INDEX

Advanced process control (APC) system, 45, 55–57, 306, 308, 319, 324, 326
Aggregate energy intensity, defined, 13
APC. See Advanced process control (APC) system
Automated network pinch retrofit approach, 181–183
mixed integer linear programming (MILP) model, 181
nonlinear behavior, of stream heat capacity, 183
utility modifications, 183

Benchmarking assessment, 16
Process energy benchmark, 31
Benchmarking steam system, 386
benchmark steam cost, 389
costs of steam production, 388
fuel selection, 388
heating values, 389
efficiency, 397–402
cogeneration efficiency, 402
R ratio analysis, 401
operation, 396–397
Benchmark steam, 387, 389
and condensate losses, 389
condensate discharge, 391
condensate return, 392
monitoring steam losses, 393
recommendations, 392
steam recovery, 392
steam trap management, 389–391
minimize generation cost, 387, 389
process steam, usage and energy cost allocation, 394–396

Boilers, 329, 330
blowdown, 332
combustion efficiency, 387
efficiency, 332, 370, 410
feed water (BFW), 17, 403, 426
fire-tube boiler, 330
loading optimization, 405
modeling, 332–333
packaged boiler, 332
specific fuel consumption, 370
steam (See Boiler steam)
water-tube boiler, 330–331
Boiler steam
 cost breakdown for, 370
 cost components contributing to, 367
 specific costs calculations, 367
 specific total cost C_{ST}, 367–368
 steam system configuration, 369
 variable and fixed costs, 368–370
Bottom temperature, 314
Brainstorming, 150
 acknowledgement, 152
 discussion platform, 151–152
 expected attendees, 150–151
 ground rules, 152
 time duration, 152
BFW. See Boiler, feed water (BFW)
Building process simulation, 287–288
Capital and energy trade-off, 164
Capital cost, 32, 148, 152, 160, 194, 216, 427
 estimates, 8, 173, 189
 incremental, 441, 445
 minimum, 176, 307, 464, 477, 491
 modifications, 6
 of heat exchanger network, 162, 163
 selection, 180
Capital project management, 499
Case studies, 165–166
 advanced technology projects, 490
 applying retrofit method to total site, 193–194
 cost and benefit analysis, for process unit, 491
 diesel hydrotreating process, 165–166
 benefit estimation, 168–169
 selection of a representative operation basis for targeting assessment, 166–167
 energy reduction for 5-year implementation plan, 492
 energy-saving opportunities, 489
 delayed coker unit improvements, 490
 hydrocracking unit (HGU) improvements, 490
 reforming unit energy-saving opportunities, 489–490
 increase feed rate for crude unit, 183–188
 overcome limitations, for implementing energy modification projects, 191–193
 reduce energy cost for DHT unit, 188–190
 retrofit cases for shifting bottlenecks
 retrofit project for a refiner, 477–478
 retrofit project for ethylene plant, 478–479
 site-wide energy optimization strategy, 487
 identify inexpensive improvement options, 488–489
CC. See Composite curves
Cherry-picking approach, 481
Clean cycle optimization
 cost-based model, 121–125
 practical method for, 128–129
 data reconciliation, 129
 fouling forecasting, 129–130
 optimization model, 129
 root cause analysis capability, 129
 standard simulation case, 129
 U value trend, 129–130
 revised model, 125–128
Cocurrent, 84–86
Column bottom temperature, 314
Column heat integration assessment, 300
 feed conditioning optimization, 302
 feed stage optimization, 301
 reflux rate optimization, 301–302
 side condensing/reboiling optimization, 302
Combustion efficiency, 388
Composite curves, 156–158, 198
 basic concepts described in, 159
 hot and cold utility requirement, 159
 maximal process heat recovery, 159
 minimum temperature approach, 159
 pinch point, 159
 calculation of surface area, 163–164
 capital and energy trade-off, 164
 T/H representation, 157–158
Condenser pressure, 308
Corporate management, 4
Cost-based cleaning strategy, 121
Cost-based steam pricing, 376
 cost calculations, 376
 LP steam pricing, 377
MP steam pricing, 376–377
HP steam pricing, 367–370
Cost targeting, 162–165, 170. See also
capital cost, estimation
for determining $\Delta T_{\text{min,opt}}$, 165
avoid suboptimal solutions, 169–171
common mistake, 169
for fractionation section, 170–171
reaction section, 170
integrated cost targeting, and process
design, 171–172
Countercurrent, 61, 85–87, 86, 135
Cross-pinch heat transfer, 162

