INDEX

Absorption:
 atmospheric attenuation, 122–125
 as a propagation impairment, 32
ACTS experiment, 249, 273
Additive white Gaussian noise (AWGN), 70–76
Adjacent channel interference, 77–79
Adjusted link gain, rain attenuation, 240
 link budget, 220–221
Adjustment factor, Lee model, 155–157
American National Standards Institute (ANSI), 284
Ampere’s Law. See Biot-Savart Law
AM radios, magnetic field antenna, 54
AM-to-AM conversion, as noise source, 76
AM-to-PM conversion, as noise source, 76
Angle measurements, radar, 95–98
Antenna systems:
 beam antennas, 50–52
dipole antennas, 48–50
FCC RF safety standards, 290–292
directivity, 293–297
 main beam/omnidirectional analysis, 292–293
horn antennas, 52
link budgeting path loss, 68–69
miscellaneous systems, 54–55
parameters, 38–45
 axial ratio, 33–35, 57–62
driving point impedance, 44, 49
effective area, 39–42
gain, 39
 impedance and VSWR, 44–45
 polarization, 44
 radiation pattern, 42–44
 phased arrays, 54
 pointing loss, 62–63
 polarization, 55–62
 cross-polarization discrimination, 57–58
 loss factor, 58–62
 radiation regions, 45–47
 reflector antennas, 52–54
 satellite communications, 273
 noise/temperature factors, 274–280
 hot-pad formula, 276–278
Aperture antenna:
 effective area, 39–42
 radiation pattern, 42–44
Area clutter, radar, 99–105
Area-to-area mode, Lee model, 153–157
Atmospheric effects:
 attenuation, 121–125
 satellite communications, 252–255
 moisture and precipitation, 125–131
 fog and clouds, 126–130
 snow and dust, 130–131
 radar systems, 106–107
 radio frequency propagation, basic principles, 111
 refraction, 112–120
 ducting, 116–117
 equivalent earth radius, 113–116
 multipath, 117–121
 radio horizon, 112–113
Atmospheric path loss, 80–82
Attenuation factors:
 atmospheric effects, 121–125
 fog and clouds, 126–130
conductor electromagnetic waves, 23–24
foliage models, near-earth RF propagation, 138–141
indoor propagation modeling, 215
rain attenuation:
 availability curves, 237
 basic principles, 218–219
 cross-polarization effects, 239
 link budget, 219–221
 link distance chart, 234–237
 precipitation forms, 237–239
 rain fades, 222–234
 Crane global model, 229–233
 ITU model, 224–229
 miscellaneous models, 234
 model comparisons, 234
 rainfall-specific attenuation, 222–223
 slant paths, 234
satellite communications:
 antenna systems, 273
 atmospheric attenuation, 252–255
 Crane model, 267–270
 ITU model, 257–264
Automatic gain control (AGC):
 interference, 79
 small-scale fading, channel modeling, 199–200
Availability curves:
 rain attenuation models, 237
 satellite communications, ITU attenuation model, 257–264
Average power:
 radar range measurement, 94–95
 and maximum permissible exposure, 289
Axial ratio:
 antenna polarization, 57–62
 circular polarization, 33–35
 wave polarization, 25
Azimuth beamwidth, radar area clutter, 100–105
Backscatter coefficient:
 radar area clutter, 99–105
 radar atmospheric impairments, 106–107
Band-limiting loss, 69
Bandwidth limitations, interference and, 76–79
Base station antenna height and gain, near-earth RF propagation, Lee model, 155–157
Bayes’ rule, 311–316
 joint probability density function, 313–316
Beam antennas, basic properties, 50–52
Beam-limited clutter area, radar area clutter, 100–105
Beam-splitting techniques, radar angle measurement, 95–98
Binomial expansion, ground-bounce multipath characterization, 170–186
Biological effects, RF exposure, 285–287
Biot-Savart Law, magnetic field properties, 19–20
Bit error rate (BER):
 link budgeting, signal-to-noise ratio, 83–84
 microwave/millimeter-wave signals, rain attenuation, 218–219
Bluetooth standard, interference, 208–209
Boltzmann’s constant, 276
BPSK modulation, radar range measurement, 93–95
Brewster angle, transverse electric and magnetic waves, 31
Brownian motion, receiver noise, 70–76
Built-up areas, near-earth propagation models:
 comparisons, 157–159
 COST 231 model, 152–153
 Hata model, 151–152
 Lee model, 153–157
 Okumura model, 146–151
 Young model, 146
Capture area, antenna systems, 40–42
Carrier-sensed multiple access (CSMA), propagation effects, 10
Cassagrain antenna, basic properties, 52–54
Cell area coverage, large-scale/ log-normal fading characterization, 191–193
Cellular/PCS telephones:
 RF safety standards, station evaluations, 297–298
 UHF/VHF propagation effects, 9–10
Central Limit Theorem:
 large-scale/log-normal fading, 187–193
 RF probability modeling, 305–316
Chaff, radar clutter, 99
Channels:
 interference in, 79
 small-scale fading models, 199–200
Circular polarization:
 antenna systems, 44, 55–62
 loss factor, 60–62
 electromagnetic spectrum, 25
 ground effects, 33–35
 satellite communications:
 Crane rain attenuation model, 268–270
 ITU rain attenuation model, 257–264
Citizen’s band (CB) radio, propagation effects, 9–10
