Contents

List of Contributors xiii
Preface xv
List of Abbreviations xix

1 Biofuels: The Back Story 1
 John A. Bryant and John Love
 Summary 1
 1.1 Introduction 1
 1.2 Some History 1
 1.2.1 Wood and Charcoal 1
 1.2.2 Dung as Fuel 2
 1.2.3 Oils and Fats 2
 1.2.4 Peat 3
 1.3 Fossil Fuels 4
 1.3.1 Coal 4
 1.3.2 Petroleum Oil 5
 1.3.3 Natural Gas 6
 1.4 Fossil Fuels and Carbon Dioxide 6
 1.4.1 The Club of Rome 6
 1.4.2 Climate Change 7
 1.5 Alternative Energy Sources 9
 1.5.1 Introduction 9
 1.5.2 Environmental Energy Sources 9
 1.5.3 Nuclear Power 15
 1.5.4 Hydrogen 17
 1.6 Biofuels 18
 Selected References and Suggestions for Further Reading 19

2 Biofuels in Operation 21
 Lionel Clarke
 Summary 21
 2.1 Fuels for Transport 21
 2.2 Future Trends in Fuels Requirements and Technology 24
 2.3 Engines and Fuels – Progress vs Inertia 26
 2.4 Engine Constraints, Fuel Specifications and Enhanced Performance 28
2.5 Biofuels – Implications and Opportunities 32
2.5.1 Introduction 32
2.5.2 Ethanol 32
2.5.3 Biodiesel 33
2.6 Advanced Biofuels as Alternatives to Ethanol and FAME 37
2.7 Biofuels for Aviation; ‘Biojet’ 40
2.8 Impact of Future Trends in Engine Design on Retail Biofuels 42
2.9 Conclusion 43

Selected References and Suggestions for Further Reading 43

3 Anaerobic Digestion 45
John Bombardiere and David A. Stafford
Summary 45
3.1 History and Development of Anaerobic Digestion 45
3.1.1 Introduction 45
3.1.2 Mixtures of Micro-Organisms 46
3.2 Anaerobic Digestion: The Process 47
3.2.1 General Biochemistry 47
3.2.2 Design Types 47
3.2.3 Complete Mix Design 47
3.2.4 Plug Flow Digesters 48
3.2.5 High Dry Solids AD Systems 49
3.2.6 Upflow Anaerobic Sludge Blanket (UASB) 50
3.2.7 Anaerobic Filters 50
3.3 Commercial Applications and Benefits 51
3.3.1 In the United Kingdom 51
3.3.2 In the USA 51
3.3.3 In Germany 52
3.3.4 Overall Benefits 52
3.4 Ethanol Production Linked with Anaerobic Digestion 53
3.5 Financial and Economic Aspects 54
3.6 UK and US Government Policies and Anaerobic Digestion – An Overview 55
3.7 Concluding Comments 56
Selected References and Suggestions for Further Reading 57

4 Plant Cell Wall Polymers 59
Stephen C. Fry
Summary 59
4.1 Nature and Biological Roles of Primary and Secondary Cell Walls 59
4.2 Polysaccharide Composition of Primary and Secondary Cell Walls 60
4.2.1 Typical Dicots 60
4.2.2 Differences in Certain Dicots 67
4.2.3 Differences in Monocots 67
4.2.4 Differences in Gymnosperms 68
4.2.5 Differences in Non-seed Land-plants 68
4.2.6 Differences in Charophytes 68
Contents

4.3 Post-synthetic Modification of Cell-wall Polysaccharides 70
4.3.1 Cross-linking of Cell-wall Polysaccharides 70
4.3.2 Hydrolysis of Cell-wall Polysaccharides 72
4.3.3 ‘Cutting and Pasting’ (Transglycosylation) of Cell-wall Polysaccharide Chains 75
4.4 Polysaccharide Biosynthesis 77
4.4.1 General Features 77
4.4.2 At the Plasma Membrane 77
4.4.3 In the Golgi System 78
4.4.4 Delivering the Precursors – Sugar Nucleotides 79
4.5 Non-polysaccharide Components of the Plant Cell Wall 80
4.5.1 Extensins and Other (Glyco)Proteins 80
4.5.2 Polyesters 83
4.5.3 Lignin 84
4.5.4 Silica 84
4.6 Conclusions 85
Acknowledgements 85
Appendix 85
Selected References and Suggestions for Further Reading 85

5 Ethanol Production from Renewable Lignocellulosic Biomass 89
Leah M. Brown, Gary M. Hawkins and Joy Doran-Peterson
Summary 89
5.1 Brief History of Fuel-Ethanol Production 89
5.2 Ethanol Production from Sugar Cane and Corn 92
5.3 Lignocellulosic Biomass as Feedstocks for Ethanol Production 93
5.3.1 The Organisms 93
5.3.2 Lignocellulosic Biomass 96
5.3.3 Pretreatment of Lignocellulosic Biomass 99
5.3.4 Effect of Inhibitory Compounds on Fermenting Microorganisms 100
5.4 Summary 102
5.5 Examples of Commercial Scale Cellulosic Ethanol Plants 103
5.5.1 Beta Renewables/Biochemtex Commercial Cellulosic Ethanol Plants in Italy, Brazil, USA and Slovak Republic 103
5.5.2 Poet-DSM ‘Project Liberty’ – First Commercial Cellulosic Ethanol Plant in the USA 103
5.5.3 Abengoa Hugoton, Kansas Commercial Plant and MSW to Ethanol Demonstration Plant, Salamanca 103
Selected References, Suggestions for Further Reading and Useful Websites 104

