# INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AATSR. See Advanced Along Track Scanning Radiometer</td>
<td>107</td>
</tr>
<tr>
<td>ACC. See Anthropogenic climate change</td>
<td></td>
</tr>
<tr>
<td>Advanced Along Track Scanning Radiometer (AATSR)</td>
<td>107</td>
</tr>
<tr>
<td>Advanced Macro Language (AML)</td>
<td>169</td>
</tr>
<tr>
<td>Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)</td>
<td>91, 168</td>
</tr>
<tr>
<td>Aerosol optical depth (AOD)</td>
<td>215</td>
</tr>
<tr>
<td>MODIS-retrieved, 222–23, 224f, 225t</td>
<td></td>
</tr>
<tr>
<td>WRF-Chem simulations, 219, 222, 224f, 225t</td>
<td></td>
</tr>
<tr>
<td>Agreement in Threshold Level (ATL)</td>
<td>114</td>
</tr>
<tr>
<td>AGU. See American Geophysical Union</td>
<td></td>
</tr>
<tr>
<td>AGU SWIRL program, 1–2</td>
<td></td>
</tr>
<tr>
<td>AIC. See Akaike information criterion</td>
<td></td>
</tr>
<tr>
<td>AIRS. See Atmospheric InfraRed Sounder</td>
<td></td>
</tr>
<tr>
<td>Akaike information criterion (AIC)</td>
<td>232</td>
</tr>
<tr>
<td>Albuquerque, 302–3, 304f</td>
<td></td>
</tr>
<tr>
<td>Aleatory uncertainty, 14, 138, 138f, 195, 197f</td>
<td></td>
</tr>
<tr>
<td>in ECM, 128–30, 129f, 134–35, 134f</td>
<td></td>
</tr>
<tr>
<td>Along Track Scanning Radiometer (ATSR), 107</td>
<td></td>
</tr>
<tr>
<td>American Geophysical Union (AGU), 1</td>
<td></td>
</tr>
<tr>
<td>AMF. See Advanced Macro Language</td>
<td></td>
</tr>
<tr>
<td>Anthropogenic climate change (ACC), 245–47</td>
<td></td>
</tr>
<tr>
<td>AOD. See Aerosol optical depth</td>
<td></td>
</tr>
<tr>
<td>Aqua-MODIS, 217, 222, 223f</td>
<td></td>
</tr>
<tr>
<td>AR4 IPCC. See Fourth Assessment Report of the</td>
<td></td>
</tr>
<tr>
<td>Intergovernmental Panel on Climate Change</td>
<td></td>
</tr>
<tr>
<td>ArchInfo SA Fill Tool, 169</td>
<td>169</td>
</tr>
<tr>
<td>ArchInfo Spatial Analyst, 169, 173f, 175f</td>
<td></td>
</tr>
<tr>
<td>ArchInfo Workstation, 169</td>
<td></td>
</tr>
<tr>
<td>ARW model, 116</td>
<td></td>
</tr>
<tr>
<td>Ash, 105</td>
<td></td>
</tr>
<tr>
<td>Ash cloud modeling. See Volcanic-ash-cloud modeling</td>
<td></td>
</tr>
<tr>
<td>Ash emission events, 128</td>
<td></td>
</tr>
<tr>
<td>Ash source-term estimation, 109–10, 110f</td>
<td></td>
</tr>
<tr>
<td>ASTER. See Advanced Spaceborne Thermal Emission and Reflection Radiometer</td>
<td>91, 168</td>
</tr>
<tr>
<td>ASTER Global DEM, 169, 172, 174, 175</td>
<td></td>
</tr>
<tr>
<td>ATL. See Agreement in Threshold Level</td>
<td></td>
</tr>
<tr>
<td>Atlantic Multidecadal Oscillation, 207</td>
<td></td>
</tr>
<tr>
<td>Atmospheric artifacts, 90–91</td>
<td></td>
</tr>
<tr>
<td>Atmospheric CO$_2$, 258, 272</td>
<td></td>
</tr>
<tr>
<td>climate sensitivity to, 254</td>
<td></td>
</tr>
<tr>
<td>Earth system response to, 23</td>
<td></td>
</tr>
<tr>
<td>Atmospheric composite analysis, 335</td>
<td></td>
</tr>
<tr>
<td>Atmospheric conditions</td>
<td></td>
</tr>
<tr>
<td>ash cloud modeling and, 49, 51–52</td>
<td></td>
</tr>
<tr>
<td>landslide prediction and, 330–35</td>
<td></td>
</tr>
<tr>
<td>local, 49</td>
<td></td>
</tr>
<tr>
<td>radar phase measurement and, 90</td>
<td></td>
</tr>
<tr>
<td>water-vapor content, 91, 249</td>
<td></td>
</tr>
<tr>
<td>Atmospheric data, 65</td>
<td></td>
</tr>
<tr>
<td>low-resolution, 331</td>
<td></td>
</tr>
<tr>
<td>Atmospheric InfraRed Sounder (AIRS), 107</td>
<td></td>
</tr>
<tr>
<td>Atmospheric inhomogeneity, 90</td>
<td></td>
</tr>
<tr>
<td>Atmospheric material injections, 105</td>
<td></td>
</tr>
<tr>
<td>Atmospheric transport models, 109, 113</td>
<td></td>
</tr>
<tr>
<td>ATSR. See Along Track Scanning Radiometer</td>
<td></td>
</tr>
<tr>
<td>Automated Flight Following, 39</td>
<td></td>
</tr>
<tr>
<td>BA. See Burned area</td>
<td></td>
</tr>
<tr>
<td>Bárðarbunga (Holuhraun) eruption, 105</td>
<td></td>
</tr>
<tr>
<td>Bayesian Model Averaging (BMA), 246–47, 249, 250, 252</td>
<td></td>
</tr>
<tr>
<td>Bayesian theory, 142</td>
<td></td>
</tr>
<tr>
<td>BENT model, 49, 51, 63, 85</td>
<td></td>
</tr>
<tr>
<td>BENT-Puff, 62</td>
<td></td>
</tr>
<tr>
<td>Big Turnaround Complex Fire, 248</td>
<td></td>
</tr>
<tr>
<td>Biogeography models, 258, 259</td>
<td></td>
</tr>
<tr>
<td>Biomass burning, 215</td>
<td></td>
</tr>
<tr>
<td>satellite measurements of, 216, 217, 222f, 223f</td>
<td></td>
</tr>
<tr>
<td>uncertainties in parameters of, 216, 225</td>
<td></td>
</tr>
<tr>
<td>Biophysical hazards, 4–6</td>
<td></td>
</tr>
<tr>
<td>BMA. See Bayesian Model Averaging</td>
<td></td>
</tr>
<tr>
<td>Bootstrap methods</td>
<td></td>
</tr>
<tr>
<td>for climate model prediction skill, 250</td>
<td></td>
</tr>
<tr>
<td>parameter estimation with, 94</td>
<td></td>
</tr>
<tr>
