Contents

1 Introduction

1.3 Dielectric Breakdown

2 Compositional Composition and Composite Materials

2.1 Introduction

2.2 Fabrication of Hybrid Thin Films Consisting of Ceramics and Polymer

2.3 Sintered Structural Ceramics with Glassy Interphases Designed with Dielectric Properties

2.4 Microwave Dielectric Ceramics with Manganese

2.5 Microwave Dielectric Ceramics and their Applications

2.6 Compositional and Manufacturing Considerations

3 Non-compositional Aspects of Injected Chemically Bonded Ceramics of the System CoO-Al$_2$O$_3$-SiO$_2$-C$_x$$_y$$_z$

3.1 Introduction

3.2 Aspects of Medical Applications Based on Materials of the System CoO-Al$_2$O$_3$-SiO$_2$-C$_x$$_y$$_z$

3.3 Aspects of Medical Applications Based on Materials of the System CoO-Al$_2$O$_3$-SiO$_2$-C$_x$$_y$$_z$
Synthesis and Characterization of Bioactive Glass Composites

Evaluation of a PMU AARAS Bioglass Composite: Mechanical and Biological Properties

Synthesis and Characterization of Bioglass Composites: Mechanical and Biological Properties

Hydroxyapatite-Based Bioglass Composites: Preparation and Characterization

Low Temperature Consolidation of Nanoclay-Containing Apatite Powders

Shrinkage Behavior of Hydroxyapatite Composites Prepared by Different Methods

Characterization of Materials: Bioceramics and Bioactive Glass Composites

Novel Biopolymer-Based Bioglass Nanocomposites: Structural and Mechanical Properties

Thermal Conductivity of Light-Cured Dental Composites

Importance of Dental Antimicrobial Agents

Manufacturing of Porous Biomaterials: Composites of Silica and Ceramic Fillers

The Effect of Zinc on Microstructure of Nanocomposites: A Case Study

Polymer Networks Using Nanoclay: A Review for Future Applications