CONTENTS

Preface xi

1 TRANSPORT OF POLLUTANTS 1

1.1 Introduction, 1
1.2 Advection–Diffusion Equation with Reaction, 2
1.3 Steady-State Mixing in Estuaries, 4
 1.3.1 Determination of Diffusivity D from Salinity Measurements, 5
 1.3.2 Pollutant Prediction for an Estuary with Uniform Discharge, 5
 1.3.3 Salinity in an Infinite Estuary with a Large Freshwater Discharge, 8
 1.3.4 Conservative Pollutant Prediction for an Infinite Estuary with a Large Freshwater Discharge, 9
1.4 Time-Dependent Mixing in Rivers and Soil Systems, 10
1.5 Vertical Mixing, 14
 1.5.1 The Radon Method, 16
 1.5.2 The Tritium–helium-3 Method, 17
 1.5.3 Evaluation of Mixing Based on Density Gradients, 19
1.6 Hydrodynamic Models, 20
1.7 Groundwater Plumes, 22
1.8 Sediment Mixing, 23
References, 25
2 SEDIMENTATION PROCESSES 28

2.1 Introduction, 28
2.2 210Pb Dating of Sediments, 29
 2.2.1 Measurement of 210Pb Activity, 30
 2.2.2 210Pb Activity Profiles, 33
2.3 137Cs and $^{239+240}$Pu Dating of Sediments, 38
2.4 Dated Records of Metals and Organic Pollutants, 42
2.5 Deconvolution of Sedimentary Records, 49
2.6 Chemical and Biological Degradation, 55
2.7 Sediments as a Source of Pollutants, 56
 2.7.1 Phosphorus, 57
 2.7.2 Metals, 57
 2.7.3 Acid-volatile Sulfides, 58
 2.7.4 Organics, 59
References, 60

3 ATMOSPHERIC INTERACTIONS 65

3.1 Introduction, 65
3.2 Atmospheric Deposition Processes, 66
 3.2.1 Gaseous vs. Particulate Chemicals in the Atmosphere, 66
 3.2.2 Dry Deposition with Aerosols, 68
 3.2.3 Wet Deposition, 75
 3.2.4 Gas Exchange, 78
3.3 Deposition and Gas Exchange of Organic Contaminants, 84
3.4 Marine and Freshwater Microlayers, 87
3.5 Case Study: Emission of VOCs from Wastewater Treatment Plants, 89
3.6 The Fugacity Model, 93
 3.6.1 Fugacity Definitions and Basic Equations, 94
 3.6.2 Levels of Complexity, 101
 3.6.3 Example Calculations – Chlorobenzene, 103
References, 108

4 WATER CHEMISTRY 113

4.1 Introduction, 113
4.2 Carbonate and Alkalinity, 115
 4.2.1 Dissolved CO$_2$ and Carbonate Speciation in Water, 115
 4.2.2 Solving Equilibrium pH, 117
 4.2.3 Alkalinity, 120
 4.2.4 Buffer Index, 124
4.3 Sulfur Chemistry, 127
 4.3.1 Sulfur Redox Reactions in Water, 128
 4.3.2 Sulfur in Sediment, 132
CONTENTS

4.3.3 Acid Rain, 133
4.4 Impact of Global Warming on Natural Waters, 135
References, 136

5 NUTRIENTS

5.1 Introduction, 138
5.2 Input of Nutrients and Acidity, 140
5.3 Eutrophication, 143
5.3.1 Eutrophication Control, 148
5.3.2 Harmful Algal Blooms, 149
5.3.3 Cladophora, 155
5.4 Nitrogen, 156
5.4.1 The Nitrogen Cycle, 156
5.4.2 Nitrification and Denitrification, 159
5.4.3 N Removal, 166
5.5 Phosphorus, 169
5.5.1 The Phosphorus Cycle, 169
5.5.2 P Removal, 170
5.5.3 Case Study: Phosphorus from Wastewater Treatment, Stormwater, and Rivers in Milwaukee, Wisconsin, 172
5.6 Vitamins and Trace Metals, 173
References, 180

6 METALS

6.1 Introduction, 185
6.2 Trends, Measurement, and Toxicity, 186
6.3 Major Sources and Reactions of Metals in Water, 193
6.3.1 Atmospheric Deposition of Metals, 193
6.3.2 Hydration, Hydrolysis, and Complex Formation, 196
6.3.3 Dissolution of Metals from Minerals, 201
6.4 Behavior of Selected Metals in Water, 203
6.4.1 Mercury, 203
6.4.2 Zinc and Cadmium, 204
6.4.3 Arsenic, 207
6.5 Zero-Valent Iron in Remediation of Contaminated Water, 209
6.5.1 Dechlorination of Chlorinated Hydrocarbons, 209
6.5.2 Reduction of Uranium Carbonate, Chromate, and Arsenate, 214
References, 215

