanoscience 260
Zaheer Khan, Shokit Hussain, Ommer Bashir, and Shaeel Ahmed Al-Thabaiti
 20.1 Introduction, 260
 20.2 Types of Biocolloids, 261
 20.3 Properties, 262
 20.4 Carbohydrates in Nanoscience, 262
References, 265

21 High-Strength Poly(Vinyl Alcohol) Hydrogels for Artificial Cartilage 269
Atsushi Suzuki and Teruo Murakami
 21.1 Introduction, 269
 21.2 Fundamental Properties of Physical PVA Gels, 270
 21.2.1 Network Structure: Swelling Ratio and Crystallinity, 270
 21.2.2 Conditions for Starting Raw Materials, 271
 21.3 Typical Examples of Physical PVA gels: Preparations and Mechanical Properties, 272
 21.3.1 Swelling Ratio and Compression Stress, 273
 21.3.2 Tearing Energy by a Trouser Tear Test, 274
 21.3.3 Dynamic Friction Coefficient and Wear Ratio, 274
 21.4 Mechanical Strengthening and Future Visions, 276
Acknowledgment, 277
References, 277

22 Superior Tribological Behaviors of Articular Cartilage and Artificial Hydrogel Cartilage 278
Teruo Murakami and Atsushi Suzuki
 22.1 Introduction, 278
 22.2 Various Lubrication Modes in Natural Synovial Joints, 278
 22.3 Biphasic Lubrication in Natural Synovial Joints, 280
 22.4 Boundary Lubrication in Natural Synovial Joints, 282
 22.5 Lubrication Modes in Artificial Joints, 284
CONTENTS

22.6 Frictional Behaviors of Artificial Hydrogel Cartilage, 285
 22.6.1 Artificial Cartilage, 285
 22.6.2 Articular Cartilage, 286
22.7 Biphasic Finite-Element Analyses for Artificial Hydrogel Cartilage, 286
22.8 Boundary Lubrication in Freeze-Thawing PVA Hydrogel, 287
22.9 Superior Tribological Behavior of Artificial Hydrogel Cartilage, 288
22.10 Conclusion, 289
 Acknowledgment, 289
 References, 289

23 Self-Assembled Cell-Mimicking Vesicles Composed of Amphiphilic Molecules: Structure and Applications 292
 Swati De and Ranju Prasad Mandal

23.1 Introduction, 292
23.2 Principles of Vesicle Formation, 292
 23.2.1 Parameters, 292
23.3 Classical Vesicles, 295
 23.3.1 Classification, 295
 23.3.2 Dynamic Processes Occurring in Vesicles, 295
 23.3.3 Formation of Vesicles, 296
23.4 Novel Vesicular Systems—Going Beyond Lipids, 300
 23.4.1 Niosomes, 301
 23.4.2 Ethosomes, 301
 23.4.3 Transfersomes, 301
 23.4.4 Sphingosomes, 301
 23.4.5 Pharmacosomes, 302
 23.4.6 e-Liposomes, 302
 23.4.7 Polymerosomes, 302
 23.4.8 Catansomes, 302
23.5 Vesicle Characterization Techniques, 303
 23.5.1 Morphology, 303
 23.5.2 Size Distribution, 303
 23.5.3 Membrane Thickness, Lamellarity, and Fluidity, 303
 23.5.4 Zeta-Potential and Surface Properties, 304
 23.5.5 Stability, 304
 23.5.6 Entrapment Efficiency, 304
 23.5.7 In Vitro Release Study, 304
 23.5.8 pH Sensitivity Assessment, 304
23.6 Applications of Vesicles, 304
 23.6.1 Drug Delivery, 304
 23.6.2 Cosmetic Applications, 305
 23.6.3 As Self-Assembled Nanoreactors, 305
 23.6.4 As Organized Assemblies for Fluorescence-Based Studies, 306
23.7 Future Perspectives and Directions of Research on Vesicles, 307
 Acknowledgments, 307
 References, 308

24 Integrin-Dependent Cell Regulation and its Clinical Application 313
 Takuya Iyoda, Takuya Matsumoto, and Fumio Fukai

24.1 Introduction, 313
24.2 Inactivation of β1-Integrin by FNIII14 Increases Chemosensitivity of Acute Myelogenous Leukemia (AML) Cells, 314
24.3 Forced Adhesion to Fibronectin Through Sustained Activation of β1-Integrin by TNIIA2 Caused Apoptosis in Hematopoietic Tumor Cells, 317
24.4 TNIIA2-Induced Activation of β1-Integrin Enhances Intracellular Drug Accumulation in Hematopoietic Tumor Cells, 318
24.5 TNIIA2-Mediated β1-Integrin Activation Accelerates Erythroid Differentiation of Hematopoietic Tumor Cells, 320
24.6 TNIIA2-Mediated β1-Integrin Activation Leads Deregulated Hyperproliferation to Nontransformed Fibroblastic Cells, 320
24.7 Concluding Remarks, 321
References, 323

