Index

Activity, 47
Activity level, 47
Addition
of matrices, 417
of vectors, 417
Adjacent vertices, 114
Adler, I., 424
Alternative constraints, 220–223
Aluminum can company problem, 166–
168, 185–187, 190–191, 202, 207
Artificial variables, 93
Assignment problem, 263, 285
Avis, D., 424
Axioms of Nash, 408–409

Basic feasible solution, 64, 65
degenerate. 68
Basic solution, 64, 65
Basic variables, 64
Beale, E. M., 421
Binomial coefficient, 113, 423
Bland, R. G., 109
Blending model, 10–21
intermediate of dual, 132–133
Boat manufacturer problem, 21–23, 136,
164–166, 299–304, 306–310, 325
Borgwardt, H. K., 424
Branch and bound algorithm, 237–241
Brouwer Fixed Point Theorem, 361, 401
Brown, M. W., 424
Buffalo, 334

Canonical form
of a linear programming problem, 66
system of equations, 64
Capacitated transportation problem, 283
Caterer problem, 292
Characteristic function, 342
Charnes, A., 325
Chvatal, V., 151, 424
Coalition, 342

Colonel Blotto, 343
Compact set, 109
Complementary Slackness Theorem, 155
application of, 156–158, 166, 265,
276, 281
Constant-term column
changes in, 161–166, 192–194
Constraint
addition of, 204–207
system of, 10
Convergence of simplex algorithm, 82, 106–
110
Convex combination, 315
Convex cone, 67
Convex set, 111
edge of, 114
vertex of, 112
Cooper, W. W., 325
Cooperative games, 396
Cooperative payoff set, 404
Cooperative two-person games, 404
Cutting Plane Algorithm, 229, 233
Cycling, 82, 83, 107
example of, 421–422
preventing, 109
Dakin, R. J., 237
Dantzig, G. B., 9, 60, 107, 181, 200, 295,
299, 314, 361, 424
Data envelopment analysis, 325
procedure, 326–327
Decision making, 345
Decomposition algorithm, 319–323
Decomposition principle, 314
Degenerate solution, 68, 82
Deterministic class, 48
Diagonal game, 381
Diet problem, 2–4
Distribution problem, 251
algorithm, 256
definition, 251
examples, 252–259
integral solutions, 260
labeling scheme, 254
theory, 259-260

Dolg, A. G., 237
Dominance, 374-375
Dominated point, 406
Dongarra, J., 424
Dot product of vectors, 417
Dresher, M., 342
Dual
of a max problem, 124
dual linear programming problem, 123
in matrix notation, 125
interpretation of, 121-123, 132-136
dual simplex algorithm, 197
steps, 199
duality theorem, 139
application of, 142-149, 163-169, 318
dynamic planning model, 38-47
dynamic scheduling problem, 285

Edge, 114
Either/or constraints, 220-223
Ellipsoid algorithm, 424
Equilibrium
in non-zero-sum games, 397
in zero-sum games, 348, 366
expected payoff, 354
expected utility value, 392
expected value, 301, 354

Fair game, 367
Feasible solution, 25, 59, 252
Feed blending problem, 10-14, 132-133, 161-163
Ferguson, A., 299
Fixed charge problem, 216
Fixed point theorem, 361, 401
Ford, L. R., 255, 265
Fractional part, 232
Fuller, D. R., 255, 265, 295
Fundamental Theorem of Game Theory, 361

Gate, D., 9
Game, 337
2 x 2, 371
2 x n, 375
m x 2, 375
n-person, 342
cooperative, 396
diagonal, 381
expected payoff for, 354
fair, 367
infinite, 342
noncooperative, 396
principles of solution, 347, 349
solution to, 351, 367
symmetric, 370
value of, 351, 367

