acceptance probability, 62, 264, 273, 276, 277, 325, 369
adjacency matrix, 87, 260, 274, 290, 294, 298, 299
 nonzero structure, 292
 pair of eigenvalues, 294
 plots of PPI networks, 305
Affymetrix GeneChip oligonucleotide arrays, 286
aggregation, 25
 classifier, 25–7
 variable, 25
Akalike information criterion (AIC), 35, 156, 245, 424
Akt model, 427, 430, 431
 interquantile ranges for, 433
Akt signalling pathway model, 420, 427
 phosphorylated EGF receptor (pEGFR), 435
 posterior distribution scatterplots
 two-dimensional projections of, 432
 posterior parameter distribution, projections of, 431
algebraic geometry, 114, 115, 130
algebraic statistical models, 118
 definitions, 118–19
 graphical models, 119–20
 two-site phosphorylation cycle, 120–2
algebraic statistics, 114
 first theorem, characterization of space, 128
 in systems biology, 115
algebraic tools, 115
analytical technologies, 164–6
Andronov–Hopf bifurcation, 350, 351
annotation, 66, 67, 70
 AnnotationDBi package, 74
 in bioconductor, 73–4
experimental design, 72–3
functional annotation for network alignment, 215–16
genome annotation, 453
GO annotation, 216, 297, 300
by protein binding sites, 72
by similarity, 71–2
by temporal series, 72
by text-mining, 73
ANOVA, 141, 144
antagonistic immune interactions
dendritic cell (DC) and Nipah virus, 458
AP-MS datasets, 320, 322
approaches based on S-systems, 107–9
approximate algorithms, 247, 363
approximate Bayesian computation (ABC), 57, 63, 209, 210, 369–71, 420, 425, 426
Arabidopsis gene expression time series, 285–7
area under the curve (AUC), 31, 279, 280, 393
ArrayExpress, 67
ARTIVA network model, 262–7, 263
 assumption, 265
 inference procedure, and performance evaluation, 263–7
 multiple changepoints, 262
 procedure
 performance, 264
 robustness, 267
 schematic illustration, 265
 regression model, 262–3
 synthetic data, 266
assortativity, 310, 321
PPIN, 320
Index

attractors, 334
 chaotic (see chaotic attractors)
 definition, 343
 quasiperiodic (see quasiperiodic attractors)
 steady state, 344
autonomous systems, 341
autoregressive (AR) process, 257
autoregressive time varying model, see ARTIVA network model
averaged Pearson correlation coefficient (avPCC), 226
AViditybase EXtracellular Interaction Screen (AVEXIS) system, 228

bagging, 25–7, 151
BANJO software, 102, 103
Bayes factor, 49, 51, 425
 computation of, 58
 range, 52
Bayes framework of moderated test statistics, 147
Bayesian analysis, 53
 in action, 41–2
Bayesian approach, 15
 inclusion of additional data, 471
Bayesian framework, 54
Bayesian hierarchical model, 278
Bayesian inference, 39, 247, 280, 287, 367, 382, 472, 473, 490
 computational challenge offered by, 57
 and Gibbs sampling techniques, 172
 model-based approach for, 209
 in peak identification, 472
 posterior distribution for a parameter \(\theta \), 209
Bayesian information criterion (BIC), 35, 49, 156, 245
Bayesian methods, in metabolomics, 172
Bayesian modelling, 40, 42, 55
 for NMRdata, 172
Bayesian model selector, 57
Bayesian multiple testing, 54–5
Bayesian networks, 239, 240, 256, 260, 282, 421
 advanced applications in systems biology, 270–87
 advantages, 257
 Arabidopsis gene expression time series, results on, 285–7
 Bayesian learning, 273
 biological prior knowledge, inclusion, 273–81
 DAG structure, 271
 dynamic Bayesian networks, 272–3
 graphical representation for, 258
 heterogeneous DBNs, 281–7
 inference procedures, 250
 MCMC sampling scheme, 276–7
 modularity, 275
 by moralisation, 241
 nonlinear/nonhomogeneous DBN, 282–3
 performance, 279
 practical implementation, 277
 principled feature, 272
 separation, 238
 simulation results, 284–5
 with single-cell data, 197
 Bayesian posterior distribution, 243, 422
 Bayesian regression analysis, 53
 Bayesian sampling, to estimate the model parameters, 377