Data extraction, 17, 155–156
criteria for, 32–33
DCS. See Distributed control system (DCS)
Deaerator, 333–334, 347, 349, 354, 384,
387, 413, 420, 430
balance, 360
Debutanizer, 19, 212, 313, 319, 478, 490
bottoms, 318
column, 40, 45, 50, 316
feed drum, 54
reboiler duty, 48
Deisopentanizer (DIP) tower, 318
bottom, 318
calibrated model, for evaluation, 320
define objective function, 321–322
economic improvements, 325
flow scheme, 319
optimization implementation, 324
optimization results
 offline, 322–324
 online, 324–325
overhead product, 318
simulation model, 320
simulation results
 at designed reboiler duty, 321
 vs. DIP operating data, 321
sustaining benefits, 325–326
trays, 318
variation of performance, 320
Design checklist, 257
tower design checklist, 228, 259
tower tray design, and hydraulic
assessment, 260
Design margin, squeeze capacity, 471–472
Design parameters, effects, 255
column diameter, 256
effects of pressure, 256
hole diameter and fractional hole
area, 256
L/V ratio, 256
tray spacing, 256
tray type, 257
weir height, 257
Desuperheaters, 329, 330, 347, 371, 397
Diesel hydrotreating process, 166–168
composite curves, 168
operating frequency, 167
process feed rate over time, 167
process stream data, 168
selection of operation basis, for targeting
assessment, 166–167
Distillation column, 56, 228
appropriate placement, 203–205
configuration, 228
sieve tray, 294
trade-off, 312
training of operators on, 55
Distillation efficiency, 229–232
FRI data, 231
McCabe–Thiele diagram, 230
Murphree tray efficiency, 229, 230
O’Connell correlation, 231
tower efficiency, 229, 231
typical trend, 232
V/L ratio, 230
Distributed control system (DCS), 54, 55,
319, 324, 347, 362, 363, 493, 498,
499
Dumping, 43, 232, 236, 251, 253, 294, 297,
300, 307, 308