<td>Boundary conditions, 28</td>
<td></td>
</tr>
<tr>
<td>incomplete knowledge on, 130</td>
<td></td>
</tr>
<tr>
<td>Burned area (BA), 219</td>
<td></td>
</tr>
<tr>
<td>debris flows in, 287–89</td>
<td>287–89</td>
</tr>
<tr>
<td>extreme, 247, 249, 252</td>
<td></td>
</tr>
<tr>
<td>values-at-risk downstream of, 294–95, 294f</td>
<td></td>
</tr>
<tr>
<td>watershed, 305</td>
<td></td>
</tr>
<tr>
<td>Burn probability, 34, 34f, 37</td>
<td>34, 34f, 37</td>
</tr>
<tr>
<td>Burn severity, 235</td>
<td></td>
</tr>
<tr>
<td>CALIOP instrument, 107</td>
<td></td>
</tr>
<tr>
<td>CALIPSO instrument, 107</td>
<td></td>
</tr>
<tr>
<td>CanESM2 model, 264</td>
<td></td>
</tr>
<tr>
<td>Carbon density simulations, 269f</td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide concentrations, 272</td>
<td></td>
</tr>
<tr>
<td>Carbon sources and sinks, 266, 267f, 268, 270f, 271f, 272</td>
<td></td>
</tr>
<tr>
<td>Carbon stocks, and fluxes, 266, 268, 270f, 271f, 272</td>
<td></td>
</tr>
<tr>
<td>Casita volcano, 179</td>
<td></td>
</tr>
<tr>
<td>Casualty estimation, in HAZUS earthquake loss estimation, 160–61, 163f</td>
<td></td>
</tr>
<tr>
<td>CENTURY model, 258</td>
<td></td>
</tr>
</tbody>
</table>

*Note: The text continues with similar entries and references.*
CGPS. See Continuous global positioning system
El Chichón, 125
Cleveland volcano, 65, 66f–69f, 70f, 71f
Climate, 254
- fire model weather inputs and, 207, 208
- long-term modeling and, 208
- MC2 model projections, 261
- projections for, 261, 262f
- RCP 4.5 projections, 262f
- RCP 8.5 projections, 261, 262f
- uncertainty in future, 5
- volcanic eruption impacts, 105
- wildfire activity and, 195
Climate change, 208. See also Anthropogenic climate change
- anthropogenic, 245–47
- landslide prediction and, 332–33, 335
- mitigating impacts of, 257–58
- prediction problems, 246
- uncertainty and policy on, 23
- uncertainty from, 246
- wildfires and, 245, 246
Climate data, 248–49
Climate models
- regional, 258
- structural and emissions uncertainty in, 250
Climate Prediction Center Unified (CPCU), 331
Climatic hazards, 4–6
Cloud modeling. See Volcanic-ash-cloud modeling
Clouds, dispersing, 59
CMIP3. See Third Coupled Model Intercomparison Project
CMIP5. See Coupled Model Intercomparison Project 5
CNRM-CM5 model, 264
cNVC. See Conditional net change in value
Cognitive biases, 39–40, 40t
Communication, 2–3
Component hypotheses, 232
Conditional net change in value (cNVC), 36
Conditional-probability maps, 126, 136f, 137
Confidence
- in forecasts for hazard assessment, 3
- in IPCC language, 24, 24f
- in volcanic ash cloud modeling, 51–52
Confidence intervals, 94–95, 173
Context uncertainty, 14, 195
- fire behavior as, 198, 203–5
Continuous global positioning system (CGPS), 91
Continuous ground deformation measurements, 89
Cosmo SkyMed, 175
Coupled Model Intercomparison Project 5 (CMIP5), 5,
- 257–59, 260f, 261f, 267f
Coupled Model Intercomparison Projects, 246
CPCU. See Climate Prediction Center Unified
Critical rainfall thresholds, 323
Crown fire, 203, 204, 289

Dark Target algorithm, 222
Data assimilation, 52, 120
- 4D-Var, 111, 112f
- SO₂ forecasting, 110–13, 111f, 112f
- for volcanic ash dispersion modeling, 108

Data uncertainty, 232, 232f
Debris flow inundation hazard zone delineation
- debris-flow simulation for, 169–71
- DEMs for, 167–68, 172–73
- geographic area and spatiotemporal scope, 168
- inputs and tools for, 168–69
- model validation for, 171–72
- results from, 172–73
Debris flow prediction models, 5, 6, 167, 168
Debris flows. See also Lahars; Postfire debris flows
- biophysical setting, 289–90
- critical rainfall thresholds for, 323
- fires and, 287–89
- forecasting, 319–20
- hazard assessment, 306–8, 319
- initiation, mobilization, and deposition, 293–94
- postfire hazard cascade, 288
- probabilities and volume for, 309f, 310, 311f
- rainfall estimates for locations of, 323
- rainfall events triggering, 320–21, 322f, 323
- rainfall thresholds for predicting, 326
- values-at-risk, 294–95, 294f
- watersheds probabilities of, 310
- wildfires and frequency of, 301
Debris-flow simulation, 169–71
Decadal oscillations, 207
Decision making
- model-based uncertainties and, 13
- uncertainty classification and, 16
Decision support, 2–3
Decision support systems
- cognitive biases and, 39–40, 40t
- probabilistic information and, 34–36
- uncertainty application to, 52–54
- for wildfire management, 31–40
Decision Tree Random Forest Classifier, 332
Decision trees, 53
- for classifying uncertainties, 16, 17f
  in landslide prediction models, 332
Decision uncertainty, 14
Decorrelation noise, 91, 92f
Deep Blue algorithm, 222
DEM. See Digital elevation models
DGVM. See Dynamic global vegetation models
