Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Background Theory</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1 Maxwell's Equations for Time-Harmonic Fields</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Field Representation in Terms of Axial Field Components in</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Source-Free Regions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.2 Boundary Conditions</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Poynting's Theorem</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Reciprocity</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Duality</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.6 Method of Images</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.7 Geometric Optics</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Equivalent Sources</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Aperture in a Ground Plane</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Conformal Surfaces</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Radiation</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Near-Field</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Far-Field</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Mutual Coupling Between Infinitesimal Current Elements</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Problems</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.3</td>
<td>123</td>
</tr>
<tr>
<td>Profiled Horns</td>
<td></td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>Optimization</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>Parametric Profiles</td>
</tr>
<tr>
<td>4.6</td>
<td>Problems</td>
</tr>
<tr>
<td>References</td>
<td>133</td>
</tr>
</tbody>
</table>

5 **Microstrip Patch Antenna**	137
5.1 | Introduction | 137
5.2 | Microstrip Patch Aperture Model | 138
5.3 | Microstrip Patch on a Cylinder | 143
5.4 | Problems | 146
References | 147

6 **Reflector Antennas**	149
6.1 | Introduction | 149
6.2 | Radiation from a Paraboloidal Reflector | 150
6.2.1 | Geometric Optics Method for a Reflector | 152
6.2.1.1 | Dipole Feed | 154
6.2.1.2 | Circular Waveguides and Horn Feeds | 157
6.2.2 | Edge Taper and Edge Illumination | 160
6.2.3 | Induced Current Method | 162
6.2.3.1 | Radiation from Symmetrical Reflectors with General Profile | 164
6.2.3.2 | Spherical Reflector | 167
6.2.4 | Receive-Mode Method | 168
6.3 | Focal Region Fields of a Paraboloidal Reflector | 172
6.3.1 | Asymptotic Representation of the Scattered Field | 176
6.4 | Blockage | 181
6.5 | Reflector Antenna Efficiency | 183
6.6 | Reflector Surface Errors | 188
6.7 | Offset-fed Parabolic Reflector | 189
6.8 | Cassegrain Antenna | 196
6.8.1 | Classical Cassegrain | 196
6.8.2 | Offset Cassegrain Antenna | 198
6.9 | Shaped Reflectors | 202
6.9.1 | Reflector Synthesis by Geometric Optics | 203
6.9.2 | Reflector Synthesis by Numerical Optimization | 209
6.10 | Problems | 213
References | 217

7 **Arrays of Aperture Antennas**	219
7.1 | Introduction | 219
7.2 | Two-Dimensional Planar Arrays | 219
7.2.1 | Rectangular Planar Array | 221
7.2.2 | Hexagonal Array | 223
7.3 | Mutual Coupling in Aperture Antennas | 228
7.3.1 | Infinite Periodic Arrays | 230
7.3.2 Finite Arrays

7.3.3 Mutual Impedance and Scattering Matrix Representation

7.3.4 Analysis of Arrays of Aperture Antennas by Integral Equation Methods

7.3.4.1 Moment Method Approach

7.3.4.2 Mode Matching in Arrays

7.3.5 Mutual Coupling Analysis in Waveguide Apertures

7.3.5.1 Rectangular Waveguide Arrays

7.3.5.2 Self-Admittance of TE_{10} Mode

7.3.5.3 Arrays of Circular and Coaxial Waveguides

7.3.5.4 Self-Admittance of TE_{11} Mode in Circular Waveguide

7.3.5.5 Mutual Coupling in Other Geometries

7.3.5.6 Waveguide-Fed Slot Arrays

7.3.5.7 Arrays of Microstrip Patches

7.3.5.8 A Numerical Formulation of Coupling in Arbitrary Shaped Apertures

7.3.6 An Asymptotic Expression for Mutual Admittance

7.3.7 Radiation from Finite Arrays with Mutual Coupling

7.4 Techniques for Minimizing Effects of Mutual Coupling

7.4.1 Element Spacing

7.4.2 Aperture Field Taper

7.4.3 Electromagnetic Fences

7.4.4 Mutual Coupling Compensation

7.4.5 Power Pattern Synthesis Including the Effect of Mutual Coupling

7.5 Low-Sidelobe Arrays and Shaped Beams

7.6 Problems

References

8 Conformal Arrays of Aperture Antennas

8.1 Introduction

8.2 Radiation from a Conformal Aperture Array

8.2.1 Waveguide with E-Field Polarized in Circumferential Direction

8.2.2 Waveguide with E-Polarized in Axial Direction

8.2.3 Historical Overview of Asymptotic Solutions for Conformal Surfaces

8.3 Mutual Coupling in Conformal Arrays

8.3.1 Asymptotic Solution for Surface Dyadic

8.4 Coupling in a Concave Array: Periodic Solution

8.5 Problems

References

9 Reflectarrays and Other Aperture Antennas

9.1 Introduction

9.2 Basic Theory of Reflectarrays

9.3 Extensions to the Basic Theory

9.4 Other Aperture Antennas

9.4.1 Lenses

9.4.2 Fabry–Pérot Resonator Antennas

References
Contents

9.5 Problems 354
References 356

10 Aperture Antennas in Application 357
10.1 Fabrication 357
 10.1.1 Machining 357
 10.1.2 Printing 358
 10.1.3 Mould Formation 358
 10.1.4 Electroforming 358
 10.1.5 Lightweight Construction 358
 10.1.6 Pressing and Stretch Forming of Reflector Surfaces 359
 10.1.7 Assembly and Alignment 360
10.2 Measurement and Testing 361
 10.2.1 Far-Field Measurement 361
 10.2.2 Near-Field Measurement 364
 10.2.3 Intermediate-Field Measurement 369
10.3 Modern Aperture Antennas 371
 10.3.1 Compact Low-Sidelobe Horns 371
 10.3.2 Multibeam Earth Station 375
 10.3.3 Radio Telescopes 379
10.4 Problems 387
References 388

Appendix A: Useful Identities 391
A.1 Vector Identities 391
A.2 Geometric Identities 392
A.3 Transverse Representation of the Electromagnetic Field 393
A.4 Useful Functions 394
References 394

Appendix B: Bessel Functions 395
B.1 Properties 395
B.2 Computation of Bessel Functions 400
References 401

Appendix C: Proof of Stationary Behaviour of Mutual Impedance 403

Appendix D: Free-Space Dyadic Magnetic Green’s Function 405
Reference 406

Appendix E: Complex Fresnel Integrals 407
References 409

Appendix F: Properties of Hankel Transform Functions 411
References 412
Appendix G: Properties of Fock Functions for Convex Surfaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1</td>
<td>Surface Fock Functions</td>
<td>413</td>
</tr>
<tr>
<td>G.1.1</td>
<td>Soft Surface Functions ($m > 0$)</td>
<td>414</td>
</tr>
<tr>
<td>G.1.2</td>
<td>Hard Surface Fock Functions ($m < 0$)</td>
<td>415</td>
</tr>
<tr>
<td>G.2</td>
<td>Acoustic Fock Functions</td>
<td>417</td>
</tr>
<tr>
<td>G.2.1</td>
<td>Soft Acoustic Fock Function</td>
<td>418</td>
</tr>
<tr>
<td>G.2.2</td>
<td>Hard Acoustic Fock Function</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>421</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>423</td>
</tr>
</tbody>
</table>