Index

Notes: Page numbers in italics indicate figures and those in bold denote tables

acetaldehyde 242
acetate 138
acetate esters 243
acetic acid 364, 389
acetoin 8, 22
α-acetolactate 8
α-acetolactate decarboxylase (ALDC) gene 22, 247
2-acetyl pyrroline 9
acid beers 245
acidogenic bacteria 138
acidogenic digestate 141
acid whey 133
acoustic cavitation 155
Africa
alkaline fermented foods 370
cereal-based fermented foods 388
fermented fish products 355–356
fermented meat 402
fermented milk 27–28
traditional beers 244–245
yeast starter cultures 27–28, 29–30
afín see soumbala
agidi see ogi
agroindustrial by-products 85
air drying 91
air pollution, meat processing 137
aji no susu 362–363
akamu see ogi
alcohol acetyltransferase (ARF1) gene 247
alcohol-free beer 248
aldehydes 236, 364
ale (top-fermenting) yeasts 232
alginate beads, yeast cell immobilization 239, 244
Alheiras fermented sausage 334
alkaline fermented foods 370–383
proteolysis 370
allergens 120
ALTA™ 243 303
amaranth 217
America see United States
American coolship ale (ACA) 245
amines, narezushi 364
amino acids 234, 357
α-amylase 234
β-amylase 234
α-amylase gene (ALP1) 249
amylopectin 234
amylose 234
anaerobic (sludge) digestion
acidogenesis 138, 138
animal-origin waste 137–139
bacterial species involved 138, 139
by-products 140–141
digestors 139, 140
physical parameters 140
seeding 139
methanogenesis 139
microbial characteristics 139
pH, effects on 140
post-treated waste utilization 140–141
primary sludge 139
secondary sludge 139
solids hydrolysis 138, 138, 139
anaerobic microorganisms, bioremediation 132
angiotensin-converting enzyme (ACE) 9, 337
animal-origin wastewaters 136–141
thermal treatments 137
treatment 137–140
anthocyanin 263
antifoam agents 85
Archea, heavy metal bio-accumulation 132
arginine deaminase pathway 9
arrested fermentations, wine 259, 272
artisanal starters see natural starters
AS-48 bacteriocin 302
Asia
alkaline fermented foods 370
cereal-based fermented foods 388
meat processing 402
natural starters 28
starter culture markets 95
yeast starter cultures 27–28, 31–32
ATF1 gene 243
ATF2 gene 243
attenuation/attenuated starters 148–161
chemical treatments 149
definition 148, 149
freeze drying 152
freeze-thawing 151–152
heat treatment 150–151

Starter Cultures in Food Production, First Edition. Edited by Barbara Speranza, Antonio Bevilacqua, Maria Rosaria Corbo and Milena Sinigaglia.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Index

high-pressure homogenization 153–154
high pressure treatment 153–154
mechanical treatments 149–150
microfluidization 155
physical treatments 149
preparation 149–150
sonication 155–156
spray drying 152
use limitations 150

Australia, cereal-based fermented foods 388
autochthonous strains 174–198
applications 176–196, 177–185
biogenic amines reduction 186
commercial starters vs. 174–198, 193
dairy products 179–181, 187–189
fermented beverage 190–191
fermented fish products 176, 179, 187
fermented meat products 176, 177–179, 186–187
fermented vegetables 181–183, 189–190
slaughterhouse waste 137
sourdough 191–192

autolysis 2

Bacillus
qualified presumption of safety 110–111
soumbala starter culture selection see soumbala

Bacillus coagulans 111

Bacillus subtilis 376, 377
backslopping 4, 79, 101, 176
African traditional beers 244
bacPPK34 334

bacteria
cereal-based fermented foods 388
cereal microflora 203–204
heavy metal bio-accumulation 132
intercellular communication 209–210
new gene acquisition 163
olive mill wastewaters detoxification 142–143
phenolic degradation pathways 142
species definition 162
see also individual species

bacteriocins 11, 299–304
biosynthesis 300
classification 11, 300, 300–301
in commercial fermentation products 303
dairy microbiology 299–304
future research 315
preservation 302–304
wild-type producers 303
definition 11
fermented meat products 331–332, 332, 333
additives, effects of 334
environmental parameters 333–334
stress effects 334
as food additives 303
genetic engineering 302
in hurdle technology 302
in situ production 303
mode of action 301, 301

in packaging systems 302–303
pore formation 301
probiotic strains 310
secretion 299–300
bacteriophages see phage(s)
Bactoferm F-1C 303
bagoong 401
baker’s yeast
biological leavening 208
technological characteristics 23
see also Saccharomyces cerevisiae
bakery products, yeast starter cultures 23–24
DNA technology 23–24
barley 202
barley malt 231
bead milling 149
beer production 231–254
alcohol-free beer 248
antibiotic-resistance markers transfer 249
batch brewing process 233–236
batch fermentation 233–235
bottling 235
evaporation 234
filtration 235
flavour formation 235–236
grinding 233
hot holding 234
mashing 233–234
maturation 235
don-soluble component separation 234
pasteurization 235
primary fermentation 234–235
protein removal 235
secondary fermentation 235
stabilization 235
tannins removal 235
wort boiling 234
yeast metabolic changes 238
batch vs. continuous brewing process 238
bioflavouring 246–247
bottle refermentation/conditioning/
krausening 245–246
continuous brewing process 237–242
continuous fermentation 237–240
environmental impacts 238
financial savings 238
flavour formation 240–242
immobilized yeast cells see immobilized
yeast cells
limitations 242
systems 237
yeast metabolic changes 238
diet beer 248–249
fermentation conditions 246
fruit, addition of 246
genetic modification 22–23
flavour and 246–247
maturation acceleration 247–248
high gravity fermentation 242–244
ingredients 231–233
light beer 248–249
low-alcohol beer 248
low-carb beer 248–249
maturation acceleration 247–248
nutritional supplements 243, 246
specialty beers 244–245
spontaneous fermentation 244
sugar sources 231
traditional beers 244–245
very high gravity fermentation 242–244
water in 231
yeast starter cultures 22–23
Belgian specialty beers 244, 245
Berliner Weisse 245
Bifidobacterium 70–73
ecological niche 72
genomes 71
human gut species 72
morphology 70, 71
probiotic foods 72–73
taxonomy 70
tetracycline resistance 119
Bifidobacterium animalis subsp. lactis 70, 72–73, 311
Bifidobacterium asteroides 71
Bifidobacterium psychraerophilum 70
bifidogenic factors 314
bifid shunt pathway 71–72, 72
biltong 402
biogas 134, 141
biogenic amines (BAs)
adverse reactions 9–10
autochthonous strains 186
degradation 10
fermented meat products 343
Genomic-assisted starter selection 166
wine 264, 279–280
biological resource centres (BRCs) 33, 34, 35
biopreservation
dairy microbiology 299–308
definition 331–335
fermented meat products 331–335
phages 305–308, 307
bioreactors 144
cell propagation 86–89
continuous beer fermentation 237
carrier materials 240
bioremediation
advantages/disadvantages 131
acrobic microorganisms 132
applications 130
controlling factors 130
definition 129
ex situ 130
in situ 130
microorganism involved 131–132
nutrient addition 131
olive mill wastewaters see olive mill wastewaters (OMW)
pathways 130
starter concept and 130–133
water in 131
blue-mould cheese 51
Botrytis cinerea 52
bottom-fermenting (lager) yeasts 232
Bovamine® Meat Cultures 335
boza 386, 388–390
controlled fermentation 389
microflora 388–389
probiotics 389
production 389–390, 390
bread 206–208
autochthonous starters 191–192
definition 206
exopolysaccharides 11
flavour development 9
fortification 214, 215
historical aspects 206
leavening process 207–208
legume flours 216
production process 206–208, 208
rapid fermentation rate 24
volume expansion 208
breeding farms, waste 137
Brettanomyces, beer flavour 246
Bretanomyces bruxellensis 248
Brevibacterium linens 69
brewer’s spent grain 240
brewer’s yeasts 244–249
genetic engineering 22–23, 233, 243
low-carb beer 249
types 232
see also Saccharomyces cerevisiae
budu 387, 399–401
odours 400–401
production 400, 401
salt content 400
buffered media 88
bulk starter cultures 91
production 80
2,3-butanediol 8
2,3-butanedine see diacetyl
n-butanol 157
butyric acid 364
cachaca 28
Caciocavallo cheeses 188–189
cadaverine 279
cake filtration, beer 235
camel’s milk 395
Canada, starter culture legislation 114
Candida colliculosa 270
Candida famata 190
Candida guilliermondii 190
Candida pulcherrima 271
Candida stellata 271
Candida zemplinina 271
canned fish 355
caper berries 284
capers 284
carbohydrates, as prebiotics 313
K-carrageenan beads 240
caseins 9
cell lysis 2
cellulose carriers, yeast cell immobilization 239
cell-wall bound proteinase (CEP) 166
centrifugation 90
cereal-based fermented beverages
 ethnic 207, 385–394, 388
 non-alcoholic 388