Clear-air link margin, rain attenuation, microwave/millimeter wave signals, link distance vs., 219
Clouds:
 atmospheric effects, 126–130
 microwave/millimeter-wave signals, 238–239
Clutter, radar system, 99–106
 area clutter, 99–105
 statistics, 106
 volume, 105–106
Clutter factor, near-earth propagation, built-up areas, 146
Clutter-to-noise ratio (CNR), radar system clutter, 99
Co-channel interference, link budgeting, 77–79
Coherence time, small-scale fading characterization, Doppler spread, 198–199
Communication systems
 basic principles, 66–67
 components, 79–84
 EIRP, 80
 interference, 76–79
 link margin, 83
 noise, 69–76
 path loss, 67–69, 80–82
 receiver gain, 82
 signal-to-noise ratio, 83–84
 Complementary error function, 307–316
 Conditional probability, 311–316
 Conductive barrier models, ground-bounce multipath characterization, diffraction loss quantification, 179–186
 Conductivity, electric field, 17–18
 table of, 18
 Conductors:
 conductivity values, 17–18
 electromagnetic waves, 22–24
 Conical scan, radar angle measurement, 95–98
 Controlled environments, FCC RF safety standards, maximum permissible exposure levels, 288–290
 Correlation bandwidth, small-scale fading characterization, delay spread, 194–197
 COST 231 model, near-earth RF propagation, 152–153
 Coulomb units, electric field properties, 14–15
 Crane global model, rain fade analysis:
 availability curves, 237
 data analysis, 229–233
 link distance chart, 235–237
 rainfall rate probabilities and regions, 245
 rainfall-specific attenuation, 222–223
 rain rate data, 224, 233
 satellite communications, 264–270
 Critical angle, transverse magnetic waves, 29–30
 Crossover point, ground-bounce multipath characterization, 172–186
 Cross-Polarization discrimination (XPD):
 antenna systems, 57–58
 precipitation-based reduction of, 239
DAH rain attenuation model, satellite communications, 270–272
Debris region, rain fade analysis, 234
Delay spread:
 defined, 164
 indoor propagation modeling, 209–216
 ITU path loss model, 213–214
 propagation models, 10–11
 satellite communications, ionospheric effects, 255
 small-scale fading, 194–197
Depolarization:
 satellite communications, ionospheric effects, 255
 wave propagation impairment, 32–33
Desensitization, interference and, 79, 209
Dielectric constants:
 conductivity values, 17–18
 electromagnetic waves, 22
 lossy dielectrics, 22
 permittivity, 15–17
 table of, 16
Dielectric-to-dielectric boundary, electromagnetic waves, 26–27
Dielectric-to-lossy dielectric boundary, electromagnetic waves, 31–32
Dielectric-to-perfect conductor boundaries, electromagnetic waves, 31
Diffraction:
 ground-bounce multipath characterization:
 Huygen’s principle, 178–179
 loss quantification, 179–186
 non-line-of-sight propagation, 5–8
 wave propagation impairment, 32
Digitized Terrain Elevation Data (DTED), 143
Dipole antennas, basic properties, 48–50
Directivity, antenna systems, 39
 FCC RF safety standards, 293–297
Direct TV, 52–53, 57, 247, 273, 281
Dispersion, ionospheric wave propagation, 8
Distance factor, rain fade analysis, ITU model, 224–229
Doppler shift (spread):
 defined, 164
 indoor propagation modeling, 209–216
 radar area clutter, 103–105
 radar systems, 95
 satellite communication orbits, 248–249
 small-scale fading characterization, 198–199
Double-hill blockage diffraction geometry, diffraction loss quantification, 183–186
Driving point impedance, antenna systems, 44–45
Ducting, atmospheric refraction, 112, 116–117
Dust, atmospheric attenuation, 130–131
Effective area, antenna systems, 39–42
Effective height, antenna systems, 40–42
Effective isotropically radiated power (EIRP), 292–293
 link budgeting, 66, 80
Effective radiated power (ERP), 292–293
Egli terrain model, near-earth RF propagation, 141–143
Electric field, radio frequency propagation, 14–15
Electromagnetic waves (EMW):
 atmospheric refraction, radio horizon, 112–113
 basic properties, 20–24
 circular polarization, ground effects, 33–35
 magnetic field, 18–20
 material boundaries, 25–32
 dielectric-to-dielectric boundary, 26–31
 dielectric-to-lossy boundaries, 31–32
 dielectric-to-perfect conductor boundaries, 31
 propagation impairment, 32–33
 propagation modes, 3–10
 line-of-sight propagation and radio horizon, 3–5
 non-line-of-sight propagation, 5–8
 radio frequency designations, 1–2
 radio frequency propagation:
 conductivity, 17–18
 electric field properties, 14–15
 permittivity, 15–17
wave polarization, 24–25
wave properties, 20–24
conductors, 22–24
lossy dielectric/conductor, 22
perfect dielectric, 22
Elliptical polarization:
antenna systems, 55–62
loss factor, 59–62
electromagnetic waves, 24–25
Empirical path loss models, indoor
propagation modeling, 215
Environmental conditions, indoor
propagation modeling, 209–216
ITU indoor path loss model, 210–214