Economic operating margin, for
column, 313
Economic value function, 313–314
Effective mean temperature difference
(EMTD), 83–84, 86, 88
EMTD. See Effective mean temperature
difference (EMTD)
Energy balance, 17, 20–23, 149, 286, 288
Energy benchmarking, 5, 9, 16, 17, 32
calculations precision for, 33
Energy content, and combustion efficiency
of fuels, 388
Energy cost savings, 152, 168, 427
Energy demand, 7, 36, 197, 345, 365, 386, 486
Energy efficiency, 5, 307, 401
improvements, 5
 achieving better heat recovery, 5
determining process changes, 6, 7
minimizing wastes and losses, 5
optimizing energy supply system, 7
optimizing process operation, 5
key elements for continuous improvement, 7–8
Energy improvement, options under evaluation, 426
assessment and making decisions for implementation, 442–446
implementation sequence, summary of steam projects, 441, 445
driver switch for boiler fans, 426
driver motorization in reformer, 428
methods for, 429
 base steam balance for example problem, 431
effects of driver switch for one boiler fan, 432
establish base case of steam balance, 429–430
evaluate operational changes, 430–434
evaluating energy capital projects for options in sequence 1, 434–440
predetermine the implementation sequence, 429
project economics obtained on stand-alone basis, 427
reduce high-pressure steam, 426, 428
Energy intensity, 9, 10
 based on FE, 13
process, defined, 10–11
for a total site, 13, 14, 15
Energy loss, 21–23, 30, 36, 39, 128, 166, 413, 482
evaluation, 149–150
miscellaneous, 147
Energy loss audit, 138–139
 heat exchanger fouling assessment, 146–147
 heat loss assessment for condensate loss, 145–146
 fired heaters, 142–143
 poor turndown operation, 146
 process coolers, 139–140
 steam leakage, 143–145
towers, 143
miscellaneous energy losses, 147
motor electricity loss assessment, 142
power loss assessment
 for letdown valve, 141
 for rotating equipment, 140–141
 steam loss rates at varying leak sizes
 and, 142
Energy management, 3, 4
program, 9
Energy management system, establishment, 492–493
accountability, 493
corporate energy audit, 495–496
documentation, 494
making business cases, for improvement ideas, 495
scorecard/tracking, 494
technical target system, 494–495
work processes, 493–494
Energy operating costs, 4, 56, 162, 366, 392, 394, 403, 418, 434, 481
Energy operation management, 496–499
 key indicators, limits, and targets, 496–498
 operation monitoring system
 gap analysis, 497–498
 key indicators, 496–497
 operation trainings, 498
 key indicators, 498–499
 KI training model, 499
 training objectives, 498–499
Energy optimization, 9, 16
 for distillation system, 312
 key elements, 7
 site-wide energy optimization, 482, 487
 systematic design procedure, 172
Energy performance index (EPI)
 method, 29–30
benchmarking, based on, 30–31
 best-in-operation energy performance, 30–31
 best technology energy performance, 31–32
 industrial Peers’ energy performance, 31
Energy project management, 499–500
idea to implementation, 500–502
project lookbacks, 500
review, 500
retrofit energy projects
achieve minimum investment cost, 500
work process, 499–500
Energy required to produce lb of saturated
steam, 388
Energy savings, 36, 76, 168, 175, 192, 198,
206, 221, 392, 425, 434
categories, 487
projects, 367, 425
Energy targeting, 160–161
composite curves, 160
pinch golden rules, 162
Energy utilization, 4
to fuel equivalent, conversion, 17, 20–21
Enthalpy, 41, 141, 156, 162, 302, 335, 339,
371, 373, 378, 410
cost calculations, 371–372
steam pricing, 371
Entropy, 141, 334, 336, 372
False steam balances, 474–475
FE. See Fuel equivalent (FE)
Feasibility assessment methodology, 462
guidelines, 465–466
plant management, 465
process models, 464
and yield estimates, 464
project design basis, 465–466
systematic approach, 462–464
traditional approach, 462
yield estimates, 464
Feed vaporization, 55, 191, 199, 307, 308,
488
Fired heaters, 61
design for high reliability, 62
burner selection, 66–68
burner to tube clearance, 66
flux rate, 63–65
fuel conditioning system, 68
efficient fired heater operation, 73–75
air preheat effects, 78
availability and efficiency, 78
draft effects, 78
excess air, and reliability, 78
O2 analyzer, 75–76
optimize excess air, need of, 76–77
guidelines for reliability and efficient
operation, 79–80
operation for high reliability, 68–69
bridge wall temperature, 69–70
draft, 69
excess air or O2 content, 73
flame impingement, 71–72
flame pattern, 73
tube life, 72–73
tube wall temperature, 71
revamp, 80–81
Flooding, 43, 219, 221, 222, 229, 238, 241,
242, 266, 272, 307, 308, 472, 477
Fluid catalytic cracking (FCC) off-gas, 477
 Fouling, 37, 70, 82, 112, 120, 128, 146
accumulation in heat exchanger, 107
biological, 114
chemical reaction, 113
corrosion, 114
crystallization, 113
effects of velocity, 95–96
freezing, 114
mechanisms, 113
mitigation, 104, 114–117, 130–131
complete methodology, 130
for crude preheat train, 117–119
design change, 134–135
exploring options, 133
flow path change in maintenance,
135–136
improving desalting performance, 134
measuring and sustaining benefits, 136
offline cleaning, 133
rating assessment, 131–132
root cause analysis, 132–133
particulate, 113
resistance, 84, 92, 93
calculations, 119–120
determine pressure drop, 121
solidification, 114
Fuel equivalent (FE), 12
based steam pricing, 373–374
cost calculations, 374
HP steam, 374
LP steam, 375–376
MP steam, 374–375
concept of, 11, 12
ergy intensity based on, 13
Fuel equivalent (FE) (Continued)
as factors
fuel, 12
power, 12–13
steam, 12
for steam and power, 23
BFW water, 29
condensate, 29
cooling water, 29
factors for power, 24–25
factors for steam, condensate, and
water, 25–26
HP steam, 26
LP steam, 28–29
MP steam, 28
Fuel gas long
preparation for, 475–477
prevention, as strategy, 477
recover valuable products, 476
Gas turbine, 338–339
applications, 338
modeling, 339
aero-derivative gas turbine, 339
industrial gas turbine, 339
Grand composite curves, 199–200
Heat balance
assessment, 292
for differential surface area, 85
Heat exchanger, 92
fouling assessment, 104–106
grid representation for network, 176
improving performance, 106–107
identify deteriorating
performance, 107–109
rating assessment, 96–97
assessing suitability, changing
conditions, 97
software, 82, 83
in series or parallel, determining
arrangement, 100–103
TEMA types, 109
Heat exchanger network (HEN), 177, 179
modifications, 179
adding a new match, 179
re piping, 179
resequencing, 179
splitting, 179
retrofit problem, 180–181
Heat exchanger pressure drop, 94
Heat loss assessment
condensate loss, 145–146
fired heaters, 142–143
poor turndown operation, 146
process coolers, 139–140
steam leakage, 143–145
towers, 143
Heat pumped C3 splitter, 282
defining a base case, 283
heat and mass balances, 284
major data set, 283
Heat rate, 24, 400, 408, 410–412, 411, 417
for on-site power generation, 410
Heat recovery
system, 156, 160–162, 164, 170, 173,
175, 176, 211
targeting assessment, 169
Heat transfer, 95
effects of velocity, 95–96
Heat transfer coefficient, 71, 83, 92, 108,
119, 147
Heavy poly nuclear aromatics (HPNA)
components, 222
HEN. See Heat exchanger network (HEN)
High-pressure (HP) letdown rate, 447
frequency plot, 449
Monte carlo simulation, 449–456
normal distribution, 449–456
online data, 448
online data collection, 448–449
High-pressure separator (HPS), 165–166,
190
Hydrocracking unit, 220
energy-saving projects, 220
reaction and fractionation projects, 221
Improper project evaluation, 426
Incomplete data, 284–285
Inside process battery limit (ISBL), 312, 318,
425, 426, 429, 430, 468, 471, 473
Integrated cost targeting, and process
design, 171
conventional design approach, 171
systematic design approach, 171–172
Integrated energy, 219
Investment projects, 4
ISBL. See Inside process battery limit
(ISBL)
Key energy indicator (KEI), 36, 53, 483