cereal-based fermented foods 206–209
 autochthonous strains 185, 190–191
 bacteria 388
 cereals used in 201–202
 characteristics 200
 ethnic 385–394, 386
 fermentation 205–206
 fortification 200, 214–216, 393–394
 historical aspects 385
 natural fermentation 205–206
 traditional 200, 207
 yeasts 388
 see also individual products

cereal flours
 alcoholic fermentation 205
 lactic acid fermentation 205
 technological properties 202

cereal-legume combinations 215, 215–216

cereal microflora 203–205

cheese
 autolytic strains 2–3
 bacteriocin-incorporated packaging 302–303
 bitterness 8–9
 Codex general standard 111–112
 co-starters 24
 flavour development 8–9
 heat-attenuated starters 151
 non-starter bacteria functional cultures 66
 probiotics 310–311
 yeast starter cultures 24–25

cheese ripening 8
 attenuated cultures 148
 bacteriocin-producing cultures 303
 Corynebacterium 69
 lipolysis 10
 ultrasound-treated starters 156

cheese whey 133

chelating agents 86, 149
cherry lambic (Kriek) beer 246

China
 fermented meat 402
 starter culture legislation 114

chorizo sausage 337–338

citrate metabolism, lactic acid bacteria 7–8

citrate-utilizing (Cit+) Lactococcus lactis subsp. lactis 7
 citric acid 7, 8
 citric acid permease 8
 clonal selection 265–266
 closed pangenome 163
 Clostridium sporogenes 302
 coagulase-negative staphylococci (CNS) 325–326
 technological characteristics 326

cocoa fermentation 26–27

Code of Federal Regulations (FDA 2015), safe substance definition 105

Codex Alimentarius standards 111–112

celiac spruce (CS) 200–201, 216
 wheat bread effects, reduction strategies 219–220

coffee fermentation 27
 commercial starters 174–198
 autochthonous strains vs. 174–198, 193
 fear of failure and 175
 comparative genome hybridization (CGH) 167–168, 168
 compressed yeast 23
 conjugated linoleic acid (CLA) 345
 copper 260
 core genome 162–163
 Corynebacterium 67, 69–70
 Corynebacterium casei sp. nov 69
 Corynebacterium mooreparkense sp. nov 69
 cow’s milk 395
 cryoprotectants 93, 94
 cucumber fermentation 283
 curd fish 399
 CYS4 gene 247

Daikonzushi 362, 364–365
 preparation 364

dairy products 299–323
 autochthonous strains 179–181, 187–189
 biopreservation 299–308
 fungal starters 51
 microbiology 299–323
 new trends 299–323
 prebiotics see prebiotics
 primary cultures 188
 probiotics see probiotics
 secondary cultures 188
 starter functions 188
 yeast starter cultures 24–25
 see also individual products
 dairy waste management 133–136
 dairy wastewaters 133
 Dawadawa see soumbala

Debaryomyces hansenii
 cheese 24
 fermented meat products 26, 326
 fermented sausages 329
 narezushi 363
 defined strain starters (DSS) 3, 4, 5, 188
 advantages/disadvantages 5
 developing countries 96
 industrial-scale production 3
 inoculum culture preparation 83–84
 phage infection 5
 denaturing gradient gel electrophoresis (DGGE) 346
 flour microflora 204
 narezushi 363