 Bayesian statistical framework, 472
 Bayesian statistics, 422
 maximum a posteriori (MAP) estimate, 423
 use of, 469
 Bayesian variable selection, 155–6
 Bayes Net Toolbox
 open-source Matlab package BNT for, 260
 Bayes theorem, 40, 44, 155, 264
 BGe model, 282
 BGe score, 271, 279, 282
 binary adjacency matrix, 274
 binary classification problems, 23
 BinGO, 77
biochemical network models, 364–6
 network families, and random graphs, 312–15
 network families, hypothesis testing and null models, 312–13
 tailored random graph ensembles, 313–15
 network topologies, quantitative characterization, 310–12
 examples, 311–12
 local network features, 310–11
 SDE representations, 364
 tailored random graphs, information-theoretic deliverables, 315–17
 information-theoretic dissimilarity, 316–17
 network complexity, 315–16
 via tailored random graphs, 309
BioGRID database, 101
bioluminescent probe, 189
biomolecular interaction networks, 83
BioPAX, 77
Bonferroni fallacy, 56
Boolean networks, 116, 120, 256, 340
Boolean (binary) values, 227
boosting algorithms, 26
bootstrap methods, 423, 424
Brownian motion, 364
Buchnera aphidicola, 454

CABIN (Collective Analysis of Biological Interaction Networks), 77
Caenorhabditis elegans, 485
genome-scale TF–microRNA transcriptional regulatory network, 485
network alignment, 213
CaliBayes system, 370
cAMP pathway, 457
Candida albicans, environmental responses, 457
CART algorithm, 26
CCDS database, 69, 70
cDNA microarrays, 83
cell dynamics, 226
cell engineering, 4, 5
cell signaling systems, 4–5, 419
dynamics, 420
injection of the CagA, 460
modeling, use for, 5
cell-to-cell communication, 421
cell-to-cell variation, 182, 197, 435
expression level of fluorescent probes, 197
quantifying sources, 197–9
cell tracking, 193–4
cellular information processing, 3
cellular metabolism, manipulation of, 4
cellular regulatory systems, 3, 4
cellular signaling events, 182, 185
cellular signalling networks, 325
central limit theorem, 59
challenges
about cell signaling system, 6, 7
combinatorial complexity, 7–8
automated model-guided design of experiments, 6
in development of models, 5
network-free simulation, 8
ODEs used to model kinetics, 7
parameters in models, 6–7
rule-based modeling, 8
stochastic simulation compiler (SSC), 8
tracking information, 7
translating available knowledge, 6
changepoint positions vector, 263
changepoint sensitivity, 266
chaotic attractors, 345
chaotic dynamics, 333, 334
charge-coupled device (CCD) imager, 183
chemical Langevin equation (CLE), 364, 423
chemical master equation, 361–3
chemical reaction networks, 105
gene expression data Z clustering, 150
Gaussian mixture models (GMMs), 151
gene expression data
K-centres, 150
K-means, 150
K-medoids, 150
mixture model clustering, 151
number of clusters, estimation, 151
resampling approaches, 151
time-course data, 153
clustering coefficient, 206, 293, 302, 310, 485
c-Met signal transduction
logical model for, 460
codebook vector, 170
coefficient matrix, 260
Collective Analysis of Biological Interaction Networks, 77
collision hazard, 360
COMET project, 169
community detection, in PPI networks, 218–19
detection methods, 219–20
evaluation of results, 220–1
comparative genomic hybridization (CGH), 29
complementary binding domains
pairwise attraction, 294
computational algebra, 115, 116–18
detiny table, 117–18
computational issues, 57
approximate Bayesian computation techniques, 63
MCMC methods, 61–3
Monte Carlo methods, 59–61
conditional density, 40
conditional independence, 119, 120, 238, 242, 243, 276
graphical models, 420
relationships, 245, 246
for simple undirected and directed acyclic graphs, 239
conditional probability distributions, 257, 425
confidence intervals, 46–8, 401
asymptotic confidence intervals, 402
coverage, 403
finite sample confidence intervals, 403
