CONTENTS

PREFACE xv

PART 1 BASIC CONCEPTS AND THEORY 1

1 Overview of this Book 3
 1.1 Introduction, 3
 1.2 Who is this Book Written for?, 4
 1.3 Five Ways to Improve Energy Efficiency, 5
 1.4 Four Key Elements for Continuous Improvement, 7
 1.5 Promoting Improvement Ideas in the Organization, 8

2 Theory of Energy Intensity 9
 2.1 Introduction, 9
 2.2 Definition of Process Energy Intensity, 10
 2.3 The Concept of Fuel Equivalent (FE), 11
 2.4 Energy Intensity for a Total Site, 13
 2.5 Concluding Remarks, 15
 Nomenclature, 15
 References, 15

3 Benchmarking Energy Intensity 16
 3.1 Introduction, 16
 3.2 Data Extraction from Historian, 17
CONTENTS

7 Heat Exchanger Fouling Assessment

7.1 Introduction, 112
7.2 Fouling Mechanisms, 113
7.3 Fouling Mitigation, 114
7.4 Fouling Mitigation for Crude Preheat Train, 117
7.5 Fouling Resistance Calculations, 119
7.6 A Cost-Based Model for Clean Cycle Optimization, 121
7.7 Revised Model for Clean Cycle Optimization, 125
7.8 A Practical Method for Clean Cycle Optimization, 128
7.9 Putting All Together—A Practical Example of Fouling Mitigation, 130
Nomenclature, 136
References, 137

8 Energy Loss Assessment

8.1 Introduction, 138
8.2 Energy Loss Audit, 139
8.3 Energy Loss Audit Results, 147
8.4 Energy Loss Evaluation, 149
8.5 Brainstorming, 150
8.6 Energy Audit Report, 152
Nomenclature, 153
References, 153

9 Process Heat Recovery Targeting Assessment

9.1 Introduction, 154
9.2 Data Extraction, 155
9.3 Composite Curves, 156
9.4 Basic Concepts, 159
9.5 Energy Targeting, 160
9.6 Pinch Golden Rules, 160
9.7 Cost Targeting: Determine Optimal ΔT_{min}, 162
9.8 Case Study, 165
9.9 Avoid Suboptimal Solutions, 169
9.11 Challenges for Applying the Systematic Design Approach, 172
Nomenclature, 174
References, 174

10 Process Heat Recovery Modification Assessment

10.1 Introduction, 175
10.2 Network Pinch—The Bottleneck of Existing Heat Recovery System, 176
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Identification of Modifications</td>
<td>179</td>
</tr>
<tr>
<td>10.4</td>
<td>Automated Network Pinch Retrofit Approach</td>
<td>181</td>
</tr>
<tr>
<td>10.5</td>
<td>Case Studies for Applying the Network Pinch Retrofit Approach</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>194</td>
</tr>
<tr>
<td>11</td>
<td>Process Integration Opportunity Assessment</td>
<td>195</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>11.2</td>
<td>Definition of Process Integration</td>
<td>196</td>
</tr>
<tr>
<td>11.3</td>
<td>Plus and Minus (+/−) Principle</td>
<td>198</td>
</tr>
<tr>
<td>11.4</td>
<td>Grand Composite Curves</td>
<td>199</td>
</tr>
<tr>
<td>11.5</td>
<td>Appropriate Placement Principle for Process Changes</td>
<td>200</td>
</tr>
<tr>
<td>11.6</td>
<td>Examples of Process Changes</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>PART 3 PROCESS SYSTEM ASSESSMENT AND OPTIMIZATION</td>
<td>225</td>
</tr>
<tr>
<td>12</td>
<td>Distillation Operating Window</td>
<td>227</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>12.2</td>
<td>What is Distillation?</td>
<td>228</td>
</tr>
<tr>
<td>12.3</td>
<td>Distillation Efficiency</td>
<td>229</td>
</tr>
<tr>
<td>12.4</td>
<td>Definition of Feasible Operating Window</td>
<td>232</td>
</tr>
<tr>
<td>12.5</td>
<td>Understanding Operating Window</td>
<td>232</td>
</tr>
<tr>
<td>12.6</td>
<td>Typical Capacity Limits</td>
<td>253</td>
</tr>
<tr>
<td>12.7</td>
<td>Effects of Design Parameters</td>
<td>255</td>
</tr>
<tr>
<td>12.8</td>
<td>Design Checklist</td>
<td>257</td>
</tr>
<tr>
<td>12.9</td>
<td>Example Calculations for Developing Operating Window</td>
<td>257</td>
</tr>
<tr>
<td>12.10</td>
<td>Concluding Remarks</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Nomenclature</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>279</td>
</tr>
<tr>
<td>13</td>
<td>Distillation System Assessment</td>
<td>281</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>281</td>
</tr>
<tr>
<td>13.2</td>
<td>Define a Base Case</td>
<td>281</td>
</tr>
<tr>
<td>13.3</td>
<td>Calculations for Missing and Incomplete Data</td>
<td>284</td>
</tr>
<tr>
<td>13.4</td>
<td>Building Process Simulation</td>
<td>287</td>
</tr>
<tr>
<td>13.5</td>
<td>Heat and Material Balance Assessment</td>
<td>288</td>
</tr>
<tr>
<td>13.6</td>
<td>Tower Efficiency Assessment</td>
<td>292</td>
</tr>
<tr>
<td>13.7</td>
<td>Operating Profile Assessment</td>
<td>295</td>
</tr>
<tr>
<td>13.8</td>
<td>Tower Rating Assessment</td>
<td>298</td>
</tr>
<tr>
<td>13.9</td>
<td>Column Heat Integration Assessment</td>
<td>300</td>
</tr>
<tr>
<td>13.10</td>
<td>Guidelines for Reuse of an Existing Tower</td>
<td>302</td>
</tr>
</tbody>
</table>
17.5 Fuel Equivalent-Based Steam Pricing, 373
17.6 Cost-Based Steam Pricing, 376
17.7 Comparison of Different Steam Pricing Methods, 377
17.8 Marginal Steam Pricing, 379
17.9 Effects of Condensate Recovery on Steam Cost, 384
17.10 Concluding Remarks, 384
Nomenclature, 385
References, 385