Denmark, starter culture legislation 112–113

depth filtration, beer 235
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dextrins</td>
<td>22</td>
</tr>
<tr>
<td>diacetyl</td>
<td>8</td>
</tr>
<tr>
<td>beer flavour</td>
<td>22, 236, 241</td>
</tr>
<tr>
<td>genetic modification</td>
<td>247</td>
</tr>
<tr>
<td>industrial starter production</td>
<td>89</td>
</tr>
<tr>
<td>malolactic fermentation</td>
<td>279</td>
</tr>
<tr>
<td>production</td>
<td>8</td>
</tr>
<tr>
<td>diet beer</td>
<td>248–249</td>
</tr>
<tr>
<td>diffusion culture method</td>
<td>89</td>
</tr>
<tr>
<td>digestate, quality evaluation</td>
<td>141</td>
</tr>
<tr>
<td>digestors</td>
<td>144</td>
</tr>
<tr>
<td>direct vat set (DVS) cultures</td>
<td>80</td>
</tr>
<tr>
<td>direct vat set inoculation (DVI) cultures</td>
<td>80</td>
</tr>
<tr>
<td>dispensable genome</td>
<td>163</td>
</tr>
<tr>
<td>dissolved oxygen tension (DOT)</td>
<td>89</td>
</tr>
<tr>
<td>di/tripeptide-binding proteins (Dpp/Tpp)</td>
<td>166</td>
</tr>
<tr>
<td>dry yeast</td>
<td>23</td>
</tr>
<tr>
<td>durum wheat semolina</td>
<td>202</td>
</tr>
<tr>
<td>EcoShield™</td>
<td>306</td>
</tr>
<tr>
<td>eko see ogi</td>
<td></td>
</tr>
<tr>
<td>endolysin(s)</td>
<td>306–308, 307</td>
</tr>
<tr>
<td>chimeric</td>
<td>308</td>
</tr>
<tr>
<td>as disinfectants</td>
<td>308</td>
</tr>
<tr>
<td>endolysin LysZ5</td>
<td>308</td>
</tr>
<tr>
<td>endolysin phi 11</td>
<td>308</td>
</tr>
<tr>
<td>enterocin</td>
<td>302–303</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>304, 333</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td></td>
</tr>
<tr>
<td>bacteriocins</td>
<td>304</td>
</tr>
<tr>
<td>fermented meat products</td>
<td>333</td>
</tr>
<tr>
<td>qualified presumption of safety</td>
<td>110</td>
</tr>
<tr>
<td>sourdough</td>
<td>212</td>
</tr>
<tr>
<td>EP 0302968 A1 starter culture</td>
<td>139–140</td>
</tr>
<tr>
<td>epoxides</td>
<td>232</td>
</tr>
<tr>
<td>Escherichia coli O157:H7</td>
<td>332, 333</td>
</tr>
<tr>
<td>essential oils</td>
<td>331</td>
</tr>
<tr>
<td>esterases</td>
<td>10</td>
</tr>
<tr>
<td>esters</td>
<td></td>
</tr>
<tr>
<td>beer flavour</td>
<td>236, 241</td>
</tr>
<tr>
<td>fermented sausages</td>
<td>328</td>
</tr>
<tr>
<td>wine</td>
<td>262</td>
</tr>
<tr>
<td>ethanol, from lactose metabolism</td>
<td>7</td>
</tr>
<tr>
<td>ethnic fermented beverages</td>
<td>386–387</td>
</tr>
<tr>
<td>yeast starter cultures</td>
<td>27–28</td>
</tr>
<tr>
<td>ethnic fermented foods</td>
<td>384–406</td>
</tr>
<tr>
<td>common types</td>
<td>386–387</td>
</tr>
<tr>
<td>historical aspects</td>
<td>384</td>
</tr>
<tr>
<td>yeast starter cultures</td>
<td>27–28</td>
</tr>
<tr>
<td>ethyl carbamate (urethane)</td>
<td>264, 280</td>
</tr>
<tr>
<td>ethylenediaminetetraacetic acid (EDTA)</td>
<td>149</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td>cereal-based fermented foods</td>
<td>388</td>
</tr>
<tr>
<td>fermented fish products</td>
<td>355–356</td>
</tr>
<tr>
<td>fermented meat products</td>
<td>325, 402</td>
</tr>
<tr>
<td>regulatory framework</td>
<td>108–111</td>
</tr>
<tr>
<td>starter culture markets</td>
<td>94–95</td>
</tr>
<tr>
<td>European Food and Feed Cultures Association (EFFCA)</td>
<td>114, 116</td>
</tr>
<tr>
<td>European Food Safety Authority (EFSA)</td>
<td>108</td>
</tr>
<tr>
<td>Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)</td>
<td>118</td>
</tr>
<tr>
<td>European Union</td>
<td></td>
</tr>
<tr>
<td>Standing Committee on the Food Chain and Animal Health</td>
<td>113</td>
</tr>
<tr>
<td>starter culture legislation</td>
<td>113</td>
</tr>
<tr>
<td>exopolysaccharides (EPS)</td>
<td>11–12, 65</td>
</tr>
<tr>
<td>classification</td>
<td>11</td>
</tr>
<tr>
<td>functions</td>
<td>11, 165</td>
</tr>
<tr>
<td>gluten-free bread</td>
<td>218, 219</td>
</tr>
<tr>
<td>synthesis</td>
<td>165</td>
</tr>
<tr>
<td>table olives</td>
<td>291</td>
</tr>
<tr>
<td>fermentation</td>
<td>205</td>
</tr>
<tr>
<td>benefits</td>
<td>205</td>
</tr>
<tr>
<td>fermented beverages</td>
<td></td>
</tr>
<tr>
<td>autochthonous starters</td>
<td>183–184, 190–191</td>
</tr>
<tr>
<td>definition</td>
<td>205</td>
</tr>
<tr>
<td>fermented fish products</td>
<td></td>
</tr>
<tr>
<td>autochthonous strains</td>
<td>176, 179, 187</td>
</tr>
<tr>
<td>ethnic</td>
<td>387, 398–402</td>
</tr>
<tr>
<td>fungal starters</td>
<td>51</td>
</tr>
<tr>
<td>health functionality</td>
<td>366–367</td>
</tr>
<tr>
<td>lactic acid bacteria isolation</td>
<td>366–367</td>
</tr>
<tr>
<td>pickled (lactic acid fermented) type</td>
<td>356</td>
</tr>
<tr>
<td>product variety</td>
<td>399</td>
</tr>
<tr>
<td>salted and ripening type</td>
<td>356, 357–361</td>
</tr>
<tr>
<td>fermented food, definition</td>
<td>205</td>
</tr>
<tr>
<td>fermented fruits</td>
<td>27</td>
</tr>
<tr>
<td>fermented meat products</td>
<td>324</td>
</tr>
<tr>
<td>antihypertensive effects</td>
<td>337</td>
</tr>
<tr>
<td>autochthonous strains</td>
<td>176, 177–179, 186–187</td>
</tr>
<tr>
<td>bioactive peptides production</td>
<td>335–338</td>
</tr>
<tr>
<td>potential activity</td>
<td>337–338</td>
</tr>
<tr>
<td>biopreservation</td>
<td>331–335</td>
</tr>
<tr>
<td>biotechnology</td>
<td>345–346</td>
</tr>
<tr>
<td>characteristics</td>
<td>325</td>
</tr>
<tr>
<td>commercial starter cultures</td>
<td>176</td>
</tr>
<tr>
<td>dietary fiber addition</td>
<td>345</td>
</tr>
<tr>
<td>ethnic</td>
<td>387, 402–403</td>
</tr>
<tr>
<td>flavour development</td>
<td>327–329</td>
</tr>
<tr>
<td>yeasts</td>
<td>25–26</td>
</tr>
<tr>
<td>fungal starters</td>
<td>51</td>
</tr>
<tr>
<td>healthiness improvement</td>
<td>335–336</td>
</tr>
<tr>
<td>historical aspects</td>
<td>402</td>
</tr>
<tr>
<td>lactic acid bacteria see lactic acid bacteria (LAB)</td>
<td></td>
</tr>
<tr>
<td>mycotoxinogenic mould inhibition</td>
<td>335</td>
</tr>
<tr>
<td>probiotics see probiotics</td>
<td></td>
</tr>
<tr>
<td>proteolytic systems</td>
<td>336</td>
</tr>
<tr>
<td>ripening</td>
<td>325</td>
</tr>
<tr>
<td>yeasts</td>
<td>25–26</td>
</tr>
<tr>
<td>starter cultures</td>
<td>325–327, 327</td>
</tr>
<tr>
<td>requirements</td>
<td>325</td>
</tr>
<tr>
<td>selection</td>
<td>326–327</td>
</tr>
<tr>
<td>starter genetics</td>
<td>345–346</td>
</tr>
<tr>
<td>stress-tolerance genes</td>
<td>345</td>
</tr>
<tr>
<td>texture formation</td>
<td>329–330</td>
</tr>
<tr>
<td>yeast starter cultures</td>
<td>25–26</td>
</tr>
<tr>
<td>fermented milks</td>
<td></td>
</tr>
<tr>
<td>angiotensin I-converting enzyme inhibition</td>
<td>9</td>
</tr>
<tr>
<td>animal species and</td>
<td>395</td>
</tr>
<tr>
<td>ethnic</td>
<td>386–387, 394–398</td>
</tr>
<tr>
<td>fermentation benefits</td>
<td>394</td>
</tr>
<tr>
<td>prebiotic/probiotic addition</td>
<td>395–396</td>
</tr>
</tbody>
</table>
fermented milks (cont’d)
shell life extension 395
yeast starter cultures 25
fermented olives see table olives
fermented sausages 324–354, 402
acidification 329
autochthonous strains 176, 186
biopreservation 331
characteristics 324
colour formation 330
combination starters 328
definition 324
exogenous protein addition 328–329
fat levels 329–330
flavour formation 328–329
historical aspects 402
pathogen growth prevention 332
probiotics 339, 341, 341–342
starter culture interaction 328
texture formation 329–330
fermented vegetables 283–298
autochthonous strains 181–183, 189–190
microbial growth 284–285
postfermentation 285
primary fermentation 285
salting 284
secondary fermentation 285
spoilage microorganisms 285
starter culture development, new challenges 288–293
types 283–284
yeast starter cultures 27
see also individual vegetables
filamentous fungi see moulds
filtration
beer production 235
industrial culture production 90
fish-based products 355–369
fish pastes 399, 401–402
see also individual types
fish sauces 355, 357–358, 399–401
natural microflora 400
processing method 399
ripening process 400
salt content 400
see also individual sauces
fish sausages 355
fixed film bioreactor 144
flash pasteurization, beer 235
fluidized bed bioreactor 144
fluidized bed drying 91, 93
Food, Drug and Cosmetic Act, 1958 Food Amendment 104
food fortification
bread 214, 215
cereal-based fermented foods 200, 214–216
definition 214
idli 393–394
ogi 392
food waste management 129–147
animal-origin wastewaters 136–141
dairy waste 133–136
fortification see food fortification
Framboise (raspberry lambic) beer 246
free amino acids, soumbala 373, 374
free fatty acids (FFA), soumbala 374, 375
freeze drying 91, 92–93
attenuation 152
cell injury 92
cryoprotectants 93
disadvantages 92
fungal starters 51
freezing
industrial culture production 91, 94
physico-chemical-biochemical effects 152
frozen cultures 94
fungal starters 51
fructans 11
fructo-oligosaccharides (FOS) 12
fructose 232
fructose-6-phosphate phosphoketolase (F6PPK) pathway 71–72, 72
fruit
in beer 246
fermented 27
Fuet 339–340, 344
fugu poison (tetrodotoxin) 361
functional cultures 64–66
characteristics 65
definition 64
functional foods
dairy 308, 316
whey-based beverages 136
fungal starters 50–63
commercially available 51–52
competition 50–51
definitions 53–54
future developments 60
spore viability 52, 52
time to visible growth 53
traits 50
uses 50, 51
fungi
germination kinetics modelling 54–56
asymmetric model 55–56, 56
logistic model 55
germination parameters, factors affecting 56–60
conidia adaptation 59
culture age 57–58
environmental factors 57
physiological state 57–59
relative humidity 58–59
self-inhibitors 57
spore density 56–57
storage period 58–59
temperature 57, 58–59
transients 59–60
water activity 57, 58
germination time 50–52
definition 53–54
heavy metal bio-accumulation 132
olive mill wastewaters detoxification 142–143
phenolic compound degradation 142
furah see ogi
galactose 7
galactose-6-phosphate 6
β-galactosidases 7, 314
GAMI gene 249
gas chromatography 89
generally regarded as safe (GRAS) status 104–105, 106–107
assessment 104
food company liability 104
lactic acid bacteria 105
qualified presumption of safety concept vs. 108
genetically modified microorganisms (GMM) 121
genetically modified organism (GMO) 35–36
genetically modified yeast (GMY) strains 266
genetic engineering
bacteriocins 302
beer production, maturation acceleration 247–248
brewer’s yeasts 22–23, 243
brewing yeast 233
yeast starters 35–36
genome sequencing 163
genome studies errors 162
genomic islands 163
Geotrichum candidum 51, 52
geraniol 232
germ tube formation 53
GET_HOMOLOGUES 170
gladin-like fragments 220
gladins 9
glucan 11
Gluconobacter oxidans 111
gluco-oligosaccharides 12
glucose 6, 7, 232
glucose-6-phosphate 7
glutamate 9
gluten 202
microbial reduction strategies 219–221
gluten-free cereals 216–217
gluten-free flours 202, 217
gluten-free products 200–201
fermented 217–219
lactic acid bacteria 203–204
limitations 217
raw materials 217
undesirable aroma 218
gluten pellets 240
gluten-sensitive enteropathy see coeliac spruce (CS)
glycerol 262
glycosidases 246
glycosyl hydrolases 313–314
glycosyltransferases 313
goat’s milk 395
Gompertz equation 54–55
Gouda cheese 150
GPDI gene 248
grueze beers 245–246
Haldane–Andrews equation 144–145
Hanseniaspora, winemaking 272
Hanseniaspora guilliermondii 272
Hanseniaspora vinaeae 272
Hansenula anomala 273
hard cooked cheeses 66
hazard analysis and critical control points (HACCP) 112, 119
headspace gas analysis 89
healthful wines 265
‘healthy’ beers 233
heavy metals 132
Helicobacter pylori 310
hentak 401–402
heshiko see nukazuke
heteropolysaccharides 11, 219
high gravity fermentation, beer 242–244
high-pressure homogenization 149–150
attenuation 153–154
cell viability 154
milk 154
proteolytic activity 154
high-pressure homogenizers 153
high pressure treatment 153–154
hinezushi 362
histamine 10, 279, 360
HOLDBAC® Listeria 335
homopolysaccharides 11
hops 232
horizontal gene transfer (HGT) 162, 165
human milk 314–315
human milk oligosaccharides (HMO) 308, 314, 314–315
synthetic 315
hydrolytic bacteria, anaerobic digestion 138