log-distance path loss model, 214–215
signal degradation, 209–210
site-specific and site-general models, 210
Environmental Protection Agency (EPA), 292–293
Equivalent earth radius, atmospheric refraction, 113–116
ducting, 116–117
Ericsson multiple break-point model, indoor propagation modeling, 215
European Telecommunications Standards Institute (ETSI), RF safety standards, 283
Expected value, 303–316
Extra-high-frequency (EHF), propagation effects, 10
Fade margin:
atmospheric multipath, 118–121
link budgeting path loss, 82
Fading. See also Rain fade analysis
basic principles, 163
defined, 163
large-scale/log-normal fading, 186–193
satellite communications, ionospheric effects, 255
small-scale fading, 193–203
channel modeling, 199–200
delay spread, 194–197
Doppler spread, 198–199
probabilistic nature of, 200–203
Family Radio Service (FRS), 9–10
Faraday rotation:
ionospheric wave propagation, 8
satellite communications, ionospheric effects, 255
Far-field radiation pattern, antenna systems, 43–44, 46–47
FCC RF safety standards, 296–297
Fast Fourier transform (FFT), radar area clutter, 103–105
Federal Communications Commission (FCC), RF safety standards, 284–285
antenna directivity, 293–297
computation techniques, 292–297
main beam and omnidirectional antenna analysis, 292–293
specific absorption rate guidelines, 287–290
Flat frequency response, small-scale fading characterization, delay spread, 195–197
Floor penetration loss factor, 211
Flux density:
electric field properties, 14–15
magnetic field, 18–20
permittivity, 16–17
FM radio, UHF/VHF propagation effects, 9–10
Fog:
atmospheric effects, 126–130
microwave/millimeter-wave signals, 238–239
Foliage models, 134–141
early ITU vegetation model, 135–137
updated ITU vegetation model, 137–141
single vegetative obstruction, 138–141
terrestrial path, woodland terminal, 138
Weissberger’s model, 135
Fourier transform:
Doppler radar measurement, 95
radar range measurement, 93–95
“4/3 earth approximation,” 5
Fraunhoffer region, 46–47
Free-space path loss:
ground-bounce multipath characterization, 168–186
indoor propagation modeling, ITU
path loss model, 210–214
link budgeting, 67–69, 80–82
near-earth RF propagation:
 Egli terrain model, 142–143
 foliage models, 135–137
 rain attenuation, 220–221
 satellite communications, 249–252
Freezing height of rain, 270–272
Frequency:
 band designations, 1–2
 propagation effects as function of, 9–10
 satellite communication, 249
Fresnel-Kirchhoff diffraction parameter, 176–178
diffraction loss quantification, 180–186
Fresnel zone:
 ground-bounce multipath
 characterization, 175–178
 near-earth RF propagation, ITU
 terrain model, 145–146
 small-scale fading characterization,
 versus delay spread, 197
Friis free-space loss equation:
 link budgeting path loss, 67–69
 radar range equation, 88–93
 satellite communications, 251–252
Front-to-back ratio, 43–44
Gain:
 antenna systems, 39
 effective area, 40–42
 Gaseous absorption, 121–125
 Gaussian noise, radar angle
 measurement, 98
 Gaussian random variable:
 indoor propagation modeling, log-
 distance path loss model, 214
 joint probability density function,
 314–316
 large-scale/log-normal fading, 187–193
 small-scale fading characterization,
 193–203
 Gauss’s Law, 15
Geometric properties:
 electric field intensity, 15–17
 ground-bounce multipath
 characterization, 166–186
diffraction loss quantification, 179–186
 Fresnel zone, 175–178
 surface roughness, 174–175
 ionospheric propagation, 8
 line-of-sight propagation, 4–5
 near-earth RF propagation models,
 single vegetative obstruction
 model, 139–141
 RF safety standards and, 284
 satellite communications, 250–252
 Geostationary orbit (GSO), 248–249
 Geosynchronous orbit (GEO), 247–249
 antenna systems, 273
 free-space path loss, 251–252
Grazing angle:
 dielectric to dielectric boundary,
 28–32
 ground-bounce multipath
 characterization, 166–186
 Ground-bounce multipath,
 characterization, 164–186
 diffraction and Huygen’s principle,
 178–179
 diffraction loss quantification, 179–186
 Fresnel zones, 175–178
 surface roughness, 174–175
 Ground waves, non-line-of-sight
 propagation, 6
 Group delay, ionospheric wave
 propagation, 8
 Hail, atmospheric attenuation, 131
 Half-wave dipole antenna, basic
 properties, 48–50
 “Hamstick” antenna, basic properties,
 49–50
 Hata model, near-earth RF propagation,
 151–152
 Helix antenna, applications, 49–50
 High earth orbit (HEO), 247–249
 High-frequency (HF) bands:
 dipole antennas, 49–50
 ionospheric propagation, 7–8
 propagation effects, 9–10
 Histogram analysis, large-scale/log-
 normal fading characterization,
 188–193
 Horn antennas, basic properties, 52
Hot-pad formula, noise temperature factors, 276–278
Huygen’s principle:
diffraction and, 178–179
Fresnel zone boundaries, 177–178

