CONTENTS

Foreword xv
Preface xvii

1 Evolution of the Chemical Industry and Importance of Multiphase Reactors

1.1 Evolution of Chemical Process Industries, 1
1.2 Sustainable and Green Processing Requirements in the Modern Chemical Industry, 4
1.3 Catalysis, 9
 1.3.1 Heterogeneous Catalysis, 11
 1.3.2 Homogeneous Catalysis, 16
1.4 Parameters Concerning Catalyst Effectiveness in Industrial Operations, 17
 1.4.1 Chemoselectivity, 19
 1.4.2 Regioselectivity, 19
 1.4.3 Stereoselectivity, 19
1.5 Importance of Advanced Instrumental Techniques in Understanding Catalytic Phenomena, 20
1.6 Role of Nanotechnology in Catalysis, 21
1.7 Click Chemistry, 21
1.8 Role of Multiphase Reactors, 22
References, 23
Contents

2 **Multiphase Reactors: The Design and Scale-Up Problem**
2.1 Introduction, 30
2.2 The Scale-Up Conundrum, 31
2.3 Intrinsic Kinetics: Invariance with Respect to Type/Size of Multiphase Reactor, 34
2.4 Transport Processes: Dependence on Type/Size of Multiphase Reactor, 34
2.5 Prediction of the Rate-Controlling Step in the Industrial Reactor, 35
2.6 Laboratory Methods for Discerning Intrinsic Kinetics of Multiphase Reactions, 35
2.6.1 Two-Phase (Gas–Liquid) Reaction, 35
2.6.2 Three-Phase (Gas–Liquid–Solid) Reactions with Solid Phase Acting as Catalyst, 41
Nomenclature, 44
References, 45

3 **Multiphase Reactors: Types and Criteria for Selection for a Given Application**
3.1 Introduction to Simplified Design Philosophy, 47
3.2 Classification of Multiphase Reactors, 48
3.3 Criteria for Reactor Selection, 48
3.3.1 Kinetics *vis-à-vis* Mass Transfer Rates, 49
3.3.2 Flow Patterns of the Various Phases, 50
3.3.3 Ability to Remove/Add Heat, 50
3.3.4 Ability to Handle Solids, 53
3.3.5 Operating Conditions (Pressure/Temperature), 54
3.3.6 Material of Construction, 54
3.4 Some Examples of Large-Scale Applications of Multiphase Reactors, 55
3.4.1 Fischer–Tropsch Synthesis, 55
3.4.2 Oxidation of *p*-Xylene to Purified Terephthalic Acid for Poly(Ethylene Terephthalate), 67
Nomenclature, 80
References, 81

4 **Turbulence: Fundamentals and Relevance to Multiphase Reactors**
4.1 Introduction, 87
4.2 Fluid Turbulence, 88
4.2.1 Homogeneous Turbulence, 89
4.2.2 Isotropic Turbulence, 90
4.2.3 Eddy Size Distribution and Effect of Eddy Size on Transport Rates, 90
Nomenclature, 91
References, 91
5 Principles of Similarity and Their Application for Scale-Up of Multiphase Reactors

5.1 Introduction to Principles of Similarity and a Historic Perspective, 93
5.2 States of Similarity of Relevance to Chemical Process Equipments, 94
 5.2.1 Geometric Similarity, 95
 5.2.2 Mechanical Similarity, 96
 5.2.3 Thermal Similarity, 100
 5.2.4 Chemical Similarity, 100
 5.2.5 Physiological Similarity, 101
 5.2.6 Similarity in Electrochemical Systems, 101
 5.2.7 Similarity in Photocatalytic Reactors, 102
Nomenclature, 102
References, 104