Iberian dry-fermented sausage 186
identification 162
idli 30, 386, 392–394
biochemical changes 393
fortification 393–394
production 392, 393
spontaneous fermentation 392
immobilized yeast cells
continuous beer fermentation 237–238
benefits 237
carrier types, beer characteristics and 239–240
cellular alterations 240–241
genetically modified yeast 247
immobilized by attachment 241
immobilized by entrapment 241–242
limitations 237–238
temperature effects 242
costs 240
food-grade supports 240
high gravity fermentation 243–244
very high gravity fermentation 243–244
industrial production 79–100
benefits 79
cell propagation 86–89
agitation 88–89
cell density 88
continuous operations 87
headsphere gas analysis 89
pH 87–88
industrial production (cont’d)
 process control 87–89
 temperature 88
concentration 89–90
harvesting 89–90
 centrifugation 90
 stress 89–90
 timing 89
historical aspects 80
inoculum culture preparation 82–85
 defined cultures 83–84
 microbe enumeration 82–83
 starter strain(s) selection 82–83, 83
 strain engineering 84–85
 undefined cultures 83–84
manufacturers 95, 95
media formulation/preparation 85–86
 cell survival/functionality 85–86
 intracellular metabolites 86
 nutrient supplementation 85
 sterilization 85
preservation 91, 91–94
 cell injury 91–92
 drying protectants 92
 drying techniques 91, 91–94
process 80–82, 81
quality control 81–82
stress exposure 81–82, 82
 propagation phase 86
wine yeasts 262
infant formula 315
in–house produced cultures 80, 91
inulin 12
invertase 232
ishiri see ishiru
ishiru 357–358, 362, 399
nourishment content 357
production 357, 357
isooamyl alcohols 236
Isatchenkia orientalis 273
Japan, traditional fermented fish foods 355–369
 distribution 356
Jinhua ham 387, 402, 403, 404
kaburazushi 362, 364–365, 366
kamu see oji
kapi 401
K-carrageenan beads 240
kecap ikan 399
kefir 25, 386, 396–398
 fermentation products 398
 lactic acid bacteria 396
 production methods 396–398, 397
 commercial cultures 397–398
 Russian method 397
 traditional artisanal 396–397
 yeasts 396
 yoghurt vs. 398
kefir grains 396
kieselguhr-based cylindrical carriers 239
kilishi 402
killer proteins 33
killer toxins 260–261
killer yeasts 33, 260–261
kimchi 284, 356
kinda see soumbala
kinetic microbial growth 144–145
Klebsiella oxytoca 143
Kluyveromyces marxianus 25
Kluyveromyces thermotolerans 273
koko see oji
konka-zuke see nukazuke
konwata 358
Kriek (cherry lambic) beer 246
kunchiang 402
Lachancea thermotolerans 273
lactic acid 7
lactic acid bacteria (LAB) 1–15
 African traditional beers 244–245
aji no susu 362–363
 attenuated cultures 148
 bacteriocins see bacteriocins
 biogenic amine degradation 10
 biological leavening 208
bezo fermentation 388–389
breadmaking 191–192
cereal microflora 203–204
citrate metabolism 7–8
daikonzushi 365
 esterases 10
ethanol, effects on 276
exopolysaccharide production 11–12
fermented fish pastes 402
fermented meat products 325–326, 327, 329, 337, 338
 bacteriogenic 333–335
 probiotics 339–340, 340
fermented vegetables 284
fish sauces 400
flour toxicity reduction 9
 as food preservative substitutes 11
 function/role 65–66
 generally regarded as safe status 105
 gluten-free baked goods 203–204
idli 392
kaburazushi 365
kefir 396
 lactose metabolism 6, 6–7
 lipases 10
 lipolysis 10
 low-alcohol/alcohol-free beer 248
malolactic fermentation
 inoculated 275
 spontaneous 274–275
meat protective cultures 335
metabolism 5–12
 in milk 395
 milk fermentation affecting 395
new culture selection 12, 12
nitrogen metabolism 8–10
nakazake 359–360
pH 87
proteolytic system 8, 166
ropy phenotypes 279
safety aspects 2
salt tolerance 2
sourdough 191, 210–213, 211
 cell–cell communication 212–213
 performance testing 214
 starter selection 213–214
 three‐phase evolution 212
as starter cultures 1–15
 characteristics 1–3
 functional aspects 2
 technological aspects 2
table olives fermentation 287, 289
 dominance 288
 selection criteria 288
transporters 166
wheat‐legume sourdough 216
winemaking 190
 aroma production 278–279
 stress resistance 276–277
 yeast interaction 278
wort acidification 240
see also individual species
lacticin 3147 303
lacticin Q 301
Lactobacillus
 bacteriocins 310
 malolactic fermentation 275
 meat processing 336
Lactobacillus acidipiscus 363
Lactobacillus acidophilus freeze–thawing 151
generally regarded as safe status 105, 106
probiotics 310
whey-based fermented beverages 134, 135
Lactobacillus brevis 328, 392
Lactobacillus buchneri 219
Lactobacillus bulgaricus 85–86
Lactobacillus casei 219, 342
Lactobacillus curvatus 219, 328, 333, 334
Lactobacillus delbrueckii spp. lactis 136
Lactobacillus fermentum 330
Lactobacillus helveticus 136, 150, 152
Lactobacillus johnsonii 310
Lactobacillus paracasei 290, 342–343, 344
Lactobacillus paracasei subsp. paracasei 189
Lactobacillus pentosus 287
Lactobacillus plantarum
 fermented fish products 366–367
 fermented sausages 328, 333, 334
 gluten-free sourdough 218–219
 kaburazushi 364, 365, 365
malolactic fermentation 275
narezushi 363
sourdough 192, 212–213
table olives 189–190, 287
Lactobacillus rennini 363
Lactobacillus reuteri 332–333, 342
Lactobacillus rhamnosus 339–340, 344
Lactobacillus sakei
 fermented meat products 334–335, 336
 fermented sausages 328
 kaburazushi 365
 spray drying 85–86
Lactobacillus sanfranciscensis 12, 210, 212
Lactobacillus versmoldensis 363
lactococcin 972 301
Lactococcus lactis 328
lactoferrin 136
lactose, as prebiotic substrate 313
lactose intolerance 66
lactose metabolism, lactic acid bacteria
6, 6–7
lactose‐negative mutants 157
lactose transport 6–7
lactosucrose 313
lactulose 313
lager (bottom-fermenting) yeasts 232
lambic beers 244, 245
lantibiotics 11, 300
legume flours 216
legumes 215, 215–216
Leloir pathway 7
LEU4 gene 247
Leuconostoc mesenteroides 7, 366–367
light beer 248–249
ligninolytic fungi 132
Limburger cheese 69
linalool 232
lincosamide resistance gene 119
lipases 10
liquid cultures 80, 91
liquor (methanogenic digestate) 141
Listeria monocytogenes 332, 333, 334
Listex P100 306
ListShield™ 306
low‐alcohol beer 248
low‐carb beer 248–249
low‐density polyethylene film, enterocin with 302–303
low molecular weight peptides 335–336
LSD1 gene 249
lup‐cheong 402
lyophilization see freeze drying
LysH5 308
lysogeny 305
lysozyme‐sensitive cells (LSC) 156
lysozyme treatment 156
maize 201–202
gluten-free products 217
malolactic bacteria (MB) 275
production process, viability after 277
selection criteria 276–280
stress resistance 276–277
technological performance 276, 277–279
wine wholesomeness 276, 279–280
malolactic fermentation (MLF) 274–280
bacteria–yeast interaction 278
deadacidification 274
desirable effects 274
factor affecting 274, 274
inoculated 275
inoculation during alcoholic fermentation 278
inoculation timing 277
reaction definition 274
sequential inoculation 278
simultaneous inoculation (co-inoculation) 277–278
spontaneous 274–275
risks 275
starter culture selection 275, 276–280
temperature 277
wine aroma 274
wine pH 277
maltose 24, 232, 243
maltose transporter gene (MALT) 243
maltotriose 232
manure treatment 137
meat processing, air pollution 137
meat proteases, endogenous 336
meat proteins 337, 338
meat sarcoplasmic proteins 336
media 85–86
buffered 88
medium-chained proteins 234
medium-chain fatty acids 10, 236
medium supplements 85–86
mefur 358
melibiose 23
membrane filtration 90
mesophilic cultures 3, 88
MET10 gene 247
metabolic engineering, low-alcohol beer 248
metagenomic analysis 168
methane monooxygenase 132
methanogenesis, anaerobic digestion 139
methanogenic digestate (liquor) 141
methylo trophs, bioremediation 132
metmyoglobin 330
Metschnikowia pulcherrima 271
microarrays 167–168, 168
microbial food cultures (MFC) 114, 115
microbiota dysbiosis 72
microencapsulation technologies 93
microfluidization 155
microfluidizer 155
MICROGARD™ 303
millet 202
millet flour 217
mixed-strain starters (MSS) 3, 4, 4–5, 188
benefits 84
production method 5
whey-based fermented beverages 136
winemaking 21, 267–273
modified Gompertz equation 54–55
Monod equation 144–145
Morganella morganii 360
moulds
commercially available starters 51–52
fermented sausages 326, 327, 329
historical aspects 50
qualified presumption of safety concept 111
MTY1 gene 243
nam pla 357, 399
narezushi 355–356, 361–365, 367
aromatic compounds 364
functions 366
izushi-type 362
Japanese narezushi culture 361–362
made in Noto 362–363, 363
old-type 356, 361–362
natural starters 3, 4, 16, 188
advantages 4
Asian countries 28
production 4
néétu see soumbala
ngan pya ye 399
ngapi 399, 401
ngari 401
nicotinamide adenine dinucleotide (NAD+) 6
Nisaplin 303
nisin 11, 300, 301, 302
fermented meat products 332
in packaging systems 302–303
nitrate reductase 330
nitrite 330, 331, 334
nitrogen metabolism 8–10
nitrogen supplementation 243
nitrosomyoglobin 330
non-digestible oligosaccharides 374, 375
non-lantibiotic bacteriocins 300
non-lantibiotics 11
non-Saccharomyces yeasts
beer production 233, 246
low-alcohol beer 248
winemaking 21, 256
aroma production 269, 270
multistarters 269–273
sequential inoculation 269, 270
non-starter bacteria functional cultures 64–78, 67
non-starter lactic acid bacteria (NSLAB) inhibition 303
nukazuke 359–361, 366
production 359–360, 360
from puffer fish ovaries 361, 361
nuoc-mam 357, 399
nutrient supplementation, media 85
ochratoxin A (OTA)
fermented meat products 335
wine 120, 191, 264
Oenococcus oeni 274–275, 279
ogi 29, 386, 390–392
fortification 392
nutritional qualities 392
production 391, 391
starter culture use 391–392
ogi-baba 390
ogi-gero 390
oligopeptide-binding proteins (Opp) 166
oligosaccharides, from lactose 313–314
olive mill wastewaters (OMW)
 bioremediation 141–144
 microorganisms used 142–144
 indigenous yeast strains 143–144
 physico-chemical characteristics 141, 142
open pangenome 163
ORFans 163, 164
organic acids
 beer flavour 236, 242
 fish sauces 357
 organic wines 20
orthologous genes 170
oxidative stress 86
2-oxo acids 236
packing houses, waste 137
PanCGH 168, 170
PanCGHweb 170
pangenome 162–173
 definition 162–163
 discovery of 163–164
 orthologous genes 170
 starter culture selection 164–167
 study tools/software 167–170, 168
pangenome analysis pipeline (PGAP) 168, 168, 169
pangenome ortholog clustering tool (PanOCT) 170
PGAT software tool 168, 169
phage(s) 304–308
 as biocontrol agents 305–308, 307
 as biopreservatives 305–308, 307
 classification 304
 efficacy evaluation 305
 life-cycles 304–305, 305
 zoonotic pathogens 306
phenol 313, 314
phenolic compounds 141, 142
2-phenyl-ethyl acetate 272
pheriotrophs 304–308
 as biocontrol agents 305–308, 307
 as biopreservatives 305–308, 307
 classification 304
 efficacy evaluation 305
 life-cycles 304–305, 305
 zoonotic pathogens 306
phage A511 305
phage S2 305
phage SPW 305
phenoxazone 329
phenoxazone 329
phenoxazone 329
photobacterium 360
photobacterium degradation 205–206
Pichia fermentans 273
Pichia kluyveri 273
plantaricin 334
pollutants degradation 132
polygalacturonases 27
polyphenols 263, 264
polyvinyl alcohol (PVA) 239–240
porous glass beads, yeast cell immobilization 239, 244
porphyrin 88
prebiotics 312–315
 beneficial effects 313
 combination 313
 definition 312
 future research 316
 from milk 313–315, 314
 yoghurts 395–396
predictive mycology 52–53
probiogenomics 165
ProBiolives 290–291
probiotics 308, 309–312
 bacteriocins 310
 beneficial effect, number of cells needed 344
 beer 389
 cell viability 86
 cheese 310–311
 dairy products 310–312
 acid tolerance 311
 as adjunct cultures 311
 fat levels 312
 food vehicle selection 311–312
 microorganism interactions 312
 oxygen tolerance 311
 stress resistance markers 311
 definition 309–312
 fermented meat products 338–345, 340
 acid tolerance 342–343
 antibiotic resistance 340–341
 bile resistance 343
 biogenic amines 343
 dietary fiber addition 345
 dominance 343–344
 human health effects 341, 344–345
 lyophilized cultures 342
Index