Impedance:
antenna systems, 44–45
characteristic, 24–25
intrinsic, 24–25
maximum permissible exposure levels and, 289–290
Independent identically distributed (iid) random variables, 305–316
Indirect propagation, 6
Indoor propagation modeling:
environmental conditions, 209–216
ITU indoor path loss model, 210–214
log-distance path loss model, 214–215
signal degradation, 209–210
site-specific and site-general models, 210
interference, 208–209
Institute of Electrical and Electronics Engineers (IEEE), 283–284
Insulators, conductivity values, 18
Interference:
indoor propagation modeling, 208–209
link budgeting, 76–79
Intermodulation products:
interference and, 77–79
as noise source, 76
International Telecommunications Union (ITU):
atmospheric effects models:
attenuation formula, 121–125
fog and cloud attenuation model, 126–130
multipath model, 118–121
rain attenuation, 220–221
indoor path loss model of, 210–214
microwave/millimeter-wave signals, rain fade analysis:
availability curves, 237
cross-polarization effects, 239
data analysis, 224–229
link distance chart, 235–237
rainfall rate probabilities and regions, 244
rainfall-specific attenuation, 222–223
model sources, 11–12
near-earth RF propagation:
early vegetation model, 135–137
terrain model, 144–146
updated model, 137–141
single vegetative obstruction, 138–141
terrestrial path, woodland terminal, 138
satellite communications:
line-by-line atmospheric attenuation model, 252–255
rain attenuation model, 257–264
Intersymbol interference (ISI), 77–79
Inverse synthetic aperture radar (ISAR), 98–99
Ionospheric propagation:
electromagnetic waves, 6–8
satellite communications, 255–256
Isotropic radiator, antenna systems, 38
Joint probability, 309–316
Joint probability density function (PDF), 313–316
Knife-edge diffraction curve:
ground-bounce multipath characterization, 179–186
near-earth RF propagation, ITU terrain model, 144–146
Large-scale fading, defined, 163
Large-scale/log-normal fading, characterization of, 186–193
Latitude/longitude models, rain fade analysis, 234
Lee model, near-earth RF propagation, 153–157
Left-hand circular polarization, antenna systems, 56–57
Lens antennas, basic properties, 54
Linear polarization. See Polarization
Line-of-sight (LOS) propagation:
atmospheric refraction, 113
electromagnetic spectrum, 3–5
multipath characterization:
 ground-bounce multipath
coloration, 176–178
 multipath characterization, 164
near-earth RF propagation:
 foliage models, 134–141
 ITU terrain model, 145–146
 small-scale fading, 202–203
Link budget:
 antenna systems:
 pointing loss, 62–63
 polarization loss factor, 60–62
 communication systems:
 basic principles, 66–67
 components, 79–84
 EIRP, 80
 interference, 76–79
 link margin, 83
 noise, 69–76
 path loss, 67–69, 80–82
 receiver gain, 82
 signal-to-noise ratio, 83–84
 rain attenuation, 219–221
 Link distance charts, rain attenuation,
 219, 234–237
 Link margin:
 computation, 83
 defined, 66–67
 large-scale/log-normal fading
 characterization, 191–193
 path loss, 68–69
 rain attenuation, 218–219
 Load impedance, antenna systems, 44–45
 Loading coils, dipole antennas, 49–50
 Load oscillator (LO) phase noise, 76
 Local area networks (LAN):
 interference in, 208–209
 link budgeting and, 66
 Location variability, 187–193
 Log-distance path loss model, 214–215
 Longley-Rice terrain model, 143
 Loss factor, antenna polarization, 58–62