Differenced normalized burn ratio (dNBR), 217
Digital elevation models (DEMs), 4, 90, 126
- debris-flow hazard zone delineation with, 167–68, 172–73
  in FLO2D model, 181
- global, 169, 172, 174, 175
- inaccuracies in, 91–92
- input uncertainty quantification and, 130
- lahar simulations and, 174
- landslide hazard characterization, 168
- Lidar-derived, 175
- for WMFire_beta, 234
Dispersing clouds, 59
Dispersion models, 52, 62, 65
- data assimilation for, 108
- ensemble modeling for, 108–9, 121
- errors in, 106
Eulerian, 44, 111, 116
intercomparison of, 116–19
inverse modeling for, 107–8
Lagrangian, 44, 53, 65, 109, 116
multi-input ensemble, 113–16
uncertainty sources for, 106

dNBR. See Differenced normalized burn ratio
Dynamic global vegetation models (DGVM), 258
Dynamic vegetation models, 258

Earthquakes, 3–4
fires from, 160–61
hazardous effects of, 148–49
on Korean Peninsula, 147
loss estimation for, 148, 155–62
point density analysis of, 149, 150f, 151f
scenario, 153–54
site amplification of, 148
site response to, 149

Earth system models (ESMs), 258
Earth system science, 24
CO2 response, 23
defining, 21–22
timescales in, 27
uncertainty sources in, 26, 26f
uncertainty topography in, 25–26, 25f
EBA. See Extreme burned area
ECDFs. See Empirical cumulative distribution functions
ECDP. See Exogenously constrained dynamic percolation
ECM. See Energy Cone Model
ECMWF. See European Center for Medium-range Weather Forecasting
ECMWF ERA-Interim re-analyses, 111, 116
ECMWF operational analyses, 109, 110f, 115f, 116f
Ecological models, structural uncertainty in, 249–50
Ecological risk assessment, 32
Ecosystem carbon density simulations, 269f
Ecosystem models, uncertainty sources in, 231–32
Ecosystems
fire suppression effects on, 206, 248
uncertainty in models of, 231
El Niño Southern Oscillation, 207, 261
El Salvador, landslides in, 167
El Salvador Ministry of the Environment and Natural Resources (MARN), 170
Emission events, 128
Emission factor, 217
Emissions magnitude, 106
Emissions uncertainty, 250
Empirical cumulative distribution functions (ECDFs), 126, 140, 140f
aleatory uncertainty, 133–36, 134f, 138, 138t
input uncertainty, 137
parametric uncertainty, 135f, 137
Energy Cone Model (ECM), 125, 126–27
aleatory uncertainty, 128–30, 129f, 137, 134f
applicability, 141–42
comprehensive uncertainty description, 138–41
input uncertainty, 130
parametric uncertainty, 130–31, 135f, 137
results from, 133–38
structural uncertainty, 133, 138
theoretical uncertainty, 131–32, 137–38
Energy lines, 127, 127f
Energy Release Component (ERC), 303
ENS. See Ensemble Prediction System
Ensemble dispersion modeling, 108–9, 121
Ensemble Kalman Filter, 108
Ensemble modeling
approaches for, 109
multimodel, 25, 29
NWP, 52
for postfire debris flow hazard cascade, 288
stochastic physics ensembles, 29
Ensemble Prediction System (ENS), 113, 115f
Ensemble prediction systems, 25
Ensemble spreads, 24
Entrainment processes, 295
eNVC. See Expected net change in value
Environmental Systems Research Institute (Esri), 169, 171
E-OBS, 331–34
ERA-Interim, 114
ERC. See Energy Release Component
Error ranges, 24
Errors
in dispersion models, 106
due to flat-surface assumption, 98–99
inversion, 28
locally correlated, 95–96
long-wavelength, 96–97
measurement, 14, 94–95
meteorological forecast, 106
model formulation/structural, 28
preprocessing, 168
propagation in rainfall estimation, 326
in rainfall estimation, 324f, 326
representativeness, 28
spatially uncorrelated, 95, 96f
wind field, 106
Eruption source parameter (ESP), 49
ESMs. See Earth system models
ESP. See Eruption source parameter
Esri. See Environmental Systems Research Institute
Esri ArcGIS Imagery, 171
Essential facilities, estimated damage to, 157–61, 160f–162f
Estimation errors, 98–99
Eulerian dispersion models, 44, 111, 116
European Center for Medium-range Weather Forecasting (ECMWF), 280
European Climate Assessment and Dataset project, 331
Evapotranspiration, 258
Exogenously constrained dynamic percolation (ECDP), 4, 233
Expected net change in value (eNVC), 36
Explicit uncertainties, 22
Extreme burned area (EBA), 247, 249
projections for, 252
Eyjafjallajökull (volcano), 44, 50, 60f, 61, 61f, 65, 77, 105
FALL3D model, 44
Federal Emergency Management Agency (FEMA), 148
Feedback loops, in wildfire activity dynamics, 194, 196f
Feedbacks, 28
fire suppression and, 206
FEERv1. See Fire energetics and emissions research version 1.0
FEMA. See Federal Emergency Management Agency
Fire effects, 290–92, 291f
Fire energetics and emissions research version 1.0 (FEERv1), 215, 217, 219, 222, 223
Fire intensity, 198, 203
Fire modeling. See also Wildfire modeling
uncertainty matrix for, 199t–202t