probiotics (cont’d)
 nutraceutical compounds 344–345
 physiological characteristics 342–344
 selection criteria 340–344
 technological challenges 338–345
 technological characteristics 341, 341–342
 viability 341
fermented vegetables 288–290
 functionality evidence 309–310
 future research 316
 genera used 309
 gluten reduction 220
 health effects 65–66
 human intervention studies 310
 mechanism of action 310, 341
 medium components 86
 non-dairy products 288–293
 propionibacteria 68
 safety 309
 selection
 guidelines 309, 309–310
 pangenomic approach 165
 sourdough 12
 table olives 290–293, 292
 tetracycline resistance 119
 triglyceride hydrolysis 10
 whey utilization 135
 yoghurts 395–396
proline-rich peptides hydrolysis 220
prolyl-endopeptidase 219–220
Propionibacterium 66–68, 67
 Propionibacterium freudenreichii subsp. shermanii 66, 68
 propionic acid 66–67
 propionic acid bacteria (PAB) 66–67
 proteolysis
 alkaline fermented foods 370
 fermented sausages 328
 freeze-shocked cultures 151–152
 high-pressure homogenization 154
 meat processing 336
 protoplast fusion 266
 pseudo-cereals 217
 psychrophilic strains 88
 psychrotrophic 88
 putrescine 279
 pyruvate 7
 pyruvate formate lyase 7
 pyruvic acid 6, 8
 qualified presumption of safety (QPS)
 concept 108–111
 annual update 109
 antimicrobial resistance markers 109
 generally regarded as safe status vs. 108
 Gram-positive non-spore-forming bacteria 109–110
 Gram-positive spore-forming bacteria 110–111
 pathogenicity 108–109
 pre-assessment 108
 yeasts 111
 quinoa 217
 quorum sensing 209–210
raffinose 23, 375
 raspberry lambic (Framboise) beer 246
 raw milk 311–312
 recombinant DNA technologies
 fermented meat products 345
 wine yeasts 266
 Regulation (EC) No 178/2002 112–113
 rennet 133
 resveratrol 264
 reuterin 332–333
 rice 201, 202, 217
 16S rRNA sequence 162
 rye 201
 rye flour 9, 202
 Saccharomyces carlsbergensis 22, 232
 African traditional beers 244
 genetic improvement 266
 wine strains, improvement 265–267
 Saccharomyces cerevisiae
 bakery products 23
 beer production 22, 232
 biological leavening 208
 fermented milks 25
 genetically modified organism 35–36
 killer strains 261
 multistarter, winemaking 267–268
 qualified presumption of safety 111
 sourdough 210
 sulfite tolerance 260
 winemaking 17–21, 256
 autochthonous strain 191
 genetic manipulation 20–21
 low ethanol-producing 20–21
 non-Saccharomyces yeasts and 269–273
 oenological traits 19
 starter selection 19
 winery-specific strains 19
 Saccharomyces eubayanus 22
 Saccharomyces pastorianus 22, 232
 Saccharomyces ludwigii 248
 SafePro® 335
 safety evaluation 101–128
 contaminants 115, 117
 future developments 121
 genetically modified microorganisms 121
 integrated perspective, need for 102–103
 open process model 121
 spontaneous fermentations 103
 transdisciplinary 102–103
 undefined microbial cultures 119
 whey starters 119
 sakacin K 334–335
 salame nostrano 177
 salami, probiotic 339, 342–343, 344
 salchichon 177, 186
 SalmoFresh™ 306
 salt/salting 2
 fermented sausages 331, 334
 fermented vegetables 284
 fish sauces 400
 Jinhua ham 403
Index