 Loss tangent, lossy dielectrics, 22
 Lossy dielectric:
 dipole antennas, 48–50
 electromagnetic waves, 22
 material boundaries, 25–26
 dielectric-to-lossy dielectric
 boundary, 31–32
 Low earth orbits (LEO), 247–249
 antenna systems, 273
 Lowest usable frequency (LUF), 7–8
 Low-frequency (LF) bands, 9–10
 Low-noise amplifier (LNA):
 link budgeting, 74–76
 satellite communications, noise/
 temperature, hot-pad formula,
 277–278
 Low-noise block (LNB), reflector
 antennas, 52–54
Magnetic field:
 electromagnetic spectrum, 18–20
 radio frequency propagation, 18–20
 Magnetic field antenna, basic properties, 54
 Main beam antenna analysis, FCC RF
 safety standards, 292–293
 Material boundaries, electromagnetic
 waves, 25–32
 dielectric-to-dielectric boundary, 26–31
 dielectric-to-lossy boundaries, 31–32
 dielectric-to-perfect conductor
 boundaries, 31
 Maximum permissible exposure (MPE):
 FCC RF safety standards, 287–290
 station evaluations, RF safety levels,
 297–298
 Maximum power transfer, antenna
 systems, 44–45
 Maximum usable frequency (MUF),
 ionospheric propagation, 7–8
 Maxwell’s equation:
 electromagnetic waves, 20–24
 FCC RF safety standards, maximum
 permissible exposure levels,
 289–290
 Mean excess delay, 194–197
 Mean-square value, 303–316
 Median path loss, 186–193
 Medium earth orbits (MEO), 247–249
 antenna systems, 273
 Medium-frequency (MF) bands, 9–10
 Microwave/millimeter-wave signals, rain
 attenuation:
 availability curves, 237
 basic principles, 218–219
 cross-polarization effects, 239
link budget, 219–221
link distance chart, 234–237
precipitation forms, 237–239
rain fades, 222–234
 Crane global model, 229–233
 ITU model, 224–229
miscellaneous models, 234
model comparisons, 234
rainfall-specific attenuation, 222–223
slant paths, 234
Minimum detectable signal (MDS), 83
Mobile antenna height and gain
correction factor, Lee model, 155–157
Modeling. See specific modeling
techniques
Modulation loss, 69
Moisture, atmospheric effects, 125–131
 fog and clouds, 126–130
 snow and dust, 130–131
Monopulse techniques, radar angle
measurement, 95–98
Multipath characterization:
atmospheric refraction, 117–121
basic principles, 163–164
ground-bounce multipath, 164–186
diffraction and Huygen’s principle,
178–179
diffraction loss quantification,
179–186
Fresnel zones, 175–178
surface roughness, 174–175
non-line-of-sight propagation, 6–8
small-scale fading, delay spread,
194–197
Mutually exclusive events, 309–316
Near-earth propagation models:
basic principles, 134
built-up area models:
 comparisons, 157–159
 COST 231 model, 152–153
Lee model, 151–152
Okumura model, 146–151
Young model, 146
foliage models, 134–141
early ITU vegetation model,
135–137
updated ITU vegetation model,
137–141
single vegetative obstruction,
138–141
terrestrial path, woodland
terminal, 138
Weissberger’s model, 135
ground-bounce multipath
characterization, 171–186
terrain modeling, 141–146
egli model, 141–143
ITU model, 144–146
Longley-Rice model, 143
Near-field region, antenna radiation
patterns, 46–47
FCC RF safety standards, 290–292
directivity, 294–297
Noise, link budgeting, 69–76
Noise-equivalent bandwidth, 71–76
Noise figure/factor:
 link budgeting, 71–76
 satellite communications, 274–280
 hot-pad formula, 276–278
 rain-base noise, 278–279
 sun outages, 279
Non-ionizing radiation, 285–287
Non-line-of-sight propagation:
electromagnetic waves, 5–8