weather inputs, 207
Fire processes, 290
Fire radiative power (FRP), 215, 219
Fires. See also Burned area
areas and quantities of biomass consumed by, 215–16
behavior of, 198, 203–5
debris flows and, 287–89
emissions measurement, 4
hazardous effects of, 215
rate of spread, 198, 203
role in carbon stocks and sinks, 268
Fire severity maps, 235
Fire spread, 198, 203, 290
model complexity, 232–33
observed patterns, 239
spatial statistics of, 236–38
Fire Spread Probability (FSPro), 34–37, 35f, 36f
Fire stations, estimated damage to, 158–59
Fire suppression
ecosystems endangered by, 248
feedbacks from, 206
Flame length distributions, 37
FlamMap, 303, 305–6, 305f, 307f
Flat‐surface assumption, 98–99
FLEXPART ERA‐Interim, 114
FLEXPART model, 106, 109, 110f, 113–19, 115f–118f
FLO2D, 179, 180
flow velocity, 185
input parameters for Lahar Patrío, 181–83
Manning coefficients, 183, 187
quantitative validation of flow simulation from, 183, 184f, 185
rheological coefficients, 183, 187–88, 187f
Flow velocity, 185
Formulation problems, 23, 28
4D‐Var data assimilation, 111, 112f
Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4 IPCC), 250
FRP. See Fire radiative power
FSim, 303, 305, 305f, 306, 307f, 308f
FSPro. See Fire Spread Probability
Fuel treatment programs, 195
Gas geochemistry, 89
GCMs. See General circulation model
GDEM. See Global DEM
General circulation model (GCM), 5, 208, 246, 249, 258
BMA weights, 252
landslide process scale and, 330
General debris models, 289
Generalized Pareto distribution (GPD), 249
fitted parameters, 250–52
Geographic information system (GIS), 148
spatial analysis function, 149
Geological hazards, 3–4
Geology, 89
Geophone signals, 182f, 183
Georgia coastal plain region, 247–48
Geostatistical techniques, 324
GFASv1.0. See Global Fire Assimilation System
GFED3. See Global Fire Emissions Database version 3
GFS. See Global Forecast System
GIS. See Geographic information system
Global DEM (GDEM), 169, 172, 175
Global Fire Assimilation System (GFASv1.0), 217
Global Fire Emissions Database version 3 (GFED3), 216
Global Forecast System (GFS), 65
Global mean surface temperature, 22–23, 23f
Global Ozone Monitoring Experiment (GOME‐2), 107
Global vegetation models, 5, 257
Globcover, 280
Goddard Chemistry Aerosol Radiation and Transport (GOCART), 225
GOME‐2. See Global Ozone Monitoring Experiment
Google Earth, 63
GPD. See Generalized Pareto distribution
Grain‐size distribution (GSD), 61
Grimstvón eruption, 109–119, 110f, 112f, 115f, 121
GSD. See Grain‐size distribution
Guadalupe lahar, 172, 174
Gully los Infiernillos lahar, 172
Guralp CMG‐6TD broadband seismometer, 181
Gyeongju area, 148
loss estimation results, 155–62
scenario earthquake and inventory data, 153–54, 154f, 155f
site classification map for, 149–53, 153f
HAZUS, 147, 148
essential facility damage estimation, 157–61
loss estimation results from, 155–62
residential building damage estimation, 155–57
site classification map and loss estimation, 161–62, 164f
HESFIRE. See Human‐Earth System FIRE
Highly valued resources and assets (HVRAs), 31, 36–37
High‐resolution precipitation data, 331
Hillslope structure, 291f
Honey Prairie Fire, 248
Hospitals, estimated damage to, 157–58, 158f–159f
Human‐Earth System FIRE (HESFIRE), 5
burn area, 281f, 282f
fire activity sensitivity, 281f, 282, 282f, 284
model description, 278–80
model runs, 280, 282
optimized parameters, 279f
sensitivity to input data uncertainties, 280, 281f
Hurricane Mitch, 179
HVRAs. See Highly valued resources and assets
Hydroecological simulation, 4, 233
Hydroecology, 231
Hydrograph reconstruction, 181–83
Hydrological conditioning, 170f, 173, 173f, 174
HYSPLIT model, 106
IA. See Initial attack
IASI. See Infrared Atmospheric Sounding Interferometer
IAU 2d Simulated, 331
ICAO. See International Civil Aviation Organization
ICS-209. See Incident Status Summary
ID. See Intensity-duration model
IDW. See Inverse distance weighting
Ignition frequency, 194
Implicit uncertainties, 22
Incident Management Teams (IMTs), 33–34
Incident Status Summary (ICS-209), 39
In-flight GPS-based systems, 39
Infrared Atmospheric Sounding Interferometer (IASI), 107, 109, 110f
Initial attack (IA), 38–39
Input uncertainties, 14, 129f, 195
quantification of, 130
InSAR. See Interferometric Synthetic Aperture Radar
Integrated Scenarios of Climate, Hydrology, and Vegetation for the Northwest, 257
Intensity-duration model (ID), 323, 325f, 326
Interannual oscillations, 207
Interdisciplinary Conference of Young Earth System Scientists 2013 on Understanding and Interpreting Uncertainty, 23
Interferometric phase, 91
Interferometric Synthetic Aperture Radar (InSAR), 3, 89, 168, 174
magma source parameter retrieval from, 93–100