Key indicators
 applications, 53–57
 defined, 39–40
 energy needs, developing key indicators for, 42–43
 reaction section, developing key indicators in, 40–42
 simplifying problem, 40
 economic evaluation for, 49–52
 naphtha stabilizer section, developing key indicators, 44–45
 product fractionation section, developing key indicator, 43–44
 representing operation opportunities, 36
 furnace operation, 38
 heat exchanger fouling mitigation, 37–38
 housekeeping aspects, 39
 minimizing steam letdown flows, 39
 reaction and separation optimization, 36–37
 rotating equipment operation, 38–39
 turndown operation, 39
 set up targets for, 45–49

Letdown valves, 329, 339
 valve characteristics, 340
 LMTD. See Logarithmic temperature difference (LMTD)

Logarithmic temperature difference (LMTD), 85–86, 88–90, 147, 163, 165

Lower-pressure separator (LPS), 166, 190

Low-pressure (LP) steam, 18, 28, 29, 149, 347, 372, 376, 395, 413, 428, 436, 442

Monte Carlo simulation, 451, 457. See also
 Online data
 cumulative probability calculation, 453
 generate normal distribution, 451–452
 histogram from, 452–453

Murphree tray efficiency, 229, 230

Network pinch, 176
 significance of concept, 179
 uniqueness of location, 178–179
 vs. process pinch, 177, 178

Network pinch method, 220

Online data
 average and standard deviation, 450–451
 normal distribution, 449–450
 cumulative probability and percentage, 453–455
 histogram generation, 452–453
 probability density function, 450
 statistics summary (See Statistics summary, for normal distribution)
 verification, 455–456
 via Monte Carlo simulation, 451–452

On-site power generation
 heat rate, 408–412
 market power equivalent efficiency, 408–412
 power price, cut point of, 412
 vs. power import/export, 407