confocal microscopes, 187
conservation laws, 364
constraint-based algorithms, 242
contingency tables, 41, 114, 116–19, 125, 128, 243
convex optimization methods, 97, 261
bottom-up approach
CORE-Net algorithm, 100
identification of the connectivity matrix, 97
via LMI-based optimization, 97–9
top-down approach, 99
reconstruction algorithm, 99–100
CORE-Net algorithm, 97, 100, 101, 103
covariance matrix
efficient estimator, 261
Cox’s proportional hazards model, 141
cross covariances, 382
cross-validation (CV), 157
CTLS technique, 91–5
curse of dimensionality, 246
cyclin/CDK regulators, 101
Cytoscape, 77, 78
data augmentation approach, 367–9, 372
data integration, in biological studies, 74
comparing and/or integrating different technologies, 75–6
epigenetics, 76
experimental data, integration of, 74
genetics, 76
metabolomics, 76–7
microarrays sampled from different experimental designs, 75
transcriptomics, 76–7
data processing, 168, 282, 472
LC-MS data processing, 168
and management software, 474
NMR data processing, 166
normalisation, 168
on proteins, 312
data repositories, 67, 68
dChip package, 137
decomposable graphs, 240
dendrogram clustering, 322
deterministic autonomous system, 357
DHFR protein fragment complementation Assays, 228
diagonal covariance matrix, 260
Dicer cleavage maturation, 479
diffusion approximation, 364–5
dimension reduction, 260
directed acyclic graph (DAG), 257, 270
directed graph evaluation (DGE), 280, 281
directed separation, 238
discrete-time stochastic process, 259, 323
discrete-time systems, 100
bifurcation analysis, 352
discretisation scheme, 443
χ^2 distribution of the LR statistics, 142
DNA damage, 440
response network, 443, 447
DNA Data Bank, 70
DNA decay, 190
DNA microarrays, 255
DNA sequences, 68, 188, 255, 391
Drosophila melanogaster
approximate bipartite subnetwork, 297
Drosophila phagosomes, protein interaction network characteristic, 459
dynamical models, for network inference, 83–4
linear models, 84–5
nonlinear models, 85
polynomial models, 85–8
Power-law models, 88
rational models, 85–8
S-systems (synergistic-systems), 88
dynamical network, 227
dynamical stability, 342, 348, 349
dynamical systems
 basic solution types, 343–6
 with discrete/continuous/time, space/states, 340
 ergodicity, 353–4
 qualitative behaviour, 346–7
 qualitative inference in, 339–43
 stability and bifurcations, 347–53
timescales, 354–6
time series analysis, 356–7
dynamic Bayesian networks (DBNs), 102, 243
 ARTIVA network model, 262–7
 continuous data, recovering genetic network from, 255–67
 genetic network modelling with, 256–9
 graphical representation for, 258
 inference procedures, 260–1
 for linear interactions and inference procedures, 259–61
 multivariate AR model, 261
 regulatory networks in biology, 255–6
 reverse engineering time-homogeneous, 258–63
 state space graph, 272

electrospray ionisation (ESI), 164
EMBL Nucleotide Sequence Data Library, 67
Ensembl, 70
enteropathogenic *Escherichia coli* (EPEC), 453
genomics, 453
Entrez Gene, 69
entropy, 61, 335, *see also* Kolmogorov–Sinai entropy
 entropy-based measures, *see minimum description length (MDL)*
epidermal growth factor (EGF) receptor (EGFR)
 experimental data measurements of, 426
equivalece classes, 272
 possible networks, 245
Erdös–Rényi style random graph, 300
 ergodic dynamical system, 354
 ergodicity, 335, 353–4
 error covariance matrix, 260
Escherichia coli
 Partial correlation graph using the algorithm, 249
 plotting the average of r_{nz} versus r_z, 104
 RNAi screening for phagocytosis, 459
SOS pathway, inferring by TSNI and compared with NIR, 104, 105
Euclidian distance function, 32, 299, 428
eukaryotic pathogens, environmental responses, 457
Euler discretization, 106
Euler–Maruyama discretisation, 364
European Nucleotide Archive, 70
evidence propagation studies, 246