25 Depth Profile of Kr++-Irradiated Chitosan 325
Kazunaka Endo
25.1 Introduction, 325
25.2 Computational Method, 325
25.3 Experimental Method, 326
25.4 Results and Discussion, 326
25.4.1 Raman Shift Spectral Analysis, 327
25.4.2 Valence Band X-Ray Photoelectron Spectral Analysis, 328
25.5 Conclusion, 329
References, 330

26 Electronic Structure of Chitosan 331
Kazunaka Endo
26.1 Introduction, 331
26.2 Experimental Method, 331
26.3 Theoretical Background, 332
26.3.1 NMR Chemical Shielding Tensor, 332
26.3.2 XPS, 332
26.4 Calculations, 332
26.4.1 NMR Chemical Shielding Tensor, 332
26.4.2 XPS, 333
26.5 Results and Discussion, 333
26.5.1 13C-NMR Chemical Shielding Tensor, 333
26.5.2 XPS, 336
26.6 Conclusion, 337
References, 338

27 Aligned Fibrillar Collagen Matrices 340
Ralf Zimmermann, Jens Friedrichs, Babette Lamfer, Uwe Freudenberg, and Carsten Werner
27.1 Introduction, 340
27.2 Shear Flow Deposition of Collagen Matrices, 341
27.2.1 Fibers in Shear Flow, 341
27.2.2 Experimental Approach, 341
27.2.3 Possible Mechanism of Fibril Alignment, 347
27.2.4 Comparison with Other Methods, 347
27.3 Collagen Self-Alignment on Mica, 347
27.3.1 Directing Collagen Self-Assembly into Ultrathin Matrices, 347
27.3.2 Adjusting the Collagen Matrix Density by pH Change, 348
27.3.3 Role of Electrolytes in Determining Final Collagen Matrices, 349
27.3.4 Structural Features of Self-Assembled Collagen Fibrils Resembling in Vivo Fibrils, 349
CONTENTS

27.3.5 Reshaping Collagen Matrices on Nanoscale, 349
27.3.6 Collagen Matrices Showing Enhanced Stability after Maturation, 350
27.3.7 Insight into Collagen Self-Assembly through Time-Lapse AFM, 350
27.4 Summary, 352
Acknowledgment, 352
References, 352

28 Colloidal Crystallization 355
Tsuneo Okubo
28.1 Introduction, 355
28.2 Preparation and Characterization of Biological and Synthetic Colloidal Particles, 356
28.2.1 Biological Colloidal Particles, 356
28.2.2 Polymer Colloidal Particles, 356
28.2.3 Inorganic Colloidal Particles, 357
28.2.4 Basic Characteristics of Colloidal Particles, 358
28.3 Why Crystal Structures Form, 358
28.4 Morphology and Phase Diagram of Colloidal Single Crystals, 359
28.5 Lattice Structure of Colloidal Crystals, 360
28.6 Alloy Crystals of Colloidal Mixtures, 361
28.7 Colloidal Crystallization Kinetics, 361
28.8 Static and Dynamic Light Scattering and Small-Angle Neutron Scattering, 362
28.9 Structural Relaxation Times of Colloidal Crystals, 363
28.10 Rigidity of Colloidal Crystals, 364
28.11 Viscosity and Viscelasticity of Colloidal Crystals, 365
28.12 External Field Effects on Colloidal Crystals, 365
28.13 Colloidal Crystallization in Microgravity, 367
28.14 Two-Dimensional Colloidal Crystals, 367
28.15 Biological Colloidal Crystals, 368
28.16 New Colloidal Crystal Systems, 368
28.17 Miscellaneous, 369
28.18 Application of Colloidal Crystals, 369
28.19 Concluding Remarks, 370
References, 370

29 Dielectric Properties of Biological Macromolecules and Biomolecule–Water Interfaces 380
Brandon Campbell, Lin Li, and Emil Alexov
29.1 Background, 380
29.2 Macromolecular Dynamics and Its Effect on the Macromolecular Interior and Molecular Surface, 381
29.2.1 Thermal Fluctuations of Atoms, Amino or Nucleic Acids, or Entire Domains, 381
29.2.2 Conformational Changes Induced by Macromolecular Function, 381
29.2.3 Intrinsically Disordered Macromolecules, 382
29.2.4 Conformational Changes Caused by a Change in Environment Due to pH or Salt Concentration, 383
29.3 Water Molecule Dynamics and Its Effect on Protein Interior and Molecular Surface, 383
29.4 Modeling Macromolecular Interior and Macromolecule–Water Interfaces, 384
29.5 Role of Ions, 384
Contents