summary of measurement errors, 94–95
uncertainties in observations, 90–93
volcano deformation from, 90–93
Intergovernmental Panel on Climate Change (IPCC), 250
guidance note on uncertainty, 24, 24f
scientific transparency and, 27
International Civil Aviation Organization (ICAO), 62
International Volcanic Ash Task Force (IVATF), 44, 62
Intrinsic randomness, 128–30
Inverse distance weighting (IDW), 319, 324
Inverse modeling approaches, 52, 119–20
ash source-term estimation with, 109–10, 110f
SO₂ forecasting, 110–13, 111f, 112f
for volcanic ash dispersion, 107–8
Inversion
joint, 99–100
Monte Carlo methods for, 129–30
nonlinear, 101
Inversion errors, 28
Ionospheric variations, 90–91
IPCC. See Intergovernmental Panel on Climate Change
Irreducible uncertainty, 22
IVATF. See International Volcanic Ash Task Force
Joint inversion, 99–100
Kasatochi (volcano), 49
Kernel dressing, 246
KMA. See Korea Meteorological Administration
Knowledge (epistemic) uncertainty, 14, 195, 197f
Korea Meteorological Administration (KMA), 148
Korean Peninsula, 147
seismicity in, 149
Korean Statistical Information Service, 154
Lacunarity, 237–39
Lagrangian dispersion models, 44, 53, 65, 109, 116
Lahar Patrio, 180
FLO2D input parameters, 181–83
observed versus theoretical hydrograph, 185, 186f, 187
quantitative validation of simulated flow, 183, 184f, 185
Lahars, 3, 4, 126, 167. See also specific lahars
flow velocity, 185
hydrograph reconstruction for, 181–83
mapping, 175
model inputs, 168–69
model results, 172–73, 174
model validation, 171–72
simulating, 169–71, 179–80
uncertainties in modeling, 188
LAHARZ, 169–74, 179–80
Lambert Conformal Conical System, 170
LANDFIRE project, 234, 306
Landscape conditions, 194–95
long-term modeling and, 208
Landslides, 6, 167, 329
climate change and prediction of, 332–33, 335
historical data on, 332–33, 333f
model results for, 333–34, 334f
precipitation-based prediction of, 331–32
risk management, 168
scale of processes, 330
in Switzerland, 330–31
uncertainties in modeling, 330
Large Air Tankers (LATs), 39
Lidar-derived DEMs, 175
Linearization methods, parameter estimation with, 94
Line-of-sight (LOS), 93
Linguistic uncertainty, 14
Locally correlated errors, 95–96
Longleaf pine, 248
Long-wavelength errors, 96–97
Lorenz, Edward, 22
LOS. See Line-of-sight
Loss estimation
essential facility damage, 157–61
residential building damage, 155–57
site classification map in, 161–62, 164f
Low-resolution precipitation data, 331
MACA method, 261
Magma compressibility, 101
MAI. See Multiple aperture InSAR
Manning coefficients, 183, 187
MAPSS model, 259
MARN. See El Salvador Ministry of the Environment and Natural Resources
Mass eruption rate (MER), 47–9, 51, 63
Maximum runout, 138, 140
MC1 model, 258
MC2 model, 4, 257
biogeography module, 258
carbon stocks and fluxes, 266, 268, 270f, 271f, 272
climate projections, 261
fire module, 259, 272
general description, 258
inputs, 259
run protocol, 259
vegetation model projections, 261, 264
Mean shear-wave velocity, 149
Measurement errors
InSAR, 94–95
Mogi model uncertainties from, 94
uncertainty from, 14
Medium Resolution Imaging Spectrometer (MERIS), 91
MER. See Mass eruption rate
MERIS. See Medium Resolution Imaging Spectrometer
MERRA. See Modern Era Retrospective Analysis for Research and Application
MERRA-Land. See Modern Era Retrospective Analysis for Research and Application
Meteorological forecast errors, 106
Meteorological watch offices (MWOs), 43
MI. See Multi-input single model ensembles
MI-MM. See Multi-input multimodel ensembles
MinAbs. See OPR Minimum Absolute Change
MinNet. See OPR Minimum Net Change
MM. See Single-input multimodel ensembles
Model-based uncertainties, 13
analyzing, 193–94
locations of, 14, 15f
Model ensembles, 28
Model formulation, 29
Model formulation/structural errors, 28
Model identification, 243
Modeling, 1, 11. See also Ensemble modeling; Inverse modeling approaches; Probabilistic modeling; Volcanic-ash-cloud modeling; Wildfire modeling
decision making and, 13
fire, 199t–202t, 207
level of complexity in, 232–33
risk, 12, 12f
structural problems in, 23
wildfires, 4, 5
Model parameterization, incomplete knowledge on, 130–31
Models. See specific models
Model structure uncertainty, 14, 195
Model technical uncertainty, 14–15, 196
Moderate Resolution Imaging Spectroradiometer (MODIS), 91, 215, 217, 280
AOD observations, 222–23, 224f, 225t
scan angle, 219, 222f, 223f
Modern Era Retrospective Analysis for Research and Application (MERRA), 331–34
MODIS. See Moderate Resolution Imaging Spectroradiometer
Mogi model, 90
estimation errors due to flat-surface assumption, 98–99
gеophysicall assumptions and, 100–101
joint inversion for, 99–100