Operating profile assessment, 295–298

Operating window, distillation
 bounded by tray capability limits, 233
 calculations for developing, 257, 260
 determination of tower diameter, 260–264
 feasible operation window, 269, 271–276
 hydraulic performance evaluations, 266–269
 tray design summary, 269, 270
Operating window, distillation (Continued)
tray layout, 264–266
concept of relative momentum, 233
constant L/V operating line, 253
definition, 232
distillation efficiency, 234
donwcomer backup flood, 235
donwcomer choke, 237, 248–249
donwcomer flooding, 242–244
clear liquid height, 244, 245
head loss, 245
total hydraulic head, 246–248
tray pressure drop, 245–246
dumping, 236
excessive weeping, 251–253
jet flood, 235
liquid momentum, 233
modeling parameters, 234
reducing reflux rate, 236
spray, 238
Lockett’s correlation, 238
relationship of vapor and liquid, 238
spray flow, 234
tray flooding, 235, 238–242
vapor–liquid flow structure on tray
deck, 234
vapor momentum, 233
weeping, 236
weir loading limits, 249–250
maximum, 250–251
minimum, 250
Optimal reflux rate, 307
Optimize complex fractionation/separation
systems, 196
Optimized boiler loadings, cost
savings, 406
Optimized steam system, 403
characteristics, 403–404
Optimized turbine loadings, 407
cost savings, 407
Optimize reactor system, 195
Optimizing on-site power generation vs.
power import, 407–408
Optimizing steam equipment
loadings, 405–407
Optimizing steam header pressure, 404–405
Optimizing steam system
configuration, 413–414
cogeneration efficiency, 414–416
comparing current operation, 416–417
maximal efficient operation, 417
minimal cost operation, 417
Outside system battery limit (OSBL), 426
costs, 470–471
limitations, identification, 473
Overall energy optimization. See Energy
optimization
Overall fouling resistance. See Fouling
Overflash, 307

PEE. See Price equivalent efficiency (PEE)
Peng–Robinson Equations of State
model, 282
Pinching exchanger, 177
Pinch principle, 161
Plant energy efficiency, 366
Plant management, 3, 9
Plus and minus (+/−) principle, 198
Power generation, 409
efficiency, 410, 411
Power price, cut point of, 412
Power recovery turbine, 216–217
Pressure drop, 94
effects of velocity, 95–96
shell side, 94–95
tube side, 94
Price equivalent efficiency (PEE), 409, 411
Price ratio, 409, 410
of fuel to power, 412
Principle for process changes
appropriate placement

column grand composite curve, 203
column integration with process,
204–205
for distillation column, 203–205
for reaction process, 202–203
example case studies