29.6 Dielectric Properties of Biological Macromolecules and Biomolecule–Water Interfaces, 384

29.7 Concluding Remarks, 386

Acknowledgments, 386

References, 386

30 NMR of Drug Delivery Coupled with Lipid Membrane Dynamics 391

Emiko Okamura

30.1 Introduction, 391

30.2 Dynamics of Membranes as a Platform of Vital Functions, 391

30.2.1 Diffusion, 392

30.2.2 Protrusion, 394

30.3 Drug Delivery Related to Membrane Dynamics, 394

30.3.1 Diffusion of Drugs in the Membrane, 395

30.3.2 Kinetics of Membrane Binding and Dissociation, 396

30.3.3 Thermodynamic Stability, 399

30.3.4 Dynamic Binding Probability, 399

30.3.5 Effect of Cholesterol, 400

30.4 Concluding Remarks and Future Perspectives, 400

Acknowledgments, 401

References, 401

31 Stimulus-Responsive Intelligent Drug Delivery System Based on Hydroxyapatite-Related Materials 403

Makoto Otsuka

31.1 Introduction, 403

31.2 Slow Drug Release from Self-Setting Apatite Cements, 403

31.3 Effect of Calcium Level on in Vitro Drug Release from Apatite Cement, 404

31.4 Calcium-Level-Responsive Drug Release of Apatite Cements Containing Antistressor Drug in Healthy and Diseased Rats and Therapeutic Effects, 404

31.5 Drug Delivery System Containing VK2 Based on Self-Setting Apatite/Collagen Composite Cements (AC), 406

31.6 Biodegradation of the AC Block with Interconnecting Pores as a Skeletal Bone Cell Scaffold, 407

31.7 Drug Release from Biodegradable Apatite/Collagen Composite Cements with Interconnective Macropores, 408

31.8 In Vitro Bone Cell Activity–Responsive Drug Release from Biodegradable Apatite/Collagen Bone Cell Scaffold with Interconnective Macropores, 408

31.9 In Vivo Bone Cell Activity–Responsive Deoxyribonucleic Acid (DNA) Release from Injectable Self-Setting Apatite Cement and Application to Gene Therapy, 409

Acknowledgments, 411

References, 411

32 Drying Structure 412

Tsuneo Okubo

32.1 Introduction, 412

32.2 Convective Patterns, 413

32.3 Sedimentation Patterns, 416

32.4 Drying Patterns of Colloidal Dispersions and Colloidal Crystals, 417

32.5 Drying Patterns of Polymer Gel Spheres, 419
CONTENTS

32.6 Drying Patterns of Synthetic and Biological Polymers, 421
32.7 Drying Patterns of Ionic and Neutral Surfactants, 423
32.8 Drying Patterns of Simple Electrolytes, 424
32.9 Drying Patterns of Other Solutes, 424
32.10 Transferring Information on Solutions and Suspensions Toward the Drying Patterns, 424
32.11 Miscellaneous, 426
32.12 Concluding Remarks, 426
References, 427

33 Electrophoretic Mobility of Colloidal Particles

Hiroyuki Ohshima

33.1 Introduction, 430
33.2 Smoluchowski’s, Hückel’s, and Henry’s Equations, 430
33.3 General Theory of the Electrophoretic Mobility of Spherical Hard Particles, 431
33.4 Relaxation Effect, 433
33.5 Electrophoretic Mobility of Soft Particles, 435
References, 437

34 Electrostatic Interaction Between Colloidal Particles

Hiroyuki Ohshima

34.1 Introduction, 439
34.2 Interaction Between Hard Particles, 439
34.2.1 Interaction between Two Parallel Plates: Low-Potential Case, 439
34.2.2 Derjaguin’s Approximation for Calculation of Interactions between Two Spheres or Cylinders, 440
34.2.3 Low-Potential Case, 440
34.2.4 Linear Superposition Approximation: Arbitrary Potential Case, 441
34.3 Interaction Between Soft Particles, 443
34.4 Interaction Between Two Soft Particles After Contact, 444
34.4.1 Two-Stage Model, 444
34.4.2 Three-Stage Model, 446
34.5 Electrostatic Interaction Between Two Interpenetrating Soft Particles, 448
34.5.1 Linearized Poisson–Boltzmann Equations for Two Interacting Charged Porous Spheres, 448
References, 449

35 Physicochemical Properties and Clinical Applications Of Surfactant-Free Emulsions Prepared with Electrolytic Reduction Ion Water (ERI)