nonlinear least-squares estimation of parameters for, 93–94
pressure and volume change and, 100–101
source geometries, 93
source parameters, 96f, 97f
uncertainty measures for, 94–100
Monitoring Trends in Burn Severity (MTBS), 303, 306
Monte-Carlo-based methods, 16, 17
comprehensive uncertainty description and, 138
parameter estimation with, 94
Monte Carlo inversion methods, 129–30
Montegrande ravine, 181
Mount Lamington, 125
Mount Peleé, 125
Mount Saint Helens, 142
Mount Somma, 127, 138
Mount Spurr, Alaska, 1992 eruption, 49
Mount Vesuvius, 125, 127–28, 128f, 141f
ECM results for, 133–38
MRI-CGCM3 model, 264
MTBS. See Monitoring Trends in Burn Severity
Multi-input ensemble dispersion models, 113–16, 115f, 116f
Multi-input multimodel ensembles (MI-MM), 109
Multi-input single model ensembles (MI), 109
Multimodel ensembles, 25, 29, 109
Multiple aperture InSAR (MAI), 93
Multitemporal InSAR, 91
MWOs. See Meteorological watch offices
NAM. See North American model
NAME model, 44, 106
NASA, 331
National Centers for Environmental Prediction (NCEP), 280
National Earthquake Hazard Reduction Program (NEHRP), 151, 153t
National Incident Management System, 33
Natural hazards, 2, 11
modeling, 1, 12
NCEP. See National Centers for Environmental Prediction
NDVI. See Normalized Vegetation Difference Index
Nearest neighbor (NN), 319, 324
Near-real-time processing routines, 62–63
NEHRP. See National Earthquake Hazard Reduction Program
Net risk source maps, 37
NN. See Nearest neighbor
NOAA, 331
Nominal quality indicators, 24
Nonlinear inversion, 101
Nonlinear least-squares estimation, of Mogi source parameters, 93–94
INDEX 343

Normalized Vegetation Difference Index (NDVI), 171
North American model (NAM), 65
Northern sub-Saharan Africa (NSSA), 215
as case study for fire measurement, 225
NSSA. See Northern sub-Saharan Africa
Numerical weather prediction (NWP), 3, 48, 85, 108
ensemble modeling, 52–53, 77
in volcanic ash cloud prediction, 61, 62, 65
wind field uncertainty in, 53

Observational uncertainties, 25
Ocean algorithm, 222
Okanogan-Wenatchee National Forest, 234
Okefenokee National Wildlife Refuge, 248
OMI. See Ozone Monitoring Instrumentation
OMI/Aura Sulfur Dioxide Total Column product, 111
OpenMap, 130
Operational Loads Monitoring, 39
OPR. See Optimized Pit Removal
OPR Minimum Absolute Change (MinAbs), 169, 172
OPR Minimum Net Change (MinNet), 170
Optimized Pit Removal (OPR), 169
Ozone Monitoring Instrumentation (OMI), 107, 111

Pacific Decadal Oscillation, 207, 261
Parameterizations, 28
Parameter uncertainty, 14f, 15
Parametric uncertainties, 129f, 196
in biomass burning, 216, 225
in ECDFs, 135f, 137
quantification of, 130–31
Particle size distribution (PSD), 48, 61
PDCs. See Pyroclastic density currents
PDFs. See Probability density functions
Petroleum, 89
Physical processes, 28, 29
Pit-filling, 172–74
Pit removal, 168, 172
Plinian eruptions, 128
Plumeria model, 49
Point density analysis, 149, 150f, 151f
Poisson's ratio, 101
Police stations, estimated damage to, 158–59
Popocatépetl volcano, 180, 181
Postfire debris flow hazard cascade, 288–89, 288f, 295t
Postfire debris flow
biophysical setting, 289–90
initiation, mobilization, and deposition, 293–94
integrated hazard assessment for, 302, 308
modeling, 303, 305f
uncertainties and limitations in predicting, 313–14
values-at-risk, 294–95, 294f
Postfire hydrology, 292
Precipitation-based landslides prediction, 331–32
Precipitation data, 331
Precipitation models, 6
Precipitation projections
in RCP 4.5 and 8.5, 265f
uncertainty in, 23
Preprocessing errors, 168
PRISM, 259, 261, 262f, 272
Probabilistic information, risk-based wildfire decision support and, 34–36
Probabilistic modeling, 52
comparison of mean and individual members, 71, 75
comparison of mean and probabilities, 69, 71
real-time processing routines for, 62, 64f
results from, 65, 66f–69f, 72f–84f
workflow for, 62, 63
Probabilistic Volcanic Hazard Assessment (PVHA), 126, 130, 138, 142
Probability density functions (PDFs), 126
parametric uncertainty quantification and, 130–31
PSD. See Particle size distribution
Puffin tool, 62
Puff V ATD model, 62, 63, 65, 66f, 72f
PVHA. See Probabilistic Volcanic Hazard Assessment
Pyroclastic density currents (PDCs), 3, 125, 141
area of invasion by, 138, 140f
channelization, 140
complexity of processes, 126
in ECM, 127, 127f
in Mount Vesuvius eruptions, 128
probability of invasion by, 141f
propagation of, 140
Radar phase measurement, 90
Rainfall estimation, 319
error propagation, 326
methods for, 323
relative error in, 324f
results for, 323–24
Rainfall models, 6
Rainfall triggers, 320–21, 322f, 323
for debris flows, 292–93, 326
for landslides, 329, 332
Rain-gauge networks