Game theory
Fundamental Theorem, 361
Geometric approach to linear programming, 10-14, 67-68
Gleick, J., 425
Goal programming, 306
Goldfarb, D., 424
Gomory, R. E., 229, 233
Greatest integer function, 232
Hadley, G., 181, 233
Half-space, 112
Hitchcock, F. L., 9
Hyperplane, 111
Identity matrix, 419
Ignizio, J. P., 306
Inconsistent system of equations, 71
Independence of irrelevant alternatives, 409
Inequalities
formulated as equalities, 57-58
Initial basic feasible solution
determination of, 93-94
Integer programming
branch and bound algorithm, 237-241
Cutting Plane Algorithm, 228
definition, 211
determination of, 35, 211-213
model formulation, 214-223
Interior point algorithm, 425
Inverse of a matrix, 419
Invertible matrix, 419

Jacobs, W. W., 292
Jerolmack, R. J., 424
Kantorovich, L. V., 9
INDEX

Karmarkar, N., 425
Keeler, I. A., 424
Khachian, L., 424
Klee, V., 423
Knapsack problem, 225
Kolata, G., 425
Kuhn, H. W., 9

Labeling scheme
 distribution problem, 254
Lanc, A. H., 237
Lawler, E. L., 424
Lee, S. M., 306
Lemke, C. E., 200
Line segment, 111
Linear programming problem
 and nonfeasibility, 94
 canonical form, 66
 dual problem, 123
 general form, 57
 max form, 123
 min form, 123, 124
 min problem, 124
 standard form, 57
Lottery, 392
L.P. Assistant, 427
Luce, R. D., 342, 367, 393, 408, 413

Marginal values, 166
Master problem, 315
Matrix
 addition, 417
 identity, 419
 inverse, 419
 invertible, 419
 nonsingular, 419
 rank, 106
 transpose, 125, 419
Matrix games, 346
Matrix representation
 of the simplex algorithm, 175
Max form, 123
Max problem, 124
Maximization problem
 changing to minimization, 58
McKinsey, J. C., 342
McGee, N., 424
Microsoft Excel, 115, 431
Min form, 123, 124
Min problem, 124
Minty, G. J., 423
Mixed integer programming problem, 211
Mixed strategy, 354
Morgenstern, O., 382, 393, 406
Morra, 343
Murti, K. G., 424
n-dimensional vector, 417
n-person game, 342
Nash, J. F., 401, 407, 408, 411
Negotiation set, 406
Network flow problems, 283
Neumann, J. von, see von Neumann, J.
New York Times, 9, 424
Noncooperative game, 396
Nonfeasibility
 example of, 98
Nonsingular matrix, 419

