Contents

About the Author xiii

Preface xv

Glossary xvii

1 Introduction 1

1.1 Historical Perspective 1

1.1.1 The First 40 Years of Flight 1905–1945 1

1.1.2 Analogue Computing, 1945–1965 3

1.1.4 The Microelectronics Revolution, 1985–present 6

1.2 The Case for Simulation 9

1.2.1 Safety 9

1.2.2 Financial Benefits 10

1.2.3 Training Transfer 11

1.2.4 Engineering Flight Simulation 13

1.3 The Changing Role of Simulation 14

1.4 The Organization of a Flight Simulator 16

1.4.1 Equations of Motion 16

1.4.2 Aerodynamic Model 17

1.4.3 Engine Model 18

1.4.4 Data Acquisition 18

1.4.5 Gear Model 19

1.4.6 Weather Model 19

1.4.7 Visual System 20

1.4.8 Sound System 21

1.4.9 Motion System 21

1.4.10 Control Loading 22

1.4.11 Instrument Displays 23

1.4.12 Navigation Systems 23

1.4.13 Maintenance 24

1.5 The Concept of Real-time Simulation 24

1.6 Pilot Cues 27

1.6.1 Visual Cueing 28

1.6.2 Motion Cueing 29

1.7 Training versus Simulation 30

1.8 Examples of Simulation 32

1.8.1 Commercial Flight Training 32
1.8.2 Military Flight Training 34
1.8.3 Ab Initio Flight Training 34
1.8.4 Land Vehicle Simulators 34
1.8.5 Engineering Flight Simulators 35
1.8.6 Aptitude Testing 36
1.8.7 Computer-based Training 36
1.8.8 Maintenance Training 37

References 37

2 Principles of Modelling 41
2.1 Modelling Concepts 41
2.2 Newtonian Mechanics 43
2.3 Axes Systems 51
2.4 Differential Equations 53
2.5 Numerical Integration 56
2.5.1 Approximation Methods 56
2.5.2 First-order Methods 58
2.5.3 Higher-order Methods 59
2.6 Real-time Computing 63
2.7 Data Acquisition 67
2.7.1 Data Transmission 67
2.7.2 Data Acquisition 69
2.8 Flight Data 74
2.9 Interpolation 77
2.10 Distributed Systems 82
2.11 A Real-time Protocol 91
2.12 Problems in Modelling 92

References 96

3 Aircraft Dynamics 97
3.1 Principles of Flight Modelling 97
3.2 The Atmosphere 98
3.3 Forces 100
3.3.1 Aerodynamic Lift 100
3.3.2 Aerodynamic Side force 104
3.3.3 Aerodynamic Drag 105
3.3.4 Propulsive Forces 106
3.3.5 Gravitational Force 107
3.4 Moments 107
3.4.1 Static Stability 109
3.4.2 Aerodynamic Moments 111
3.4.3 Aerodynamic Derivatives 113
3.5 Axes Systems 114
3.5.1 The Body Frame 115
3.5.2 Stability Axes 117
3.5.3 Wind Axes 117
3.5.4 Inertial Axes 118
3.5.5 Transformation between Axes 118
3.5.6 Earth-centred Earth-fixed (ECEF) Frame 119
3.5.7 Latitude and Longitude 122
3.6 Quaternions 122
3.7 Equations of Motion 124
3.8 Propulsion 127
 3.8.1 Piston Engines 128
 3.8.2 Jet Engines 136
3.9 The Landing Gear 138
3.10 The Equations Collected 143
3.11 The Equations Revisited – Long Range Navigation 148
 3.11.1 Coriolis Acceleration 150
References 154

4 Simulation of Flight Control Systems 157
 4.1 The Laplace Transform 157
 4.2 Simulation of Transfer Functions 161
 4.3 PID Control Systems 163
 4.4 Trimming 169
 4.5 Aircraft Flight Control Systems 171
 4.6 The Turn Coordinator and the Yaw Damper 172
 4.7 The Auto-throttle 176
 4.8 Vertical Speed Management 179
 4.9 Altitude Hold 182
 4.10 Heading Hold 185
 4.11 Localizer Tracking 189
 4.12 Auto-land Systems 191
 4.13 Flight Management Systems 195
References 201

5 Aircraft Displays 203
 5.1 Principles of Display Systems 203
 5.2 Line Drawing 205
 5.3 Character Generation 211
 5.4 2D Graphics Operations 214
 5.5 Textures 216
 5.6 OpenGL® 219
 5.7 Simulation of Aircraft Instruments 227
 5.8 Simulation of EFIS Displays 235
 5.8.1 Attitude Indicator 237
 5.8.2 Altimeter 239
 5.8.3 Airspeed Indicator 240
 5.8.4 Compass Card 241
 5.9 Head-up Displays 242
References 246

6 Simulation of Aircraft Navigation Systems 247
 6.1 Principles of Navigation 247
 6.2 Navigation Computations 250
 6.3 Map Projections 252
 6.4 Primary Flight Information 254
 6.4.1 Attitude Indicator 254
 6.4.2 Altimeter 255
 6.4.3 Airspeed Indicator 255
<table>
<thead>
<tr>
<th>9.4</th>
<th>Designing the User Interface</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1</td>
<td>Human Factors</td>
<td>382</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Classification of User Operations</td>
<td>383</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Structure of the User Interface</td>
<td>384</td>
</tr>
<tr>
<td>9.4.4</td>
<td>User Input Selections</td>
<td>388</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Instructor Commands</td>
<td>394</td>
</tr>
<tr>
<td>9.5</td>
<td>Real-time Interaction</td>
<td>398</td>
</tr>
<tr>
<td>9.6</td>
<td>Map Displays</td>
<td>404</td>
</tr>
<tr>
<td>9.7</td>
<td>Flight Data Recording</td>
<td>409</td>
</tr>
<tr>
<td>9.8</td>
<td>Scripting</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>421</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Motion Systems</th>
<th>423</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Motion or No Motion?</td>
<td>423</td>
</tr>
<tr>
<td>10.2</td>
<td>Physiological Aspects of Motion</td>
<td>425</td>
</tr>
<tr>
<td>10.3</td>
<td>Actuator Configurations</td>
<td>428</td>
</tr>
<tr>
<td>10.4</td>
<td>Equations of Motion</td>
<td>432</td>
</tr>
<tr>
<td>10.5</td>
<td>Implementation of a Motion System</td>
<td>436</td>
</tr>
<tr>
<td>10.6</td>
<td>Hydraulic Actuation</td>
<td>443</td>
</tr>
<tr>
<td>10.7</td>
<td>Modelling Hydraulic Actuators</td>
<td>447</td>
</tr>
<tr>
<td>10.8</td>
<td>Limitations of Motion Systems</td>
<td>451</td>
</tr>
<tr>
<td>10.9</td>
<td>Future Motion Systems</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>454</td>
</tr>
</tbody>
</table>

Index 457