configurations, 323
rainfall estimation and density of, 326
sampling, 319
RCMs. See Regional climate models
RCP. See Representative concentration pathways
RCP 4.5, 259, 261t
carbon stocks and fluxes, 266, 267f, 268, 272
climate projections, 262f
ecosystem carbon density simulations, 269f
precipitation projections, 265f
vegetation change projections, 263t, 264f
RCP 8.5, 259, 261t
carbon stocks and fluxes, 266, 267f, 268, 270f, 271f, 272
climate projections, 261, 262f
ecosystem carbon density simulations, 269f
precipitation projections, 265f
vegetation change projections, 261, 263t
Real-time processing routines, 62, 64f
Recognized ignorance levels of uncertainty, 196, 208
Reducible uncertainty, 22
Regional climate models (RCMs), 258
Region HydroEcological Simulation System (RHESSys), 233, 234–35
WMFire-beta integration with, 243
Representation problems, 23
Representative concentration pathways (RCP), 259, 261t, 262f
Representativeness errors, 28
RESCO facilities, 181
Residential buildings
estimated damage to, 155–57, 156f, 157f, 161–62
site classification map and loss estimates for, 161–62, 164f
Rheological coefficients, 183, 187–88, 187f
RHESSys. See Region HydroEcological Simulation System
Risk assessment
ecological paradigm for, 32
wildfire, 32, 36
Risk management
landslide, 168
process for, 12
wildfire, 21, 32f, 33, 193
Risk mitigation strategies, 11
Risk modeling, process for, 12, 12f
Rothermel fire spread model, 203–4
Sandia Mountains, 302, 304f
San Salvador volcano, 168
San Vicente volcano, 167, 168, 174
Satellite imagery, 4
biomass burning measurements from, 216, 217, 222f, 223f
sources of, 218t
uncertainties in, 219
uncertainty ranges, 220t–221t
Satellite line-of-sight measurements, 93
Satellite observations, volcanic ash dispersion modeling and, 106–7
Satellite position uncertainties, 90
Scenario levels of uncertainty, 196
Schools, estimated damage to, 158–59
Scientific transparency, 27
Sediment concentration, 182
Seismology, 89
Semiempirical models, 179–80
Sensitivity analysis, 16
Sensor-resolution classifications, 219
Sequoia National Forest, 35
Shuttle Radar Topography Mission (SRTM), 168, 174, 175
SILAM model, 106, 111, 116–17, 116f–118f, 119
Simplifying assumptions, 204
Single-input multimodel ensembles (MM), 109
Site amplification, 148
Site classification map
for Gyeongju area, 149–53, 153f
residential building loss estimation and, 161–62, 164f
Smoke constituent, 217
SO2. See Sulphur dioxide
Source term, 106, 119–20
Southern sub-Saharan Africa (SSSA), 225
Spatially uncorrelated errors, 95, 96f
SPI. See Standardized precipitation index
SQF Canyon Fire, 35
SRTM. See Shuttle Radar Topography Mission
SSSA. See Southern sub-Saharan Africa
Standardized precipitation index (SPI), 249
Statistical levels of uncertainty, 196
Stochastic physics ensembles, 29
Stochastic wildfire simulation, 34
Strombolian eruptions, 128
Structural model problems, 23, 28
Structural uncertainty, 6, 133, 138, 198, 203
in climate models, 250
in ecological models, 249–50
model structure, 14, 195
Sub-Plinian eruptions, 128
Sulphate, 105
Sulphur dioxide (SO2), 105
absorption signatures, 107
forecasting, 110–13, 111f, 112f
Surface fire, 203
Swiss Flood and Landslide Database, 329, 330
Switzerland, landslides in, 330–31
TanDEM-X, 175
Temporary shelter, 160–61, 163f
Tephra fallout, 126
Terminology, interdisciplinary challenges in, 24
Terra-MODIS, 217, 222, 223f
TGSD. See Total grain size distribution
Theoretical uncertainty, 131–32, 137–38
Third Coupled Model Intercomparison Project (CMIP3), 248
Tierra Blanca Joven eruption, 168
Time scales, 27
TMVB. See Trans Mexican Volcanic Belt
Total grain size distribution (TGSD), 48, 49
Trans Mexican Volcanic Belt (TMVB), 180, 181
Tripod fire, 4, 234, 236f–238f, 241
Tropical Storm Ida, 167
Tropospheric water-vapor content, 90–91
Truth, 28
Two-Phase Titan model, 180
Uncertainty, 2–3. See also Aleatory uncertainty; Parametric uncertainty; Structural uncertainty
assessment of, 8, 241–43
in biomass burning parameters, 216, 225
characterizing, 13
classifying, 47–50
climate change and, 23, 246
compounding, 209–10, 209f
comprehensive description in ECM for, 138–41
data, 232, 232f
decision, 14
dimensions of, 195–96, 197f
in ecosystem models, 231–32
evaluating, 16–17
explicit and implicit, 22
in fire behavior, 198, 203–5
in fire measurements, 225
in future climate, 5
identifying and classifying, 13–16, 17f
identifying sources of, 6
in InSAR observations, 90–93
IPCC guidance note on, 24, 24f
knowledge, 14
in lahar modeling, 188
language problems, 22, 23, 24
level dimension of, 14, 15, 15f
levels of, 196, 197f
location dimension of, 13, 14–15, 14f, 197f
mitigation of, 51–52
model-based, 13