Ken-ichi Shimokawa and Fumiyoshi Ishii

35.1 Introduction, 451
35.2 Preparation and Physicochemical Properties of Surfactant-Free Emulsions Prepared with ERI Containing Magnesium Aluminum Silicate, 453
35.3 Effects of Electrolytic Reduction Ion Water (ERI) Lotion Prepared with Surfactant-Free Emulsions on Burn Wound Healing (Case Report), 456
References, 457

36 Steady-State Coupling in Enzyme Membrane

Kazuo Nomura

36.1 Introduction, 459
36.2 Theoretical Background, 459
CONTENTS

36.3 Results and Discussion, 462
 36.3.1 Membrane Permeation across the Ionomer Membrane, 462
 36.3.2 Immobilization of Enzyme, 463
 36.3.3 Hydrolysis of 4-Nitrophenylphosphate across Immobilized
 Enzyme Membrane, 463
 36.3.4 Degree of Coupling between Reaction Rate and Diffusional
 Flux in the Enzyme Membrane System, 464
 36.3.5 Quantity of Immobilized Acid Phosphatase, 466
 References, 468

37 Evaluation of Zeta-Potential of Individual Exosomes Secreted from
Biological Cells Using a Microcapillary Electrophoresis Chip 469
Takanori Akagi and Takanori Ichiki
 37.1 Introduction, 469
 37.2 Exosome Preparation, 469
 37.3 Electrophoresis System for Exosomes, 470
 37.4 Relation Between Zeta-Potentials of Exosomes and Their Originating
 Cells, 470
 37.5 Effect of Sialidase on the Zeta-Potential of Exosomes, 472
 37.6 Conclusion, 473
 References, 473

38 Flocculation Dynamics on the Basis of Collision-Limited Analysis 474
Yasuhisa Adachi
 38.1 Introduction, 474
 38.2 Population Balance Equation, 474
 38.3 Brownian Coagulation, 475
 38.3.1 Collision Process under Brownian Motion, 475
 38.3.2 Smoluchowski Solution, 476
 38.3.3 Self-Similar Solution, 477
 38.3.4 Effect of Fractal Structure of Flocs on Flocculation Rate, 478
 38.4 Coagulation in Shear Flow, 479
 38.4.1 Collision Frequency in Shear Field, 479
 38.4.2 Interaction between Colloid Particles in Laminar Shear Flow, 480
 38.4.3 Effect of Formation of Floc Structure on Shear Coagulation Rate, 480
 38.5 Initial Stage of Bridging Flocculation in a Turbulent Mixing, 481
 38.5.1 Schematic Picture of Flocculation with Polymer Flocculants in
 a Practical System, 481
 38.5.2 Collision Process in Turbulent Flow, 481
 38.5.3 Historical Review of Concept of Nonequilibrium Flocculation, 483
 38.5.4 Initial-Stage Dynamics of Bridging Flocculation of PSL
 Particles Induced by Polyelectrolytes under High Ionic Strength, 484
 38.6 Conclusion and Future Perspectives, 485
 Acknowledgment, 485
 References, 485

39 Anisotropic Gel Formation Induced by Dialysis 487
Toshiaki Dobashi and Takao Yamamoto
 39.1 Introduction, 487
 39.2 Dialysis-Induced Gelation, 487
 39.2.1 Boundary Conditions, 487
 39.2.2 Birefringence of Dialysis-Induced Gel, 488
CONTENTS

43 Synthesis and Properties of Heterocyclic Cationic Gemini Surfactants
Avinash Bhadani, Sukhprit Singh, Hideki Sakai, and Masahiko Abe

43.1 Introduction, 539
43.2 Pyridinium Gemini Surfactants, 539
43.3 Imidazolium Gemini Surfactants, 547
43.4 Pyrrolidinium Gemini Surfactants, 552
43.5 Piperidinium Gemini Surfactants, 552
References, 553

44 Functional Hydrogel Microspheres
Daisuke Suzuki, Takuma Kureha, and Koji Horigome

44.1 Introduction, 554
44.2 Microgel Synthesis, 554
44.3 Microgel Characterization, 556
44.4 Functional Microgels, 558
 44.4.1 Hybrid Microgels, 558
 44.4.2 Janus Microgels, 558
 44.4.3 Oscillating Microgels, 560
44.5 Concluding Remarks, 567
References, 567

45 Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant
Yuji Yamashita and Kazutami Sakamoto

45.1 Introduction, 570
45.2 Calculations of HLB Number, 570
45.3 Practical Side of HLB Theory, 572
45.4 Evaluation of Hydrophilicity and Lipophilicity, 572
45.5 TLC Evaluation of Amino Acid-Derived Surfactants, 573
45.6 Conclusions, 574
References, 574

Index

000