6 Fatty Acids, Triacylglycerols and Biodiesel 105
John A. Bryant
Summary 105
6.1 Introduction 105
6.2 Synthesis of Triacylglycerol 107
6.2.1 The Metabolic Pathway 107
6.2.2 Potential for Manipulation 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Productivity</td>
<td>111</td>
</tr>
<tr>
<td>6.4 Sustainability</td>
<td>114</td>
</tr>
<tr>
<td>6.5 More Recently Exploited and Novel Sources of Lipids for Biofuels</td>
<td>114</td>
</tr>
<tr>
<td>6.5.1 Higher Plants</td>
<td>114</td>
</tr>
<tr>
<td>6.5.2 Algae</td>
<td>115</td>
</tr>
<tr>
<td>6.5.3 Prokaryotic Organisms</td>
<td>116</td>
</tr>
<tr>
<td>6.6 Concluding Remarks</td>
<td>117</td>
</tr>
<tr>
<td>7 Development of Miscanthus as a Bioenergy Crop</td>
<td>119</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>119</td>
</tr>
<tr>
<td>7.2 Developing Commercial Interest</td>
<td>122</td>
</tr>
<tr>
<td>7.3 Greenhouse Gas Mitigation Potential</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Perspectives for ‘now’ and for the Future</td>
<td>128</td>
</tr>
<tr>
<td>8 Mangrove Palm, Nypa fruticans: ‘3-in-1’ Tree for Integrated Food/Fuel and Eco-Services</td>
<td>133</td>
</tr>
<tr>
<td>8.1 Introduction: The ‘Food vs Fuel’ and ‘ILUC’ Debates</td>
<td>133</td>
</tr>
<tr>
<td>8.2 Integrated Food-Energy Systems (IFES): A Potential Solution</td>
<td>134</td>
</tr>
<tr>
<td>8.2.1 Main Features of IFES</td>
<td>134</td>
</tr>
<tr>
<td>8.2.2 Baseline Productivity</td>
<td>136</td>
</tr>
<tr>
<td>8.3 Land use: The Importance of Forest Ecosystem Services</td>
<td>137</td>
</tr>
<tr>
<td>8.4 Sugar Palms: Highly Productive Multi-Purpose Trees</td>
<td>138</td>
</tr>
<tr>
<td>8.5 Nipa (Nypa fruticans): A Mangrove Sugar Palm with Great Promise</td>
<td>140</td>
</tr>
<tr>
<td>8.6 Conclusion</td>
<td>141</td>
</tr>
<tr>
<td>9 The Use of Cyanobacteria for Biofuel Production</td>
<td>143</td>
</tr>
<tr>
<td>9.1 Essential Aspects of Cyanobacterial Biology</td>
<td>143</td>
</tr>
<tr>
<td>9.1.1 General Features</td>
<td>143</td>
</tr>
<tr>
<td>9.1.2 Photosynthesis and Carbon Dioxide Fixation</td>
<td>144</td>
</tr>
<tr>
<td>9.1.3 Nitrogen Fixation</td>
<td>146</td>
</tr>
<tr>
<td>9.2 Commercial Products Currently Derived from Cyanobacteria</td>
<td>146</td>
</tr>
<tr>
<td>9.3 Cyanobacteria Culture</td>
<td>147</td>
</tr>
<tr>
<td>9.4 Cyanobacterial Genomes and Genetic Modification for Biofuel Production</td>
<td>148</td>
</tr>
<tr>
<td>9.5 Industrial Production of Biofuels from Cyanobacteria</td>
<td>152</td>
</tr>
<tr>
<td>9.6 Conclusion</td>
<td>154</td>
</tr>
</tbody>
</table>
Contents

10 Third-Generation Biofuels from the Microalga, *Botryococcus braunii* 157
Charlotte Cook, Chappandra Dayananda, Richard K. Tennant and John Love

Summary 157

10.1 *Botryococcus braunii* 157
10.2 Microbial Interactions 160
10.3 *Botryococcus braunii* as a Production Platform for Biofuels or Chemicals 161
 10.3.1 Hydrocarbons, Lipids and Sugars 161
 10.3.2 Controlling and Enhancing Productivity 163
 10.3.3 Alternative Culture Systems 165
 10.3.4 Harvesting *Botryococcus* Biomass and Hydrocarbons 166
 10.3.5 Processing *Botryococcus* into an Alternative Fuel 166
10.4 Improving *Botryococcus* 167
10.5 Future Prospects and Conclusion 169