in Mogi model parameters, 94–100
nature dimension of, 13, 14, 14f
in postfire debris-flow hazard cascade, 295t
quantification of, 24, 50–51
reducible versus irreducible, 22
of satellite position knowledge, 90
structural, 250
theoretical, 131–32, 137–38
topography of, 25
typologies for, 13
usages, 6
in volcanic-ash-cloud modeling, 47–54
Uncertainty analysis, 13
wildfire modeling and, 193–94
wildfire-specific considerations in, 196, 197t, 198
Uncertainty matrix, 15–16, 15f, 17, 196, 198
for fire modeling, 199t–202t
United States, wildfire management policy in, 33–34
Upper Adige River basin, 320, 321f, 326
US Fish and Wildlife Service, 248
US Geological Survey (USGS), 169

VAA. See Volcanic-ash advisories
VAAC. See Volcanic ash advisory centers
Values-at-risk, 294–95, 294f
VAN. See Volcanic activity notice
Variability (aleatory) uncertainty, 14, 195, 197f
in ECM, 128–30, 129f, 134–35, 134f
VATD. See Volcanic ash transport and dispersion
Vegetated hillslopes
fire effects on, 290–92
rainfall triggers, 292–93
Vegetation disturbance, 290–91, 291f
Vegetation fires, 215, 277
Vegetation model projections, 261, 262f, 263t, 264f
VEI. See Volcanic Explosivity Index
Verapaz lahar, 172, 174
Volcán de Colima, 180–81
Volcanic activity, impact of, 89
Volcanic activity notice (VAN), 47
Volcanic activity notice for airmen (VONA), 47
Volcanic ash, 105
Volcanic-ash advisories (VAA), 43, 45f, 53, 59, 60f–61f, 61, 77, 85
Volcanic ash advisory centers (VAAC), 43–47, 53, 59, 60f–61f, 61, 85
Volcanic-ash-cloud modeling
application of uncertainty, 52–54
model intercomparison, 116–19
uncertainty classification for, 47–50
uncertainty mitigation in, 51–52
uncertainty quantification for, 50–51
Volcanic ash dispersion, 107–8
Volcanic ash mass loading, 78f
Volcanic-ash plumes, 59
Volcanic ash transport and dispersion (VATD), 43, 47, 48, 47t, 50–52, 59, 77, 85
Volcanic emissions, 105
ash emission events, 128
magnitude of, 106
uncertainties in simulating, 106
Volcanic eruptions, 3, 43, 48
atmospheric material injections from, 105
climate impacts, 105
Volcanic Explosivity Index (VEI), 128
Volcanic plume height, 48, 52, 85
Volcanoes
Casita, 179
Cleveland, 65, 66f–69f, 70f, 71f
deformation, 90–93
Eyjafjallajökull, 44, 50, 60f, 61, 61f, 65, 77, 105
Kasatochi, 49
Popocatépetl, 180, 181
San Salvador, 168
San Vicente, 167, 168, 174
Zhupanovsky, 65, 69, 71, 72f–77f, 77, 78f–84f
Volcano monitoring, 89
VONA. See Volcanic activity notice for airmen
Watersheds, 302–3, 304f
area burned in, 305
burn patterns in, 306
debris-flow probabilities, 310
postwildfire debris-flow hazard for, 308
Water vapor concentration removal, 90–91
WCRP. See World Climate Research Programme
Weather inputs, 207
Weather Research and Forecasting (WRF), 116
WFDSS. See Wildland Fire Decision Support System
Wildfire decision support
future directions for, 31–33, 36–40
risk-based, 34–36
Wildfire incidents, 205–6
Wildfire management, 33–34
cognitive biases in, 39–40, 40t
effects of, 195
suppression effectiveness, 38–39
on US federal lands, 33–34
Wildfire modeling, 303
long-term uncertainties, 205f, 207–8
midterm uncertainties, 204f, 206–7
modules for, 198
near-term uncertainties, 203f, 205–6
uncertainty analysis and, 193–94, 196, 197t, 198
uncertainty dimensions for, 195–96
uncertainty matrix for, 199t–202t
Wildfire risk assessment, 32
landscape-scale, 36
Wildfire risk management
features influencing, 33
major factors in, 31, 32f
mitigation options, 31
models supporting, 193
Wildfire risk triangle, 32, 32f
Wildfires. See also Burned area
addressing consequences of, 36–38
behavior of, 198, 203–5
benefits of, 33
climates and, 195
climate change and, 245, 246
conceptual models of, 194–95, 194f
decision making on, 32
integrated hazard assessment for, 302, 308
modeling, 4, 5
observations of, 248
probabilities for, 310, 312f
stochastic simulation of, 34
suppression effectiveness, 38–39
uncertainty sources in, 31–32
Wildland fire activity, 31
Wildland Fire Decision Support System (WFDSS), 31, 33, 34–36, 40
Wildland fire models, 5
Wind field errors, 106
Wind field errors, 106
WMFire_beta, 4
evaluation criteria for, 236–38
evaluation study site, 234–35
fuels, 234
parameter identifiability, 239, 240f, 241
parameter searches, 238–39
RHESSys integration, 243
sensitivity to shape parameters, 241, 242f
structure of, 233–34
topography, 234
uncertainty assessment and, 241–43
wind, 234
World Climate Research Programme (WCRP), 259
WRF. See Weather Research and Forecasting
WRF-Chem model, 215
AOD simulations, 219, 222, 224f, 225t
volcanic emission cloud simulation, 116–19, 116f, 118f
X-band satellite missions, 175
Young Earth System Scientists (YESS), 23, 24
Zhupanovsky volcano, 65, 69, 71, 72f–77f, 77, 78f–84f