Objective function, 59
 changes in, 161–163, 183–187
 multiple objectives, 306
 unbounded, 82
Oil refinery problem, 29, 134
Optimal security level, 357
Optimal strategy, 367
Optimality criterion, 78
Owen, G., 342, 393, 408
Payoff matrix, 338
Payoff, expected, 354
Percentages
 in linear programming problems, 15
Pivot
 rules for choosing, 83
Pivot operation, 60, 63
Pivot term, 63
Poker, 382
Postoptimality analysis, 161, 175
Poultry producer problem, 18, 161, 187, 196, 312
Primal-dual algorithm, 265
Principle I of Game Theory, 347
Principle II of Game Theory, 349
Prisoner’s dilemma, 7, 399
Probabilistic model, 48, 299–304
Production model, 21–26
Pure strategy, 350
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raiffa, H.</td>
<td>342, 367, 393, 408, 413</td>
</tr>
<tr>
<td>Rank of a matrix</td>
<td>106</td>
</tr>
<tr>
<td>Rapoport, A.</td>
<td>413</td>
</tr>
<tr>
<td>Rebutte</td>
<td>217</td>
</tr>
<tr>
<td>Reduced tableaux resolution</td>
<td>147</td>
</tr>
<tr>
<td>Redundant systems</td>
<td>71, 101–105</td>
</tr>
<tr>
<td>Revised simplex method</td>
<td>181</td>
</tr>
<tr>
<td>Rhodes, E.</td>
<td>325</td>
</tr>
<tr>
<td>Risk in decision making</td>
<td>345</td>
</tr>
<tr>
<td>Saddle point</td>
<td>352</td>
</tr>
<tr>
<td>Scalar multiplication of vectors</td>
<td>417</td>
</tr>
<tr>
<td>Security level</td>
<td>398</td>
</tr>
<tr>
<td>Security level strategy</td>
<td>397, 398</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>161</td>
</tr>
<tr>
<td>Shadow prices</td>
<td>166</td>
</tr>
<tr>
<td>Sit, W.</td>
<td>424</td>
</tr>
<tr>
<td>Slack variables</td>
<td>58</td>
</tr>
<tr>
<td>Smale, S.</td>
<td>424</td>
</tr>
<tr>
<td>Solution to a game</td>
<td>351, 367</td>
</tr>
<tr>
<td>Solver</td>
<td>115, 431</td>
</tr>
<tr>
<td>Spielman, D. A.</td>
<td>424</td>
</tr>
<tr>
<td>Standard form</td>
<td>57</td>
</tr>
<tr>
<td>Status quo point</td>
<td>408</td>
</tr>
<tr>
<td>Steinberg, D. L.</td>
<td>110</td>
</tr>
<tr>
<td>Stigler, G. J.</td>
<td>9</td>
</tr>
<tr>
<td>Stochastic model</td>
<td>48</td>
</tr>
<tr>
<td>Strategy</td>
<td>338</td>
</tr>
<tr>
<td>Sullavon, F.</td>
<td>424</td>
</tr>
<tr>
<td>Sum of vectors</td>
<td>417</td>
</tr>
<tr>
<td>Symmetric game</td>
<td>370</td>
</tr>
<tr>
<td>System of constraints</td>
<td>10</td>
</tr>
<tr>
<td>System of equations</td>
<td>64</td>
</tr>
<tr>
<td>inconsistent</td>
<td>71</td>
</tr>
<tr>
<td>redundant</td>
<td>71, 101–105</td>
</tr>
<tr>
<td>Tableau format for simplex method</td>
<td>85</td>
</tr>
<tr>
<td>Tanker scheduling problem</td>
<td>295</td>
</tr>
<tr>
<td>Three-person game</td>
<td>342</td>
</tr>
<tr>
<td>Todd, M. J.</td>
<td>424</td>
</tr>
<tr>
<td>Transportation problem</td>
<td>34–36</td>
</tr>
<tr>
<td>Transportation problem algorithm</td>
<td>267</td>
</tr>
<tr>
<td>Transpose</td>
<td>125, 419</td>
</tr>
<tr>
<td>Transshipment problem</td>
<td>283</td>
</tr>
<tr>
<td>Tucker, A. W.</td>
<td>9</td>
</tr>
<tr>
<td>Two-person, infinite game</td>
<td>341</td>
</tr>
<tr>
<td>Two-person, zero-sum games</td>
<td>338–341</td>
</tr>
<tr>
<td>Unbounded objective function</td>
<td>79</td>
</tr>
<tr>
<td>Unrestricted variables</td>
<td>59</td>
</tr>
<tr>
<td>Utility theory</td>
<td>346, 391</td>
</tr>
<tr>
<td>Value of a game</td>
<td>251, 367</td>
</tr>
<tr>
<td>Variables</td>
<td>417</td>
</tr>
<tr>
<td>Vector</td>
<td>417</td>
</tr>
<tr>
<td>Veldt</td>
<td>112</td>
</tr>
<tr>
<td>von Neumann, J.</td>
<td>361, 382, 393, 406</td>
</tr>
<tr>
<td>w function</td>
<td>94</td>
</tr>
<tr>
<td>Wolfe, P.</td>
<td>109, 314</td>
</tr>
<tr>
<td>Worst-case behavior</td>
<td>423</td>
</tr>
<tr>
<td>Zero-sum game</td>
<td>338</td>
</tr>
</tbody>
</table>