7 ORGANIC POLLUTANTS

7.1 Introduction, 220
7.2 Important Organic Pollutant Groups, 221
 7.2.1 Petrochemicals and Industrial Solvents, 221
 7.2.2 Polycyclic Aromatic Hydrocarbons (PAHs), 223
 7.2.3 Polychlorinated Biphenyls (PCBs), 223
 7.2.4 Polyhalogenated Dibenzo-p-Dioxins and Dibenzofurans (PXDD/Fs), 226
 7.2.5 Polybrominated Diphenyl Ethers (PBDEs) and other Flame Retardants, 226
 7.2.6 Organochlorine Pesticides (OCPs), 232
 7.2.7 Other Pesticides, 236
 7.2.8 Perfluorinated Compounds (PFCs), 239
 7.2.9 Pharmaceuticals and Personal Care Products (PPCPs) and other Endocrine Disrupting Compounds (EDCs), 240

7.3 Descriptors of Organic Molecules, 243

7.4 Basic Physicochemical Properties, 245
 7.4.1 Vapor Pressure, 246
 7.4.2 Aqueous Solubility, 247
 7.4.3 Henry’s Law Constant, 248
 7.4.4 Octanol–Water Partition Coefficient, 248
 7.4.5 Air–Octanol Partition Coefficient, 249

7.5 Distribution of Organic Chemicals in Aquatic Environment, 249
 7.5.1 Air–Water, 250
 7.5.2 Water–Sediment, 250
 7.5.3 Water–Biota and Sediment–Biota, 251

7.6 Transformations in Water, 252
 7.6.1 Hydrolysis, 253
 7.6.2 Photochemical Degradation, 255
 7.6.3 Biological Degradation, 257
 7.6.4 Case Study: Transformation of PBDEs in the Environment, 259

References, 261

8 PATHOGENS, 268

8.1 Introduction, 268
8.2 Bacteria, 271
8.3 Protozoa, 272
 8.3.1 Cryptosporidium, 273
8.4 Molecular Techniques for Detection of Pathogens, 276
 8.4.1 Water, 276
 8.4.2 Biosolids, 277
8.5 Pathogen Indicator Organisms and Surrogates, 277
 8.5.1 Bacillus Subtilis, 280
 8.5.2 E. Coli and Fecal Coliforms, 280
8.6 Bacterial Contamination of Recreational Waters, 281
 8.6.1 Modeling, 283
8.6.2 Beaches, 286
8.6.3 Recreational Pools, 287
8.7 Pathogen Removal in Water and Wastewater Treatment, 288
 8.7.1 Water, 288
 8.7.2 Wastewater and Solid Waste, 289
 8.7.3 Inactivation Kinetics, 290
 References, 295

9 TRACERS
 9.1 Introduction, 298
 9.2 Natural vs. Artificial Tracers, 299
 9.3 Radioisotopes, 300
 9.4 Stable Isotopes, 301
 9.5 Applications of Tracer Technology, 305
 9.5.1 Stable Isotope Tracers, 305
 9.5.2 N and O Stable Isotopic Compositions of Nitrate Sources, 309
 9.5.3 Other Physical and Chemical Tracers, 310
 9.5.4 Molecular-Based Biological Tracers, 314
 9.6 Chemical Mass Balance Modeling, 315
 9.6.1 CMB Model for PAHs in Kinnickinnic River, Wisconsin, 316
 9.7 Factor Analysis, 320
 9.7.1 Non-negative Constraints Matrix Factorization, 322
 9.7.2 Positive Matrix Factorization, 331
 9.7.3 Unmix, 335
 References, 341

10 ECOTOXICOLOGY
 10.1 Introduction, 347
 10.2 Bioassays, 349
 10.2.1 Fish, 350
 10.2.2 Algae, 350
 10.2.3 Daphnia, 351
 10.3 Molecular Biology Tools, 353
 10.3.1 Polymerase Chain Reaction (PCR), 353
 10.3.2 Fluorescent in Situ Hybridization (FISH), 354
 10.3.3 Gene Expression, 354
 10.3.4 Biomarkers, 355
 10.4 Human Health, 357
 10.4.1 Fisheries Advisories, 357
 10.4.2 Mercury, 358
 10.4.3 Polychlorinated Biphenyls (PCBs), 358
 10.5 Endocrine-Disrupting Chemicals, 359
 10.6 Types of Toxicity, 360
10.6.1 Disinfection Byproducts, 361
10.6.2 Detoxification and Degradation, 361
10.6.3 Antibiotics, 362
10.6.4 Nanomaterials, 363
10.7 Models and Toxicity Tests, 364
10.7.1 Dose–Response Models for Single Toxicants, 364
10.7.2 Dose–Response Models for Multiple Toxicants, 369
10.7.3 Pulsed Toxicity Tests, 374
10.7.4 Chronic Toxicity Tests, 375
10.8 Quality Criteria, 376
10.8.1 Sediment Quality Criteria, 376
10.8.2 Water Quality Criteria, 381
10.8.3 Total Maximum Daily Loads, 381
References, 383

11 AMBIENT WATER QUALITY CRITERIA 389
11.1 Introduction, 389
11.2 A Primer on Ambient Water Quality Regulations, 390
11.3 Current US Water Quality Criteria, 391
11.3.1 Aquatic Life Criteria, 402
11.3.2 Human Health Criteria, 403
11.3.3 Organoleptic Effects, 404
11.4 Water Quality Databases, 404
APPENDIX 11.A Footnote for Table 11.1, 405
APPENDIX 11.B Footnote for Table 11.2, 408
APPENDIX 11.C Additional Notes, 410
References, 412

Index 415