Selected References and Suggestions of Further Reading 170

11 Strain Selection Strategies for Improvement of Algal Biofuel Feedstocks 173
Leyla T. Hathwaik and John C. Cushman

Summary 173

11.1 Introduction 173
11.2 Lipids in Microalgae 174
11.3 Starch in Microalgae 175
11.4 Metabolic Interconnection Between Lipid and Starch Biosynthesis 176
11.5 Strategies for the Selection of Microalgae Strains with Enhanced Biofuel Feedstock Traits 177
 11.5.1 Manipulation of Growth Conditions 177
 11.5.2 Genetic Mutagenesis 177
 11.5.3 Flow Cytometry 178
 11.5.4 Fluorescence-Activated Cell Sorting 181
 11.5.5 Buoyant Density Centrifugation 183
11.6 Conclusions 185

Acknowledgements 185

Selected References and Suggestions for Further Reading 185

12 Algal Cultivation Technologies 191
Alessandro Marco Lizzul and Michael J. Allen

Summary 191

12.1 Introduction 191
12.2 Lighting 192
12.3 Mixing 194
12.4 Control Systems and Construction Materials 196
12.5 Algal Production Systems at Laboratory Scale 197
12.6 Algal Production in Open Systems 198
 12.6.1 Pond-Based Systems 198
 12.6.2 Membrane Reactors 200
12.7 Algal production in Closed Systems 201
12.7.1 Introduction 201
12.7.2 Plate or Panel Based Systems 201
12.7.3 Horizontal Tubular Systems 203
12.7.4 Bubble Columns 205
12.7.5 Airlift Reactors 207
12.8 Concluding Comments 209
Selected References and Suggestions for Further Reading 209

13 Biofuels from Macroalgal Biomass 213
Jessica Adams
Summary 213
13.1 Macroalgal Resources in the UK 213
13.2 Suitability of Macroalgae for Biofuel Production 214
13.3 Biofuels from Macroalgae 217
13.3.1 Introduction 217
13.3.2 Ethanol from Laminarin, Mannitol and Alginate 217
13.3.3 Ethanol from Cellulose 219
13.3.4 Butanol 220
13.3.5 Anaerobic Digestion 221
13.3.6 Thermochemical Conversions 223
13.4 Future Prospects 223
13.5 Conclusion 224
Acknowledgements 224
Selected References and Suggestions for Further Reading 224

14 Lipid-based Biofuels from Oleaginous Microbes 227
Lisa A. Sargeant, Rhodri W. Jenkins and Christopher J. Chuck
Summary 227
14.1 Introduction 227
14.2 Microalgae 229
14.3 Oleaginous Yeasts 231
14.4 Feedstocks for Heterotrophic Microbial Cultivation 231
14.5 The Biochemical Process of Lipid Accumulation in Oleaginous Yeast 232
14.6 Lipid Profile of Oleaginous Microbes 236
14.7 Lipid Extraction and Processing 237
14.8 Concluding Comments 237
Selected References and Suggestions for Further Reading 239

15 Engineering Microbial Metabolism for Biofuel Production 241
Thomas P. Howard
Summary 241
15.1 Introduction 241
15.2 Designer Biofuels 242
15.2.1 Introduction 242
15.2.2 Isoprenoid-Derived Biofuels 243
15.2.3 Higher Alcohols 245
15.2.4 Fatty Acid-Derived Biofuels 247
15.2.5 Petroleum Replica Hydrocarbons 249
15.3 Towards Industrialisation 251
15.3.1 Introduction 251
15.3.2 Bioconsolidation 251
15.3.3 Molecular and Cellular Redesign 255
15.3.4 Biofuel Pumps 256
15.3.5 Synthetic Biology and Systems Engineering 257
15.4 Conclusion 258
Selected References and Suggestions for Further Reading 259

16 The Sustainability of Biofuels 261
J.M. Lynch
Summary 261
16.1 Introduction 261
16.2 Bioenergy Policies 262
16.3 Economics of Bioenergy Markets 263
16.4 Environmental Issues 264
16.5 Life Cycle Assessment 266
16.5.1 General Features 266
16.5.2 OECD Copenhagen Workshop, 2008 267
16.6 Conclusions 270
Selected References and Suggestions for Further Reading 271

17 Biofuels and Bioenergy – Ethical Aspects 273
John A. Bryant and Steve Hughes
Summary 273
17.1 Introduction to Ethics 273
17.1.1 How Do We Make Ethical or Moral Decisions? 273
17.1.2 Environmental Ethics 275
17.2 Biofuels and Bioenergy – Ethical Background 276
17.3 The Key Ethical Issues 276
17.3.1 Biofuel Production and the Growth of Food Crops 276
17.3.2 Is Growth of Biofuel Crops Sustainable? 278
17.3.3 Biofuel Production, Land Allocation and Human Rights 279
17.4 Concluding Comment 283
Selected References and Suggestions for Further Reading 283

18 Postscript 285
John Love and John A. Bryant
Selected References and Suggestions for Further Reading 287

Index 289