indoor propagation modeling,
209–216
small-scale fading, PDF
characterization, 200–203
Obstructed propagation, electromagnetic
waves, 6
OET-56 safety standard, 285–287
Okumura model:
 large-scale/log-normal fading
 characterization, 192–193
 near-earth propagation, built-up areas,
 146–151
Omnidirectional antenna:
 defined, 38
 FCC RF safety standards, 292–293
On-axis power density equations, FCC
RF safety standards, 295–297
Orbit categories, 247–249
Orthogonal frequency division
multiplexing (OFDM), 200
Parabolic reflector antenna, basic properties, 52–54
Patch antennas, basic properties, 55
Path loss:
 atmospheric attenuation, 123–125
 indoor propagation modeling, 209–216
 ITU path loss model, 210–214
 large-scale/log-normal fading, 186–193
 link budgeting, 67–69, 80–82
 receiver gain and, 82
 multipath characterization, 163–164
 ground-bounce multipath characterization, 166–186
near-earth RF propagation:
 Egli terrain model, 141–143
 Lee model, 153–157
 Okumura built-up areas model, 148–151
Peak envelope power (PEP):
 as used in radar, 94–95
 FCC RF safety standards, maximum permissible exposure levels, 289–290
Permeability:
 dielectric to dielectric boundary, 27
 electromagnetic waves, 21–24
 magnetic field, 19–20
Permittivity:
 conductor electromagnetic waves, 22–24
 dielectric to dielectric boundary, 27
 electric field properties, 14–17
 electromagnetic waves, 21–24
 lossy dielectrics, 22–24
 relative, table of, 16
Phase angle, ground-bounce multipath characterization, 166–186
Phased array antennas, basic properties, 54
Poincaré sphere, 59–62
Pointing loss, antenna systems, 62–63
Point-to-point link:
 atmospheric multipath, 117–121
 ground-bounce multipath characterization, 164–186
 Fresnel zone boundaries, 177–178
near-earth RF propagation:
 Lee model, 153, 155–157
 Longley-Rice terrain model, 143
 path loss, 69
 Point-to-Point Mode, Lee Model, 155–156
Polarization. See also Circular polarization
 antenna systems, 44, 55–62
 cross-polarization discrimination, 57–58
 loss factor, 58–62
 defined, 3
electromagnetic waves, 24–25
 loss factor, 34–35
 rain fade analysis:
 linear regression coefficients, 242
 rainfall-specific attenuation, 223
Polarizing angle, 31
Power density:
 antenna systems, 38–39
 FCC RF safety standards:
 antenna directivity, 293–297
 main beam and omnidirectional antenna analysis, 292–293
 maximum permissible exposure levels, 289–290
 line-of-sight wave propagation, 3–5
 radar range equation, 88–93
Power loss coefficient values, indoor propagation modeling, ITU path loss model, 211
Poynting vector:
 FCC RF safety standards, maximum permissible exposure levels, 289–290
 wave polarization, 3, 24–25
Precipitation:
 atmospheric effects, 125–131
 fog and clouds, 126–130
 snow and dust, 130–131
 satellite communications, DAH rain attenuation model, 270–272
Probability density function (PDF):
 joint probability density, 313–316
 large-scale/log-normal fading characterization, 188–193
 small-scale fading, 200–203
Probability theory, 301–316
Propagation impairment:
 electromagnetic waves, 32–33
Propagation models:
 basic requirements, 10–11
 selection and application, 11–12
 sources of, 11–12
Propagation velocity, dielectric to
dielectric boundary, 28
Pulse-repetition interval (PRI)/pulse-
repetition time (PRT):
 Doppler radar measurement, 95
 radar range equation, 92–93
Pulse width, radar range equation,
91–93

