Contents

Preface XI
Acknowledgments XV
Color Plates XVII

Part One Electroweak Dynamics 1
1 The Standard Model 3
 1.1 Introduction 3
 1.2 Weak Charge and SU(2) × U(1) Symmetry 4
 1.3 Spontaneous Symmetry Breaking 10
 1.3.1 An Intuitive Picture of Spontaneous Symmetry Breaking 10
 1.3.2 Higgs Mechanism 12
 1.3.3 Unitary Gauge 14
 1.3.4 Mass Generation 15
 1.4 Gauge Interactions 18
 1.5 Higgs Interactions 22
 1.6 Feynman Rules of Electroweak Theory 23
 1.7 Roles of the Higgs in Gauge Theory 28

2 Neutral Current 39
 2.1 Discovery of the Neutral Current 39
 2.2 ν–e Scattering 41
 2.3 νN → ν + X 49
 2.4 Parity Violation in the Electromagnetic Processes 54
 2.4.1 Atomic Process 54
 2.4.2 Polarized e–D Scattering 58
 2.5 Electroweak Unification at High Q² 64
 2.6 Asymmetry in the e–e+ → l±, c̅c, b̅b 66
 2.7 Asymmetry in q + q̅ → l + l̅ 76

3 W 81
 3.1 Discovery of W, Z 81
 3.2 Basic Formulas 87
 3.2.1 Decay Width 87
Contents

3.2.2 Hadronic Production of W, Z 89
3.3 Properties of W 93
3.3.1 Asymmetry of Decay Leptons from W, Z 93
3.3.2 Spin of W, Z 95
3.3.3 Mass of W 96
3.3.4 Decay Width of W 99
3.3.5 Triple Gauge Coupling 103

4 **Physics at Z Resonance** 109
4.1 Born Approximation 110
4.2 Improved Born Approximation 114
4.3 Experimental Arrangements 125
4.3.1 Detectors 125
4.3.2 Luminosity Monitor 127
4.3.3 Energy Determination 128
4.3.4 Heavy Quark Tagging 135
4.4 Observations 142
4.4.1 Event Characteristics 142
4.4.2 Mass, Widths and Branching Ratios 143
4.4.3 Invisible Width 145
4.4.4 Asymmetries 147
4.5 Weinberg Angle and ρ Parameter 155

5 **Precision Tests of the Electroweak Theory** 157
5.1 Input Parameters 157
5.2 Renormalization 161
5.2.1 Prescription 161
5.2.2 Self-Energy of Gauge Bosons 164
5.3 μ Decay 170
5.3.1 $\Delta r, \rho, \Delta \alpha$ 170
5.3.2 Running Electromagnetic Constant 174
5.3.3 Residual Corrections and Numerical Evaluation 175
5.4 Improved Born Approximation 176
5.4.1 $\gamma - Z$ Mixing 177
5.4.2 α or G_F? 178
5.4.3 Vertex Correction 180
5.5 Effective Weinberg Angle 181
5.6 Weinberg Angle in the \overline{MS} Scheme 182
5.7 Beyond the Standard Model 187

6 **Cabibbo–Kobayashi–Maskawa Matrix** 193
6.1 Origin of the CKM Matrix 193
6.2 CKM Matrix Elements 198
6.3 The Unitarity Triangle 205
6.4 Formalism of the Two Neutral Meson System 207
6.4.1 Mass Matrix, Mixing and CP Parameters 207
Contents

6.4.2 CP Parameters of the K Meson 210
6.4.3 Mixing in the $B^0 - \bar{B}^0$ System 211
6.4.4 $D^0 - \bar{D}^0$ Mixing 220
6.5 Theoretical Evaluation of the Mass Matrix 224
6.5.1 Mass Matrix of the K Meson 225
6.5.2 Mass Matrix of the B Meson 229
6.6 CP Violation in the B Sector 232
6.6.1 Indirect CP Violation 232
6.6.2 Direct CP Violation 233
6.6.3 CP Violation in Interference 238
6.6.4 Coherent $B^0\bar{B}^0$ Production 240
6.7 Extraction of the CKM Phases 246
6.7.1 Using $B^0 - B$ Mixing 246
6.7.2 Penguin Pollution 248
6.7.3 Experiments at the B-factory 249
6.8 Test of Unitarity 253
6.8.1 Rare Decays of the K Meson 253
6.8.2 Global Fit of the Unitarity Triangle 256
6.9 CP Violation beyond the Standard Model 257