6 Mass Transfer in Multiphase Reactors: Some Theoretical Considerations

6.1 Introduction, 106
6.2 Purely Empirical Correlations Using Operating Parameters and Physical Properties, 107
6.3 Correlations Based on Mechanical Similarity, 108
 6.3.1 Correlations Based on Dynamic Similarity, 108
6.4 Correlations Based on Hydrodynamic/Turbulence Regime Similarity, 116
 6.4.1 The Slip Velocity Approach, 116
 6.4.2 Approach Based on Analogy between Momentum and Mass Transfer, 132
Nomenclature, 135
References, 138

7A Stirred Tank Reactors for Chemical Reactions

7A.1 Introduction, 143
 7A.1.1 The Standard Stirred Tank, 143
7A.2 Power Requirements of Different Impellers, 147
7A.3 Hydrodynamic Regimes in Two-Phase (Gas–Liquid) Stirred Tank Reactors, 148
 7A.3.1 Constant Speed of Agitation, 150
 7A.3.2 Constant Gas Flow Rate, 150
7A.4 Hydrodynamic Regimes in Three-Phase (Gas–Liquid–Solid) Stirred Tank Reactors, 153
7A.5 Gas Holdup in Stirred Tank Reactors, 155
 7A.5.1 Some Basic Considerations, 155
 7A.5.2 Correlations for Gas Holdup, 164
 7A.5.3 Relative Gas Dispersion (N/N_{CD}) as a Correlating Parameter for Gas Holdup, 165
 7A.5.4 Correlations for N_{CD}, 166
7A.6 Gas–Liquid Mass Transfer Coefficient in Stirred Tank Reactor, 166
7A.7 Solid–Liquid Mass Transfer Coefficient in Stirred Tank Reactor, 175
 7A.7.1 Solid Suspension in Stirred Tank Reactor, 175
 7A.7.2 Correlations for Solid–Liquid Mass Transfer Coefficient, 191
7A.8 Design of Stirred Tank Reactors with Internal Cooling Coils, 194
 7A.8.1 Gas Holdup, 194
 7A.8.2 Critical Speed for Complete Dispersion of Gas, 194
 7A.8.3 Critical Speed for Solid Suspension, 195
 7A.8.4 Gas–Liquid Mass Transfer Coefficient, 195
 7A.8.5 Solid–Liquid Mass Transfer Coefficient, 196
7A.9 Stirred Tank Reactor with Internal Draft Tube, 196
7A.10 Worked Example: Design of Stirred Reactor for Hydrogenation of Aniline to Cyclohexylamine (Capacity: 25,000 Metric Tonnes per Year), 198
 7A.10.1 Elucidation of the Output, 201