expectation-maximization (EM), 33
 ontologies and, 77
 expert systems, 241, 242
 extracellular signal-regulated kinase (ERK) phosphorylation, 197
extrinsic noise, 360, 365
factorisation, 239, 240
 of the ASIA Bayesian network, 244
 into local distributions, 245
factor potentials, 240
false discovery rate (FDR), 21, 143, 144
family-wise error rate (FWER), 20, 143, 173, 242
Fasciola hepatica, manipulate host environment, 460
fast hybrid stochastic simulation algorithms, 363
feature extraction by image processing, 194
Fisher’s exact test, 116
fitting basis function models, 380
fixed rate constants, 366
flip/period-doubling bifurcation, 352
flow cytometry, 184–5
fluorescent dye, 189
fluorescent microscope, 185–7
fluorescent proteins, 188
flux balance analysis (FBA), 227, 454
Fourier analysis, 141
Fourier transform ion cyclotron resonance (FTICR), 164
free induction decay (FID), 166
FRET probe, 188, 189
Frobenius norm, 92
F-test, 141
functional assignment of microRNAs via enrichment (FAME), 485
fused lasso regularization, 29
Gaussian distributions, 150, 243, 271
Gaussian equivalent scores, 245
Gaussian processes, in biological modeling, 376
 corrupted observations of mRNA and protein, 386
 cross covariance between \(p(t) \) and the \(i \)th output gene, 385
 modeling TF as a Gaussian process in log space, 387
 negative log likelihood, 386
 perspective on the model for \(p(t) \), 385
 single-target Gaussian process, 388
 with a zero mean function and a modified covariance function, 386
Gaussian random fields, 59
GenBank, 67, 70
gene association
 by clustering algorithms, 78
 networks, 248, 250
gene-by-gene analysis, 263
gene clustering based on expression data, 31
Gene Entrez, 70
gene expression data, 17, 54, 91, 149, 227, 376, 380, 420, 482
 gene expression microarray, 136, 376, 380
 gene expression omnibus (GEO), 67
gene expression program
 during the budding yeast, 101
gene-for-gene (GFG) model, 451
GeneID, 69
gene networks, 78, 88, 90
gene ontology (GO), 70, 73, 77, 215, 294
generalized linear model (GLM), 19, 142, 376, 379–80, 386, 387, 393
gene regulatory networks (GRNs), 90, 91, 100, 105, 106, 256, 270, 309, 453
generic bifurcations, 351, 353
gene-set analysis, 147
 gene set enrichment analysis (GSEA), 148
 problems using HTS, 148
 using chi-squared statistics, 148
 using z-scores, 147–8
GeneSpring® software, 286
genetic circuits, 3
genetic interaction models, 452
genetic modifications, 4
genome-scale metabolic network, 453
genome-scale metabolic reconstructions, 454
genome-wide association studies (GWAS), 173
genome-wide target identification, 376
genome-wide transcriptional assays, 153
geometric graph models, 298
geometric random graph, 297, 298
\(G \) hypotheses tests, 144
Gibbs distribution, 275
Gibbs’ potentials, 240
 Gibbs sampling, 62, 172, 247, 469, 473
Gillespie algorithm, 362–3
Gillespie’s direct method, 363
global optimization algorithms, 423
GML, 77
g-prior distribution, 53
graphical Gaussian models (GGMs), 243, 246, 248, 250, 279, 280, 281
 graphical models, 237, 246–7, 250–1
 application in systems biology, 247
 Bayesian networks, 250
 correlation networks, 247–8
 covariance selection networks, 248
 dynamic Bayesian networks, 250
 graphical separation, 238–41
 graphical structures, 237
 graphlet frequencies, 293
 green fluorescent protein (GFP), 188
 Gröbner bases, 115, 125, 129
 grouping genes to find biological patterns, 147
 Hastings factor, 273
 Helicobacter pylori
 metabolic models, 455
 3 parameters estimation for network models, 209
 heterogeneity modelling, 287
 heterogeneous changepoint DBN model, 283
 heuristic optimisation algorithms, 242
 hidden Markov model (HMM), 33, 115
 PicTar algorithm, 481
 hidden Markov random field (HMRF), 33
 hidden variable dynamic modelling (HVDM), 447
 hierarchical agglomeration algorithm, 170
