Contents

Preface xiii
About the Editors xvii
List of Contributors xix

1 Overview of Flavor and Fragrance Materials 1
　David Rowe

1.1 Flavor Aroma Chemicals 1
　1.1.1 Nature Identical 1
　　1.1.1.1 Alcohols 2
　　1.1.1.2 Acids 3
　　1.1.1.3 Esters 4
　　1.1.1.4 Lactones 5
　　1.1.1.5 Aldehydes 5
　　1.1.1.6 Ketones 6
　1.1.2 Heterocycles 6
　　1.1.2.1 Oxygen-containing 6
　　1.1.2.2 Nitrogen-containing 7
　　1.1.2.3 Sulfur-containing 8
　1.1.3 Sulfur Compounds 8
　　1.1.3.1 Mercaptans 9
　　1.1.3.2 Sulfides 9

1.2 Flavor Synthetics 10

1.3 Natural Aroma Chemicals 11
　1.3.1 Isolates 12
　1.3.2 Biotechnology 12
　1.3.3 ‘Soft Chemistry’ 13
1.4 Fragrance Aroma Chemicals
 1.4.1 Musks
 1.4.2 Amber
 1.4.3 Florals
 1.4.4 ‘Woodies’
 1.4.5 Acetals and Nitriles

1.5 Materials of Natural Origin
 1.5.1 Essential Oils
 1.5.1.1 Cold-pressing – Citrus Oils
 1.5.1.2 Steam-distilled Oils
 1.5.1.3 A Note on ‘Adulteration’
 1.5.2 Absolutes and Other Extracts

Acknowledgments

References

2 Sample Preparation

Russell Bazemore

2.1 Introduction
2.2 PDMS
2.3 Static Headspace Extraction
 2.3.1 Advantages and Disadvantages
2.4 Dynamic Headspace Extraction
 2.4.1 Advantages
 2.4.2 Disadvantages
2.5 Solid Phase Microextraction (SPME)
 2.5.1 Research
 2.5.2 Practical
 2.5.3 Advantages
 2.5.4 Disadvantages
2.6 Stir Bar Sorptive Extraction
 2.6.1 Research
 2.6.2 Practical
 2.6.3 Advantages
 2.6.4 Disadvantages
2.7 PDMS Foam and Microvial
 2.7.1 PDMS Foam
 2.7.2 Microvial
2.8 Solvent Extraction
 2.8.1 MIXXOR
 2.8.2 Soxhlet Extraction
CONTENTS

2.8.3 Solvent Assisted Flavor Evaporation (SAFE) 42
2.9 Summary 42
References 42

3 Traditional Flavor and Fragrance Analysis of Raw Materials
and Finished Products 45
Russell Rouseff and Kevin Goodner

3.1 Overview 45
3.2 Physical Attribute Evaluation 47
 3.2.1 Color – Optical Methods 48
 3.2.2 Turbidity 49
 3.2.3 Water Activity 49
 3.2.4 Moisture Content 50
 3.2.4.1 Karl Fischer Method 50
 3.2.4.2 Secondary Moisture Determination Methods 51
 3.2.5 Optical Rotation 51
 3.2.6 Specific Gravity 52
 3.2.7 Refractive Index 52
 3.2.8 Sugars/Soluble Solids 53
 3.2.9 Viscosity 54
3.3 Instrumental Analysis 54
 3.3.1 Separation Techniques 55
 3.3.1.1 Gas Chromatography (GC) 55
 3.3.1.2 GC Retention Data 55
 3.3.1.3 Standardized Retention Index Systems 55
 3.3.1.4 GC Injection 56
 3.3.1.5 GC Columns (Stationary Phases) 58
 3.3.1.6 GC Detectors 60
 3.3.2 Identification Techniques 63
 3.3.2.1 Retention Index Approach 63
 3.3.2.2 GC–MS 64
 3.3.2.3 MS/MS 65
3.3.3 References 67

4 Gas Chromatography/Olfactometry (GC/O) 69
Kanjana Mahattanatawee and Russell Rouseff

4.1 Introduction 69
4.2 Odor Assessors’ Selection and Training 70
4.3 Sensory Vocabulary 71
4.4 GC/Olfactometers (Sniffers) 72
4.5 Practical Considerations 73
4.6 Types of GC/Olfactometry 73
 4.6.1 Dilution Analysis 73
 4.6.2 Time Intensity 76
 4.6.3 Detection Frequency 79
 4.6.4 Posterior Intensity Method 82
4.7 Sample Introduction 83
4.8 Identification of Aroma-active Peaks 84
 4.8.1 Standardized Retention Index Values 84
 4.8.2 Aroma Description Matching 85
 4.8.3 MS Identifications 85
 4.8.4 Use of Authentic Standards 86
4.9 Conclusion 86
References 87