probiotic cell viability 86
shiihhe 362
shiokara 358, 358–359
food poisoning incident 359
low-salt 359
production 358, 358
ripening 358–359
salting 358
types 358
short-chain fatty acids (SCFA) 313
shottsuru 399
shuto 358
siderophores 57
Singapore, starter culture legislation 114
single-strain cultures 84
slaughterhouse waste 137
smear-ripened cheese 69
smoking 335, 402–403
sociomicrobiology 209
sodium dodecyl sulphate (SDS) 149, 157
solvents 157
sonication 149, 155–156
sorghum 201, 202
sorghum flour 217
soumbala 370–383
Bacillus starter culture selection 372–381
acid tolerance screening 376–377, 378
antimicrobial activity screening 376, 377
antimicrobial susceptibility 379, 380
bile tolerance 376–377, 378
carbohydrate degradation 374, 375
controlled fermentations 379–381
lipolytic activity screening 373–375, 374
microorganism identification 372–373
proteolytic activity screening 373, 374
pulsed field gel electrophoresis 372–373
sensory evaluation 379–381
toxin-producing ability 377–379
vegetative cells 377, 378
characteristics 371–372
pathogenic bacteria 372
production 370–371, 371
biochemical changes 371
microorganisms involved 370–371
safety issues 372
sourdough 24, 199–230
autochthonous starters 185, 191–192
bread making, benefits in 209
cell–cell communication 210, 212–213
classification 208–209
definition 208
flour microflora 204
glutamate production 9
gluten-free products 218–219
starter selection 218–219
gluten reduction strategies 220–221
health benefits 209
LAB:yeast ratio 209
lactic acid bacteria see lactic acid bacteria (LAB)
legume flours 216
microorganisms 209–213
obligate heterofermentative species 210
probiotics 12
starter selection 213, 213–214
types 208–209
yeast diversity 24
yeasts 191, 210
South American fermented foods/beverages 28
Spanish dry-fermented sausage 328
sparkling whey wine 134–135
specialty beers 244–245
spore germination 53
spray drying
advantages/disadvantages 93
attenuation 152
industrial culture production 91, 93
stachyose 375
Staphylococcus aureus 334, 359
Staphylococcus carnosus 328
Staphylococcus vitulus 186
Staphylococcus xylosus 328, 330
starch 231, 234
starter cultures
as additives 113
antimicrobial resistance 118
attenuation see attenuation/attenuated starters
contaminants 115, 118–120
in dairy production 2
definition 16, 115, 148, 324
detrimental health effect 120
developing countries 102
economic significance 112
enhanced safety design 120–121
functionality 83
function/role 1
industrial production see industrial production
legislative harmonization need 114
manufacturers 95, 95
markets 94–96
current 94–95
future 95–96, 97
matrix selective degradation 120
opportunistic infections 110, 118
position papers 111–117
as processing aids 113
regulatory environment 111–117
safety aspects 118–120
safety evaluation see safety evaluation
scientific framework 111–117
selection criteria 174
table olive fermentation 286–288
toxin production 118
types 3–5, 4
usage reasons 64
yeasts see yeast(s)
see also individual products; individual species
Index