Nomenclature, 203
References, 206

7B Stirred Tank Reactors for Cell Culture Technology

 7B.1 Introduction, 216
 7B.2 The Biopharmaceutical Process and Cell Culture Engineering, 224
 7B.2.1 Animal Cell Culture vis-à-vis Microbial Culture, 224
 7B.2.2 Major Improvements Related to Processing of Animal Cell Culture, 225
 7B.2.3 Reactors for Large-Scale Animal Cell Culture, 226
 7B.3 Types of Bioreactors, 229
 7B.3.1 Major Components of Stirred Bioreactor, 230
 7B.4 Modes of Operation of Bioreactors, 230
 7B.4.1 Batch Mode, 231
 7B.4.2 Fed-Batch or Semibatch Mode, 232
 7B.4.3 Continuous Mode (Perfusion), 233
 7B.5 Cell Retention Techniques for Use in Continuous Operation in Suspended Cell Perfusion Processes, 233
 7B.5.1 Cell Retention Based on Size: Different Types of Filtration Techniques, 234
 7B.5.2 Separation Based on Body Force Difference, 242
 7B.5.3 Acoustic Devices, 246
 7B.6 Types of Cells and Modes of Growth, 253
 7B.7 Growth Phases of Cells, 254
 7B.8 The Cell and Its Viability in Bioreactors, 256
 7B.8.1 Shear Sensitivity, 256
7B.9 Hydrodynamics, 264
 7B.9.1 Mixing in Bioreactors, 264
7B.10 Gas Dispersion, 273
 7B.10.1 Importance of Gas Dispersion, 273
 7B.10.2 Effect of Dissolved Carbon Dioxide on Bioprocess Rate, 275
 7B.10.3 Factors That Affect Gas Dispersion, 277
 7B.10.4 Estimation of N_{CD}, 278
7B.11 Solid Suspension, 279
 7B.11.1 Two-Phase (Solid–Liquid) Systems, 279
 7B.11.2 Three-Phase (Gas–Liquid–Solid) Systems, 280
7B.12 Mass Transfer, 281
 7B.12.1 Fractional Gas Holdup (e_G), 281
 7B.12.2 Gas–Liquid Mass Transfer, 281
 7B.12.3 Liquid–Cell Mass Transfer, 283
7B.14 Heat Transfer in Stirred Bioreactors, 287
7B.15 Worked Cell Culture Reactor Design Example, 291
 7B.15.1 Conventional Batch Stirred Reactor with Air Sparging for Microcarrier-Supported Cells: A Simple Design Methodology for Discerning the Rate-Controlling Step, 291
 7B.15.2 Reactor Using Membrane-Based Oxygen Transfer, 294
 7B.15.3 Heat Transfer Area Required, 294
7B.16 Special Aspects of Stirred Bioreactor Design, 295
 7B.16.1 The Reactor Vessel, 296
 7B.16.2 Sterilizing System, 296
 7B.16.3 Measurement Probes, 296
 7B.16.4 Agitator Seals, 297
 7B.16.5 Gasket and O-Ring Materials, 297
 7B.16.6 Vent Gas System, 297
 7B.16.7 Cell Retention Systems in Perfusion Culture, 297
7B.17 Concluding Remarks, 298
Nomenclature, 298
References, 301

8 Venturi Loop Reactor 317
8.1 Introduction, 317
8.2 Application Areas for the Venturi Loop Reactor, 317
 8.2.1 Two Phase (Gas–Liquid Reactions), 318
 8.2.2 Three-Phase (Gas–Liquid–Solid-Catalyzed) Reactions, 319
8.3 Advantages of the Venturi Loop Reactor: A Detailed Comparison, 323
 8.3.1 Relatively Very High Mass Transfer Rates, 323
8.3.2 Lower Reaction Pressure, 324
8.3.3 Well-Mixed Liquid Phase, 325
8.3.4 Efficient Temperature Control, 325
8.3.5 Efficient Solid Suspension and Well-Mixed Solid (Catalyst) Phase, 325
8.3.6 Suitability for Dead-End System, 326
8.3.7 Excellent Draining/Cleaning Features, 326
8.3.8 Easy Scale-Up, 326
8.4 The Ejector-Based Liquid Jet Venturi Loop Reactor, 326
8.4.1 Operational Features, 328
8.4.2 Components and Their Functions, 328
8.5 The Ejector–Diffuser System and Its Components, 332
8.6 Hydrodynamics of Liquid Jet Ejector, 333
8.6.1 Flow Regimes, 336
8.6.2 Prediction of Rate of Gas Induction, 341
8.7 Design of Venturi Loop Reactor, 358
8.7.1 Mass Ratio of Secondary to Primary Fluid, 358
8.7.2 Gas Holdup, 367
8.7.3 Gas–Liquid Mass Transfer: Mass Transfer Coefficient ($k_L a$) and Effective Interfacial Area (a), 376
8.8 Solid Suspension in Venturi Loop Reactor, 385
8.9 Solid–Liquid Mass Transfer, 388
8.10 Holding Vessel Size, 389
8.11 Recommended Overall Configuration, 389
8.12 Scale-Up of Venturi Loop Reactor, 390
8.13 Worked Examples for Design of Venturi Loop Reactor: Hydrogenation of Aniline to Cyclohexylamine, 390