5 Multivariate Techniques 91
Vanessa Kinton
 5.1 Introduction 91
 5.2 Hierarchical Cluster Analysis (HCA) 97
 5.3 Principal Component Analysis (PCA) 98
 5.4 Classification Models 99
 5.4.1 k-Nearest Neighbors (k-NN) 100
 5.4.2 Soft Independent Modeling of Class Analogy (SIMCA) 100
 5.5 Principal Component Regression 101
 5.6 Example of Data Analysis for Classification Models 102
 5.6.1 Tabulating Data 102
 5.6.2 Examining Data 103
 5.6.3 Multivariate Exploratory Analysis 103
 5.6.4 Creation of a Classification Model with a Training Set and Validation with a Testing Set 106
References 109

6 Electronic Nose Technology and Applications 111
Marion Bonnefille
 6.1 Introduction 111
 6.2 Human Smell and Electronic Noses 112
 6.3 Techniques to Analyze Odors/Flavors 113
 6.3.1 Sensory Panel 113
 6.3.2 GC and GC/MS 114
6.3.3 GC/Olfactometry 114
6.3.4 Electronic Nose 115
6.3.5 Electronic Nose Technology and Instrumentation 115
 6.3.5.1 Architecture 115
 6.3.5.2 Air Generator 117
 6.3.5.3 Sampling 118
 6.3.5.4 Detection Technologies 121
6.3.6 Data Treatment Tools 127
6.4 The Main Criticisms Directed at the Electronic Nose 134
6.5 Market and Applications 136
 6.5.1 Application Range 136
 6.5.2 Perfumery Compound Detection in a Fragrance 138
 6.5.3 Cosmetic Natural Raw Materials: Characterization of Volatile Constituents of Benzoin Gum 139
 6.5.4 Home Care Products: Identification and Quantification Using an Electronic Nose in the Perfumed Cleaner Industry 142
 6.5.5 Pharmaceutical Products: Flavor Analysis in Liquid Oral Formulations 146
References 151

7 MS/Nose Instrumentation as a Rapid QC Analytical Tool 155
 Ray Marsili
 7.1 Introduction 155
 7.2 Operating Principle 157
 7.3 Advantages of MS over Solid State Sensors 160
 7.4 Using Other Sample Preparation Modes 160
 7.5 Techniques for Improving Reliability and Long-term Stability 161
 7.5.1 Calibration Transfer Algorithms 161
 7.5.2 Internal Standards 162
 7.6 Two Instruments in One 163
 7.7 Application Examples 163
 7.8 Classification of Coffee Samples by Geographic Origin 164
 7.9 Classification of Whiskey Samples by Brand 166
 7.10 Future Directions: Partnering MS/Nose with GC/MS 168
 7.11 Conclusion 170
References 170
8 Sensory Analysis

Carlos Margaria and Anne Plotto

8.1 Introduction 173
8.2 The Purpose of Sensory Analysis 174
8.3 Flavor Perception 177
8.4 Sensory Analysis Techniques 178
 8.4.1 Overall Difference Tests 179
 8.4.1.1 Triangle Test 180
 8.4.1.2 Duo–Trio Test 182
 8.4.1.3 Simple Difference Test 182
 8.4.2 Single Attribute Difference Tests 184
 8.4.2.1 Difference from Control 184
 8.4.2.2 Paired Comparison Test 184
 8.4.2.3 Ranking Tests 185
 8.4.3 Descriptive Tests 186
 8.4.4 Affective Tests 188
8.5 Preparation and Planning 189
 8.5.1 Experimental Design 189
 8.5.2 Environment 191
 8.5.3 Sample Preparation 191
8.6 Panel Selection 192
 8.6.1 Trained Panels 193
 8.6.2 Consumer Panels 194
8.7 Conducting a Panel 195
8.8 Expression of Results 196
8.9 Conclusions 197

References 198

9 Regulatory Issues and Flavors Analysis

Robert A. Kryger

9.1 Introduction 201
9.2 Regulatory Overview 202
 9.2.1 History 202
 9.2.2 Safety Regulations 204
 9.2.3 Product Labelling Regulations 206
 9.2.4 Fair Trade/Conformity with Established Standards 208
 9.2.5 Flavor Types 209
 9.2.6 Governing Authorities 211
 9.2.7 Role of Flavor Analysis in Regulatory Conformance 212
9.3 Specific Regulatory Issues 213
 9.3.1 Identifying the Presence of ‘Forbidden’ Substances 213
 9.3.1.1 Heavy Metals such as Pb, As, Hg, and Cd 214
 9.3.1.2 Pesticides 214
 9.3.1.3 Environmental Toxins 215
 9.3.1.4 Allergen Testing 216
 9.3.2 Testing Whether a Product is ‘Natural’ or Meets a ‘Standard of Identity’ 216
 9.3.3 Testing for Other Regulatory Compliance Requirements 219

References 220

Index 223