Contents

PREFACE xi

ACKNOWLEDGMENTS xiii

CHAPTER 1 ADVANCES IN CMOS CIRCUITS 1

Deep-Submicron CMOS Warms Up to High-Speed Logic 9

High-Speed Compact Circuits with CMOS 16

Design-Performance Trade-Offs in CMOS-Domino Logic 22

NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures 25

Cascode Voltage Switch Logic: A Differential CMOS Logic Family 31

Differential Split-Level CMOS Logic for Subnanosecond Speeds 33

A Comparison of CMOS Circuit Techniques: Differential Cascode Voltage Switch Logic Versus Conventional Logic 39

Use of Pass-Transistor Logic 44
Pass-transistor Networks Optimize n-MOS logic
S. Whitaker (Electronics, September 1983).

A 3.8-ns CMOS 16 X 16-b Multiplier Using Complementary Pass-Transistor Logic 49

Lean Integration: Achieving a Quantum Leap in Performance and Cost of Logic LSIs 56

A 1.5-ns 32b CMOS ALU in Double Pass-Transistor Logic 60

A 4.4-ns CMOS 54 X 54-b Multiplier Using Pass-Transistor Multiplexer 66

Pass-Transistor Dual Value Logic for Low-Power CMOS 70
CHAPTER 2 ADVANCES IN BICMOS AND BIPOLAR CIRCUITS 87

BiCMOS Circuits
An Overview of BiCMOS State-of-the-Art Digital Circuits 94
Performance Comparison of Driver Configurations and Full-Swing Techniques for BiCMOS Logic Circuits 102
A Feedback-Type BiCMOS Logic Gate 105
A High Performance BiCMOS 32-bit Microprocessor 108
0.5μm 2M-Transistor BiPMOS Channelless Gate Array 112
A 1.5-V Full-Swing BiCMOS Logic Circuit 117
3.3-V BiCMOS Circuit Techniques for 250MHz RISC Arithmetic Modules 123

Bipolar Circuits
Advanced Bipolar Circuits 131
High-Performance Standard Cell Library and Modeling Technique for Differential Advanced Bipolar Current Tree Logic 136
High-Speed Low-Power ECL Circuit with AC-Coupled Self-Biased Dynamic Current Source and Active-Pull-Down Emitter-Follower Stage 150
Self-Biased Feedback-Controlled Pull-Down Emitter Follower for High-Speed Low-Power Bipolar Logic Circuits 154
An ECL Gate with Improved Speed and Low Power in BiCMOS Process 156
Merged CMOS/Bipolar Current Switch Logic (MCSL) 163

CHAPTER 3 DESIGN FOR LOWER POWER 169

Minimizing Power Consumption in CMOS Circuits 172
Overview of Low-Power ULSI Circuit Techniques 198
Multi-Level Pass-Transistor Logic for Low-Power ULSIs 208
CHAPTER 4 CLOCK SUBSYSTEM 261

Clock Distribution Networks in VLSI Circuits and Systems 270
Clock System Design 306
Clocking Schemes for High-Speed Digital Systems 325
Clock Tree Synthesis Based on RC Delay Balancing 341
Half-Swing Clocking Scheme for 75% Power Saving in Clocking Circuitry 345
H. Kojima et. al. (IEEE Journal of Solid-State Circuits, April 1995).
A Reduced Clock-Swing Flip-Flop (RCSFF) for 63% Power Reduction 349
A Unified Single-Phase Clocking Scheme for VLSI Systems 354
High-Speed CMOS Circuit Technique 362
Flow-Through Latch and Edge-Trigged Flip-Flop Hybrid Elements 371
A 200MHz 64-b Dual-Issue CMOS Microprocessor 373
A 300-MHz 64-b Quad-Issue CMOS RISC Microprocessor 383
A 600MHz Superscalar RISC Microprocessor with Out-of-Order Execution 392
B. Gieske et al. (ISSCC Digest of Technical Papers, February 1997).
High-Performance Microprocessor Design 395
CHAPTER 5 HIGH-PERFORMANCE ARITHMETIC UNITS 405

Some Optimal Schemes for ALU Implementation in VLSI Technology 411
A 4.5nS 96-b CMOS Adder Design 418
Improved CLA Scheme with Optimized Delay 422
High Speed Binary Adder 432
A Sub-Nanosecond 0.5 µm 64 b Adder Design 443
A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations 445
An Algorithmic and Novel Design of a Leading Zero Detector Circuit: Comparison with Logic Synthesis 452
SPIM: A Pipelined 64 × 64-bit Iterative Multiplier 457
A 54 × 54-b Regularly Structured Tree Multiplier 464
A 4.4 ns CMOS 54 × 54-b Multiplier using Pass-Transistor Multiplexer 471
A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach 477
A 4.1-nS Compact 54 × 54-b Multiplier Utilizing Sign-Select Booth Encoders 489
Division and Square Root: Choosing the Right Implementation 495
167 MHz Radix-8 Divide and Square Root Using Overlapped Radix-2 Stages 506
Radix-4 Square Root Without Initial PLA 514
167 MHz Radix-4 Floating Point Multiplier 523

AUTHOR INDEX 529

SUBJECT INDEX 532

ABOUT THE EDITOR 535