\(Q\) function, 307–316
Quarter-wave dipole antenna, basic
properties, 48–50

Radar cross section (RCS), 89–93
Radar system:
 atmospheric impairments, 106–107
 basic principles, 87–88
 clutter, 99–106
 area clutter, 99–105
 statistics, 106
 volume, 105–106
 measurements, 93–99
 angle measurement, 95–98
 Doppler measurement, 95
 range measurement, 93–95
 signature measurement, 98–99
 range equation, 88–93
Radiation pattern, antenna systems,
42–47
 dipole antennas, 48–50
Radiation resistance, dipole antennas,
49–50
Radio frequency propagation:
 applications, 1
 frequency-based effects, 9–10
 frequency designations, 1–2
 link budgeting and, 66
 modeling requirements, 10–11
 probability review, 301–316
 model selection and application,
11–12
 propagation modes, 3–10
 line-of-sight propagation and radio
 horizon, 3–5
 non-line-of-sight propagation, 5–8
Radio horizon:
 atmospheric refraction, 112–113
 line-of-sight propagation, 5
Radius equivalent, 113–116
ducting, 116–117
Rain attenuation models:
 microwave/millimeter-wave signals:
 availability curves, 237
 basic principles, 218–219
 cross-polarization effects, 239
 link budget, 219–221
 link distance chart, 234–237
 model data, 242
 precipitation forms, 237–239
 rain fades, 222–234
 Crane global model, 229–233
 ITU model, 224–229
 miscellaneous models, 234
 model comparisons, 234
 rainfall-specific attenuation,
222–223
 slant paths, 234
 satellite communications:
 Crane model, 264–270
 DAH model, 270–272
 ITU model, 257–264
 noise/temperature factors,
278–279
Rain fade analysis:
 microwave/millimeter-wave signals,
222–234
 Crane global model, 229–233
 ITU model, 224–229
 miscellaneous models, 234
 model comparisons, 234
 rainfall-specific attenuation, 222–223
 slant paths, 234
 satellite communications, 255–272
 Crane rain attenuation model,
264–270
 DAH attenuation model, 270–272
 ITU rain attenuation model,
257–264
Rain margin, atmospheric attenuation,
fog and clouds, 128–130
Random variable, 302–316
Range-gate-limited clutter area, 100–105
Range measurement, radar systems,
93–95
Rayleigh criterion:
 ground-bounce multipath characterization, surface roughness, 174–175
 joint probability density function, 314–316
 small-scale fading, 163, 193–203
 probabilistic characterization, 200–203

Ray theory, electromagnetic waves, 20–24
Reactive near-field region, antenna radiation patterns, 46–47
FCC RF safety standards, 290–292

Real-world components:
 link budgeting noise, 72–76
 radio frequency propagation, 1

Receiver gain, 82
Receiver noise:
 interference, 79
 link budgeting, 71–76
Receive threshold, link budgeting noise, 69–76
Reciprocity, antenna systems, 38
Reflection, wave propagation impairment, 32

Reflection coefficients:
 antenna system impedance, 45
 ground-bounce multipath characterization, 166–186
 transverse electric and magnetic waves, 29–31

Reflection/diffraction points, ground-bounce multipath characterization, Fresnel zone boundaries, 177–178
Reflector antennas, basic properties, 52–54

Refraction:
 atmospheric effects, 112–120
 ducting, 116–117
 equivalent earth radius, 113–116
 multipaths, 117–121
 radio horizon, 112–113
 non-line-of-sight propagation, 6–8
 radar atmospheric impairments, 106–107
 wave propagation impairment, 32

Refractive index, atmospheric refraction, 113–116
Refractivity, atmospheric refraction, 114–116
multipath, 119–121

Regression coefficients:
 rainfall-specific attenuation, 222–223
 Frequency interpolation, 243
 ITU model, 224–229
 polarization data, 242
 satellite communications:
 Crane rain attenuation model, 264–270
 ITU attenuation model, 263–264

Relative frequency, 301–316
Relative permittivity, dielectric constants, 15–17
Ricean probability density function, 314–316

small-scale fading, 163, 194–203
non-LOS propagation, 202–203
Right-handed circular polarization, antenna systems, 55–56

RMS delay spread, 194–197
Rounded-surface diffraction model, ground-bounce multipath characterization, 182–186
Rubber duck antenna, 49–50

Safety issues, radio frequency propagation:
 antenna considerations, 290–292
 basic principles and terminology, 283–285
 biological effects, RF exposure, 285–287
 FCC computations, 292–297
 antenna directivity, 293–297
 main beam and omnidirectional antenna analysis, 292–293
 FCC guidelines, 287–290
 station evaluations, 297–298