stock cultures, reactivation 86–89
strain orthologs 170
Streptococcus griseus 328
stress tolerance, strain engineering 84–85
stock fermentations, wine 259, 272
sucrose 232
suçuk 334
sulfide 262
sulfite 262
sulfur compounds
 beer 22–23
 wine 262
sulfur dioxide tolerance, malolactic bacteria 276–277
superinfection immunity 305
super‐selected yeast 18, 19
suppression subtractive hybridization (SSH) 167–168
surface filtration, beer 235
Svecia cheese 148
sweet whey 133
Swiss cheese 68
synbiotics 312
table olives 285–286
 autochthonous strains 182, 189–190
 biofilm formation 291, 291
 Californian style 286
 classification 286
 definition 285
 historical aspects 285
 probiotics 290–293, 292
 processing 286
 Spanish style 286
 spontaneous fermentation 287
 starter cultures
 application 286–288
 development, new challenges 288–293
 yeast starter cultures 26
 tagatose-6-phosphate 6
terasi 401
terpenic compounds, wine 21, 268, 268, 269
tet(W) gene 119
tetracycline resistance gene 119
Tetragenococcus, fermented fish 357, 359–360, 363
Tetragenococcus halophilus 357
tetrodotoxin (fugu poison) 361
thermal treatments, animal waste 137
thermophilic bacteria 3, 7, 88
top-fermenting (ale) yeasts 232
Torulaspora delbrueckii 270–271
TPS1 gene 21
Trade Standard Applying to Table Olives (IOC 2004) 285
traditional beers 244–245
traditional starters 3, 4, 4–5, 103
Trichosporon cutaneum 143
triose phosphates 6
Triticum aestivum 201
Triticum durum 201
tungtap 401
tyramine 10, 166–167
tyrosine decarboxylase 166–167
uji 390
ultrasound 155–156
undefined strain starters 83–84
United States
 cereal-based fermented foods 388
 regulatory framework 104–105
 specialty beers 245
 starter culture legislation 113–114
 starter culture markets 95
 unmalted cereals, beer 231
 up-flow anaerobic sludge blanket (UASB) 144
uraka 358
urea 264, 280
urethane (ethyl carbamate) 264, 280
vacuum drying 91, 94
valine content, wort 247–248
very high gravity fermentation, beer 242–244
Vibrio parahaemolyticus 359
vicinal diketones (VDKs) 236, 241
vitamin fortification 214
vitisins 263
volatile compounds, fermented sausages 328
water
 in beer 231
 bioremediation 131
wheat 199, 201–202
wheat flour 9, 202, 203, 204
whey
 alcoholic beverage production 134–135
 disposal treatments 134
 as new resource 25, 134
 probiotic drinks production 135
 yeast starter cultures 25
 whey-based fermented beverages 134–136
 whey beverage production 133–136, 135
whey proteins 133
whey starters, natural 188
white cabbage 284
white-rot fungi (WRT) 142, 143
wild yeasts, winemaking 18
winemaking
 alcoholic fermentation 255–257
 aroma formation 19–20, 21
 arrested/stuck fermentations 259, 272
 autochthonous starters 183–184, 190–191
 co-fermentation 21
 co-inoculation 267–268, 268, 269
 consumer-orientated tendencies 265
 contaminants 115, 117
 ethanol removal 263–264
 flavour compounds 261
 fungal starters 51
 historical aspects 17–18
 inoculated fermentation 255, 256, 256–257
 large-scale production 257
 low-temperature fermentations 20
malolactic fermentation see malolactic fermentation (MLF)
microbiology 255–258
mixed starters 21, 267–273
organoleptic quality 261
primary characteristics 19
producer-orientated requirements 265
quality variation 18
resident yeast populations 19
secondary qualities 19
specific grape-adapted starters 19
spontaneous fermentation 18, 255, 256, 256
 toxic compounds 264
wholesomeness 263–265
wild/indigenous yeasts 18
 yeasts see yeast(s)
Wood–Werkman cycle 68, 68
wort
 acidification, lactic acid bacteria 240
 boiling processes 234
 high gravity fermentation 242–244
 sugars in 232
 valine content 247–248
Xyloolose-5-phosphate phosphoketolase (Xfp) 71