Nomenclature, 395
References, 399

9 Gas-Inducing Reactors

9.1 Introduction and Application Areas of Gas-Inducing Reactors, 407
9.1.1 Advantages, 408
9.1.2 Drawbacks, 408
9.2 Mechanism of Gas Induction, 409
9.3 Classification of Gas-Inducing Impellers, 410
9.3.1 1–1 Type Impellers, 410
9.3.2 1–2 and 2–2 Type Impellers, 416
9.4 Multiple-Impeller Systems Using 2–2 Type Impeller for Gas Induction, 429
9.4.1 Critical Speed for Gas Induction, 431
9.4.2 Rate of Gas Induction (Q_G), 431
9.4.3 Critical Speed for Gas Dispersion, 434
9.4.4 Critical Speed for Solid Suspension, 436
CONTENTS

9.4.5 Operation of Gas-Inducing Reactor with Gas Sparging, 439
9.4.6 Solid–Liquid Mass Transfer Coefficient (K_{SL}), 440
9.5 Worked Example: Design of Gas-Inducing System with Multiple Impellers for Hydrogenation of Aniline to Cyclohexylamine (Capacity: 25,000 Metric Tonnes per Year), 441
9.5.1 Geometrical Features of the Reactor/Impeller (Dimensions and Geometric Configuration as per Section 7A.10 and Figure 9.9, Respectively), 441
9.5.2 Basic Parameters, 442
Nomenclature, 443
References, 446

10 Two- and Three-Phase Sparged Reactors 451
10.1 Introduction, 451
10.2 Hydrodynamic Regimes in TPSR, 452
 10.2.1 Slug Flow Regime, 452
 10.2.2 Homogeneous Bubble Flow Regime, 452
 10.2.3 Heterogeneous Churn-Turbulent Regime, 454
 10.2.4 Transition from Homogeneous to Heterogeneous Regimes, 455
10.3 Gas Holdup, 457
 10.3.1 Effect of Sparger, 458
 10.3.2 Effect of Liquid Properties, 458
 10.3.3 Effect of Operating Pressure, 460
 10.3.4 Effect of Presence of Solids, 461
10.4 Solid–Liquid Mass Transfer Coefficient (K_{SL}), 466
 10.4.1 Effect of Gas Velocity on K_{SL}, 466
 10.4.2 Effect of Particle Diameter d_p on K_{SL}, 467
 10.4.3 Effect of Column Diameter on K_{SL}, 467
 10.4.4 Correlation for K_{SL}, 468
10.5 Gas–Liquid Mass Transfer Coefficient (k_{La}), 468
10.6 Axial Dispersion, 472
10.7 Comments on Scale-Up of TPSR/Bubble Columns, 474
10.8 Reactor Design Example for Fischer–Tropsch Synthesis Reactor, 474
 10.8.1 Introduction, 474
 10.8.2 Physicochemical Properties, 475
 10.8.3 Basis for Reactor Design, Material Balance, and Reactor Dimensions, 476
 10.8.4 Calculation of Mass Transfer Parameters, 476
 10.8.5 Estimation of Rates of Individual Steps and Determination of the Rate Controlling Step, 478
 10.8.6 Sparger Design, 480
10.9 TPSR (Loop) with Internal Draft Tube (BCDT), 481
 10.9.1 Introduction, 481
 10.9.2 Hydrodynamic Regimes in TPSRs with Internal Draft Tube, 481
10.9.3 Gas–Liquid Mass Transfer, 482
10.9.4 Solid Suspension, 488
10.9.5 Solid–Liquid Mass Transfer Coefficient (K_{sl}), 490
10.9.6 Correlation for K_{sl}, 490
10.9.7 Application of BCDT to Fischer–Tropsch Synthesis, 491
10.9.8 Application of BCDT to Oxidation of p-Xylene to Terephthalic Acid, 492

Nomenclature, 493
References, 496

Index 505