Satellite communications:
 antenna conditions, 273
 atmospheric attenuation, 252–255
 basic principles, 246–247
 free-space path loss, 249–252
 ionospheric effects, 255
noise temperature, 274–280
hot-pad formula, 276–278
rain-base noise, 278–279
sun outages, 279
operating frequency, 249
orbit categories, 247–249
rain fades, 255–272
Crane rain attenuation model, 264–270
DAH attenuation model, 270–272
ITU rain attenuation model, 257–264
Scattering:
small-scale fading, channel modeling, 199–200
wave propagation impairment, 32
Scintillation:
defined, 163
ionospheric wave propagation, 8
satellite communications, 247
Sensitivity, link budgeting noise, 69–76
Sequential lobing, radar angle measurement, 95–98
Shadowing:
large-scale/log-normal fading, 187–193
multipath characterization, 164
Signal-to-clutter ratio (SCR), 99
Signal-to-noise ratio (SNR):
noise analysis, 72–76, 83–84
radar range equation, 88–93
Signature measurement, radar systems, 98–99
Single vegetative obstruction, foliage models, near-earth RF propagation, 138–141
Site-general indoor propagation modeling:
environmental conditions, 210
ITU path loss model, 211–214
Site-specific indoor propagation modeling, environmental conditions, 210
Skin depth, 23–24
Skip, ionospheric propagation, 7–8
Sky noise temperature, 275–280
Sky waves, 6
Slant paths:
atmospheric attenuation, 122–125
ground-bounce multipath characterization, 165
rain fade analysis, 234
satellite communications geometry, 250–252
Crane attenuation model, 267–270
Sleet, 237–238
Slow fading:
defined, 163
Doppler spread effects, 199
Small-scale fading:
characterization, 193–203
channel modeling, 199–200
delay spread, 194–197
Doppler spread, 198–199
probabilistic nature of, 200–203
class comparisons, 200–201
defined, 163–164
Snell’s law of refraction, 27
Snow:
atmospheric attenuation, 130–131
microwave/millimeter-wave signals, 237–238
Specific absorption rate (SAR) guidelines:
FCC RF safety standards, 287–290
RF safety standards, station evaluations, 297–298
Spectral density, noise-equivalent bandwidth, 71–76
Specular reflection, ground-bounce multipath characterization, 165–186
Spherical wave front, 3–5
Split gate tracker, radar range measurement, 93–95
Station evaluations, RF safety standards, 297–298
Statistical analysis, radar clutter, 106
Sun outages, 279
Super-high-frequency (SHF) bands, 10
Surface roughness, ground-bounce multipath characterization, 174–175
Synchronization loss, as noise source, 76
Synthetic aperture radar, 98–99
System gain, rain attenuation, 220–221
Taper loss:
 antenna gain, 39
 antenna radiation pattern, 44
Temperature effects:
 inversion, atmospheric refraction, 112
 precipitation-based, 238–239
 satellite communications, 274–280
 hot-pad formula, 276–278
 rain-base noise, 278–279
 sun outages, 279
Terrain modeling, 141–146
 Egli model, 141–143
 ITU model, 144–146
 Longley-Rice model, 143
Thermal noise, 70–76
Tilt angle:
 antenna cross-polarization discrimination, 58
 antenna polarization loss factor, 60–62
Time-varying magnetic field, electromagnetic waves, 20–24
Tissue heating, biological effects, 286–287
Total columnar content of water, 127–130
Transition region, antenna radiation patterns, 46–47
 FCC RF safety standards, 290–292
Transverse electric (TE) wave, 29–30
Transverse magnetic (TM) wave, 27–30
Traps, dipole antennas, 49–50
Troposcatter, atmospheric refraction, 112
Tropospheric waves:
 non-line-of-sight propagation, 6
 satellite communications, 247
Ultra-high frequency (UHF) band:
 non-line-of-sight propagation, 5–8
 propagation effects, 9–10
Uncontrolled environment, FCC RF safety standards, 288–290
Uniform random variable, 302–316
Uniform theory of diffraction (UTD), 186
Vectors:
 electric field, 14–15
 permittivity, 16–17
 maximum permissible exposure levels, 289–290
Vegetation loss models, 135–137
 single vegetative obstruction, 138–141
Velocity:
 line-of-sight wave propagation, 4–5
 of propagation, equation for, 21–24
Venn diagram, 310–316
Very high frequency (VHF) bands:
 non-line-of-sight propagation, 5–8
 propagation effects, 9–10
Very low frequency (VLF) bands, propagation effects, 9–10
Voltage standing wave ratio (VSWR), antenna systems, 45
dipole antennas, 49–50
Volume clutter, radar systems, 99, 105–106
Wavelength, 4–5
Wavelet formation, Huygen’s principle and diffraction, 179
Weissberger’s modified exponential decay model, 135–136
Wideband systems, indoor propagation modeling, 209–210
Windows:
 atmospheric attenuation, 122–125
 small-scale fading characterization, delay window, 194
Wireless LAN systems, interference, 208–209
Woodland terminals, foliage models, 138
Yagi-Uda beam antenna, basic properties, 50–52
Young model, 146–147