18 Benchmarking Steam System Performance 386
18.1 Introduction, 386
18.2 Benchmark Steam Cost: Minimize Generation Cost, 387
18.3 Benchmark Steam and Condensate Losses, 389
18.4 Benchmark Process Steam Usage and Energy Cost Allocation, 394
18.5 Benchmarking Steam System Operation, 396
18.6 Benchmarking Steam System Efficiency, 397
Nomenclature, 402
References, 402

19 Steam and Power Optimization 403
19.1 Introduction, 403
19.2 Optimizing Steam Header Pressure, 404
19.3 Optimizing Steam Equipment Loadings, 405
19.4 Optimizing On-Site Power Generation Versus Power Import, 407
19.5 Minimizing Steam Letdowns and Venting, 412
19.6 Optimizing Steam System Configuration, 413
19.7 Developing Steam System Optimization Model, 417
Nomenclature, 422
Reference, 422

PART 5 RETROFIT PROJECT EVALUATION AND IMPLEMENTATION 423

20 Determine the True Benefit from the OSBL Context 425
20.1 Introduction, 425
20.2 Energy Improvement Options Under Evaluation, 426
20.3 A Method for Evaluating Energy Improvement Options, 429
20.4 Feasibility Assessment and Make Decisions for Implementation, 442

21 Determine the True Benefit from Process Variations 447
21.1 Introduction, 447
21.2 Collect Online Data for the Whole Operation Cycle, 448
22 Revamp Feasibility Assessment

22.1 Introduction, 459
22.2 Scope and Stages of Feasibility Assessment, 460
22.3 Feasibility Assessment Methodology, 462
22.4 Get the Project Basis and Data Right in the Very Beginning, 465
22.5 Get Project Economics Right, 466
22.6 Do Not Forget OSBL Costs, 470
22.7 Squeeze Capacity Out of Design Margin, 471
22.8 Identify and Relax Plant Constraints, 472
22.9 Interactions Between Process Conditions, Yields, and Equipment, 473
22.10 Do Not Get Misled by False Balances, 474
22.11 Prepare for Fuel Gas Long, 475
22.12 Two Retrofit Cases for Shifting Bottlenecks, 477
22.13 Concluding Remarks, 480
Nomenclature, 480
References, 480

23 Create an Optimization Culture with Measurable Results

23.1 Introduction, 481
23.2 Site-Wide Energy Optimization Strategy, 482
23.3 Case Study of the Site-Wide Energy Optimization Strategy, 487
23.4 Establishing Energy Management System, 492
23.5 Energy Operation Management, 496
23.6 Energy Project Management, 499
23.7 An Overall Work Process from Idea Discovery to Implementation, 500
References, 502

INDEX 503