catalyst improvement, 206
integrated energy and process
optimization, 219–222
integrate power recovery with existing
steam system, 216–219
process flowsheet improvement,
207–211
use of advanced technology, 211–216
general principle for appropriate
placement, 200–201
utility selection, 201–202
Process conditions
yields/equipment, interactions, 473–474
key parameters, 474
in revamps, 474
Process integration
definition, 196–198
evaluation, using pinch analysis, 198
sequential design approach, 196, 197
Process optimization
integrated energy, 219
model, 310
Product specifications, and prices, 313
Project economics
capital cost estimates, 467–468
economic analysis, 468–470
fuel prices, uncertainty of, 466–467
justification of improvement options, 466
OSBL costs, 470–471
steam prices selection, 467
Pump-around rates, 308
Realistic capital costs, 172
Reboiling optimization, 302
Reflux rate optimization, 301–302
Reflux ratio, 36, 203, 307, 316, 317, 499
Relax plant constraints, 472–473
Retrofit Project
ethylene plant, 478–479
for refiner, 477–478
Revamp feasibility assessment
false balances, identification, 474–475
fuel gas long, 475–477
key parameters and their interactions, 473–474
rigorous process/equipment simulations, 459
scope and stages, 460
feasibility scoping study, 460–461
feasibility study, 461
retrofit design phase, 461–462
Setting operating pressure, 317–318
Setting operating targets, 315–317
with column bottom temperature, 314–315
Simulation, 33, 172
basis, 128
building process simulation model, 287–288, 411
building steam balance simulation model, 418
calculation of distillation efficiency, 292
determine isentropic efficiency, 338
relationship correlations, 47, 309
effective percentage of flash, 193
loading changes for the steam system, 405
mathematical modeling, 418
maximum reboiler duty, and tower pressure, 322
model conducted for two naphtha splitters, 214
model for DIP, 320–321
model, verified and revised against, 47
Monte Carlo simulation, 449, 451–452, 456
operation at higher pressure, 326
predictive process simulation model, 479
purpose of process simulation, 463–464
regression analysis, 57
results at designed reboiler duty, 321
software, 120
standardized, 129
tower pressure based on, 54
tower rating assessment, 298–300
to verify fidelity, 282
Site-wide energy optimization strategy, 482
case study, 487
crude and vacuum unit, 488–489
cost and benefit analysis, 491
effective energy use via optimizing operation, 482–484
energy-saving opportunities
advanced technology projects, 490
delayed coker unit improvements, 490
hydrocracking unit improvements, 490
reforming unit energy-saving opportunities, 489–490
high capital investment via process changes and advanced technology, 484–485
low capital investment via increased heat recovery, 484
minimize waste and losses via diligence, 482
utilities optimization for reduced energy generation cost, 485–487
INDEX
Statistics summary, for normal
distribution, 456
central tendency, 456
mean, 456
median, 456
confidence intervals for the true
mean, 457–458
skewness, 457
standard deviation, 456–457
standard error, 457
Steam balance, 345
bottom-up methodology for, 352
calculate missing flows, 352, 353
balance convergence, 356–357
daerator balance, 355
HP header balance, 354
MP header balance, 354
LP header balance, 354
steam system PFD with unknown
flows, 352
guidelines for generation, 346
practical example for generating, 357
daerator balance, 360
HP header balance, 357–358
MP header balance, 359
LP header balance, 359–360
solving for unknowns, 360–362
top–down methodology, 348
calculate and revise the balances,
351–352
calculate missing flows, 348
daerator balance, 350
develop a steam system PFD with
unknown flows, 348
HP header balance, 348–349
LP header balance, 349
solving for unknowns, 350–351
verification, 362
control valve, 362–363
steam turbine, 363–364
working example for generation,
347–348
Steam desuperheater, 341–342
Steam distribution losses, 344
Steam equipment efficiency, and limits, 406
Steam flash drum, 342
Steam flash recovery, 329
Steam letdowns and venting,
minimization, 412–413
FD fan, electrically driven, 413
installing new turbine generator, 413
to prevent loss of valuable
condensate, 413
Steam losses, 5, 144, 347, 386, 392, 402, 418, 482
Steam optimization, 403
characteristics of, 403–404
equipment loadings, 405–407
header pressure, 404–405
system configuration, 413–417
Steam prices, 378
methods, 377
Steam system optimization model,
development, 403
building steam balance simulation
model, 418
application remarks, 420
for boilers, 418
for condensate and deaeration
subsystem, 419
initial point and convergence
criteria, 420
for power generation subsystem, 419
steam desuperheater, 419
for steam header subsystem, 418
for steam pressure reduction
valve, 419–420
for steam recovery from
blowdown, 419
total operating cost, 420
establishing optimization criteria, and
constraints, 420–421
application remarks, 421
constraints, 421
objective function, 420
mathematical modeling, 418
Steam traps, 329, 342–344
Steam turbines, 329, 334
enthalpy change, for isentropic
expansion, 335
estimate steam rate for, 335–338
ideal and real expansions, 334–335
integration of PRT with, 218–219
modeling, 334–335
to replace letdown valves, 218
Stripping steam, 308
Systematic design approach,
challenges, 172–174
amount and routing of piping, 173
application of energy optimization tools, 173
capital cost estimation, 173
steam pricing, 173
Technology advancements, 3
Temperature control, 329
Tower efficiency assessment, 292–294
estimate using O’Connell’s correlation, 294–295
Tower, existing, guidelines for reuse, 302–303
Tower optimization, 306
feed temperature, 308
overflash, 307
overhead temperature, 308–309
parameter optimization, 309–310
parameter relationship, 309
pressure, 308
pump-around, 308
reflux ratio, 307
to relax plant limitations, 310–312
fired heaters, 311
heat exchangers, 311
internal system battery limit, 312
metallurgy, 311
outside system battery limits, 312
temperature, 311
tray loadings, 311
stripping steam, 308
Tower rating assessment, 298–300
True steam prices, 366
Turbine loadings, cost savings, 407
Turbogenerators
loading optimization for, 405
Typical capacity limits, 253–254
Utility system optimization, 5
U values
actual, 92
clean, 90–92
controlling resistance, 93–94
overdesign/design margin, 92–93
performance criterion, 89–90
required, 90
Vaporization, 198, 199
Venting, LP steam, 412–413
VLE (vapor and liquid equilibrium), 282
Water conditioning system, 329
Work-based steam pricing, 372
cost calculations, 372–373
enthalpy vs. methods, 373
Work process methodology, 501
objectives, 501
operation improvements, 501
small savings, 501
software applications, 502
sustain benefits, 502