Yarrowia lipolytica 24, 26
 yeast(s) 16–49
African fermented foods/beverages 27–28, 29–30
alcoholic fermentation 255, 256
Asian fermented foods/beverages 31–32
bakery products 23–24
as biocontrol agents 28, 33
biodiversity 17
biological leavening 208
boza fermentation 388–389
breadmaking 191–192
brewing starter cultures 22–23
cereal-based fermented foods 388
cereal microflora 204
cheese 24–25
cocoa fermentation 26–27
coffee fermentation 27
dairy product starters 24–25
etnic fermented beverages 27–28
ethnic fermented food 27–28
fermented fruits 27
fermented meat products 25–26, 326, 327, 335
fermented milk 25
fermented olives 26
fermented sausages 329
fermented vegetables 27
in flour 204
freeze-thawing survival 23
future outcomes 33–36
idli 392
kefir 396
killer toxins 260–261
narezushi 363
olive mill wastewaters detoxification 142, 143
phenolic compound degradation 142
qualified presumption of safety 111
sourdough 24, 191, 210
South American fermented foods/beverages 28
spoilage 28
as starter cultures 16–49
companies selling 18
general considerations 17
genetic engineering 35–36
ideal culture selection 35
molecular tools 35
table olives 287, 289
spoilage 287
whey 25
winemaking 17–21, 190
 antimicrobial compounds tolerance 260
 aroma formation 261
 bacteria interaction 278
 colour improvement 263
 commercial production 262
 efficient sugar utilization 259
 ethanol removal 263–264
 ethanol tolerance 260
 fermentation performance 258–259
 genetic modification 264
 low ethanol-producing 20–21
 metabolic/non-conventional traits 261–262
 new yeasts 265–273
 novel traits 263–265
 random mutagenesis 266
 selection criteria 258–265, 259
 selection process 257
 stress factors 259
 stress tolerance 262
 technological/conventional traits 258–262
 wine composition, role in 257, 258
 wine wholesomeness 263–265
 worldwide collections conserving 33
 see also individual species
yeast bouquet, wine 261
yeast killer activity 260–261
yoghurt
 kefir vs. 398
 prebiotic/probiotic addition 395–396
 preservation methods 395
yoshiri see ishiru
yoshiru see ishiru
yuen chang 402
Zygosaccharomyces, winemaking 272
Zygosaccharomyces bailii 272
Zygosaccharomyces florentinus 272