Part Two QCD Dynamics 259

7 QCD 261
7.1 Fundamentals of QCD 264
7.1.1 Lagrangian 264
7.1.2 The Feynman Rules 267
7.1.3 Gauge Invariance and the Gluon Self-Coupling 269
7.1.4 Strength of the Color Charge 272
7.1.5 QCD Vacuum 274
7.2 Renormalization Group Equation 279
7.2.1 Running Coupling Constant 279
7.2.2 Asymptotic Freedom 282
7.2.3 Scale Dependence of Observables 286
7.2.4 Running Mass 289
7.2.5 Quark Masses 294
7.3 Gluon Emission 296
7.3.1 Emission Probability 297
7.3.2 Collinear and Infrared Divergence 301
7.3.3 Leading Logarithmic Approximation 303
7.3.4 Transverse Kick 305

8 Deep Inelastic Scattering 307
8.1 Introduction 307
8.2 The Parton Model Revisited 311
8.2.1 Structure Functions 314
8.2.2 Equivalent Photons 317
Contents

8.3 QCD Corrections 319
8.3.1 Virtual Compton Scattering 319
8.3.2 Factorization 321
8.3.3 Power Expansion of the Evolution Equation 326
8.3.4 Cascade Branching of the Partons 328
8.4 DGLAP Evolution Equation 330
8.4.1 Gluon Distribution Function 330
8.4.2 Regularization of the Splitting Function 332
8.4.3 Factorization Scheme 335
8.5 Solutions to the DGLAP Equation 337
8.5.1 Method of Moments 337
8.5.2 Double Logarithm 343
8.5.3 Monte Carlo Generators 347
8.6 Drell–Yan Process 351
8.6.1 Factorization in Hadron Scattering 358

9 Jets and Fragmentations 361
9.1 Partons and Jets 361
9.1.1 Fragmentation Function 363
9.1.2 Jet Shape Variables 367
9.1.3 Applications of Jet Variables 372
9.1.4 Jet Separation 375
9.2 Parton Shower Model 380
9.3 Hadronization Models 384
9.3.1 Independent Fragmentation Model 385
9.3.2 String Model 389
9.3.3 Cluster Model 392
9.3.4 Model Tests 393
9.4 Test of the Asymptotic Freedom 398
9.4.1 Inclusive Reactions 398
9.4.2 Jet Event Shapes 408
9.4.3 Summary of the Running $\alpha_s(Q^2)$ 415

10 Gluons 417
10.1 Gauge Structure of QCD 417
10.1.1 Spin of the Gluon 417
10.1.2 Self-Coupling of the Gluon 421
10.1.3 Symmetry of QCD 423
10.2 Color Coherence 424
10.2.1 Angular Ordering 425
10.2.2 String Effect 428
10.3 Fragmentation at Small x 430
10.3.1 DGLAP Equation with Angular Ordering 430
10.3.2 $\sqrt{\alpha_s}$ Dependence and $N = 1$ Pole in the Anomalous Moment 433
10.3.3 Multiplicity Distribution 434
10.3.4 Humpback Distribution: MLLA 435
Contents

11.4 Gluon Fragmentation Function 441
10.5 Gluon Jets vs. Quark Jets 445

11. Jets in Hadron Reactions 451
11.1 Introduction 451
11.2 Jet Production with Large p_T 452
11.3 $2 \rightarrow 2$ Reaction 456
11.3.1 Kinematics and Cross Section 456
11.3.2 Jet Productions Compared with pQCD 460
11.4 Jet Clustering in Hadronic Reactions 464
11.4.1 Cone Algorithm 466
11.4.2 k_T Algorithm 468
11.5 Reproducibility of the Cross Section 469
11.5.1 Scale Dependence 469
11.5.2 Parton Distribution Function 470
11.6 Multijet Productions 472
11.7 Substructure of the Partons? 474
11.8 Vector Particle Production 475
11.8.1 Direct Photon Production 476
11.8.2 $W : p_T$ Distribution 479
11.9 Heavy Quark Production 484
11.9.1 Cross Sections 484
11.9.2 Comparisons with Experiments 489
11.9.3 Top Quark Production 496

Appendix A Gamma Matrix Traces and Cross Sections 501

Appendix B Feynman Rules for the Electroweak Theory 507

Appendix C Radiative Corrections to the Gauge Boson Self-Energy 513

Appendix D 't Hooft’s Gauge 525

Appendix E Fierz Transformation 531

Appendix F Collins–Soper Frame 535

Appendix G Multipole Expansion of the Vertex Function 537

Appendix H SU(N) 543

Appendix I Unitarity Relation 551

Appendix J σ Model and the Chiral Perturbation Theory 563

Appendix K Splitting Function 573

Appendix L Answers to the Problems 583

References 591

Index 607