 hierarchical clustering, 170
 high-resolution time course data, 366
 high-scoring networks, 273
 high-throughput techniques, 290
 tandem affinity purification (TAP), 290
 yeast two-hybrid (Y2H), 290
Hilbert’s problems, 3
HIV-1 human interaction network, 460, 461
homogeneous Markov model, 273
Hopf bifurcation, 345, 351, 352
host immune system, 458
host–microbe metabolic analyses, 455
host–pathogen interactions, 451, 452, 458–60, 462
host–pathogen systems biology, 451–62
 evolution of, 460–2
 goals of, 452
 immune system interactions, 458–9
infectious diseases, medicine for, 460–2
manipulation of, 459–60
metabolic models, 453–5
methods and resources, 452
pathogen genomics, 453
protein–protein interactions, 455–7
response to environment, 457–8
schematic overview of, 452
host–viral systems, 456
HTS technology for mRNA expression estimates, 68, 137–9
need for normalization, 139
in presence of alternative splicing, 139–40
source of error in expression estimates, 139
HUGO Gene Nomenclature Committee, 69
Human Metabolome Database, 177
human pathogens
for evolution of the host–pathogen system, 460
genome sequences of, 453
human T-cells, 443
DNA damage, 440
hybrid algorithms, 242, 423
hybrid discrete-continuous Markov process model, 365
hyperchaotic, 348
identifiability, 403
connection of identifiability and observability, 405
nonidentifiability, 403–5
image compensation, 191
image cytometry, 190–1
image processing, 191
image segmentation, 191–3
different methods, 193
imatinib, 5
immune cell behaviour, 459
immune system, 458
evaluation on Raf signalling pathway, 277
in host–pathogen systems, major components, 452
immunocytochemistry, 183–4
inference
ABC inference, 436
ARTIVA inference procedure, 263, 267, 472, 490
Bayesian, 39, 41, 57, 172, 209, 210, 278–80, 367, 382
DBN, 256, 259, 261, 267
of gene regulatory networks, 91
on graphical models, 246–7
maximum likelihood, 33
of mixed linear models, 18
parameter, 122, 422
procedures, 260
RJMCMC inference, 263–4
statistical, 48, 118, 368
for stochastic differential equation models, 372
infinite basis, 383
increasing number of basis functions, 383
inner product between the basis functions, 383–4
kernelization, 384
to specify M location parameters, 384
at uniform intervals, 383
information resources, 67
integrand, 59
integrated completed likelihood (ICL), 35
integrated signalling networks, 326
interactome concept, 205
International Conference on Systems Biology, 3
intracellular biological processes, 359
intracellular signaling events, 182
intracellular signal transduction, 181–2
intrinsic noise, 360
Jacobian matrix, 344, 352
JASPAR, 69, 72
Jeffreys’ divergence, 320
Jeffreys–Lindley paradox, 50
KEGG pathways, 70, 77, 279, 281
database, 73, 278, 279, 280, 287
key and lock proteins, 296
K means algorithm, 32
kNN algorithm, 24
knowledge databases, 68
annotation, 71–4
characteristics, 68
ontologies, 70
p53 KD tour, 68–70
p53 ontology tour, 71
Kolmogorov’s forward equations, 361
Kolmogorov–Sinai entropy, 335–6
Kolmogorov–Smirnov test, 482
Kronecker delta, 282
Kullback–Leibler (KL) divergence, 34, 149
Kyoto Encyclopedia of Genes and Genomes (KEGG), 274
Lactococcus lactis, 109
chemical reaction network, 109–10
reconstruction, glycolytic pathway, 109
reverse engineering the network topology, 110
Lagrange interpolation, 442
Laplace approximation, 35, 387
LARS software, 260
Lasso, 154
estimation, 260
for groups of genes, 155
latent variable models, 32
layer system, 354
learning graphical models, 241–2
least squares, 89–91
identification of the connectivity matrix, 89–90
Levenberg–Marquardt algorithm, 428
LF-MCMC methods, 370, 371
likelihood, 33, 366
likelihood-based model, 395–6
likelihood-free approach, 368
likelihood-free MCMC (LF-MCMC), 369
likelihood-free particle filtering technique, 371
likelihood function, 40, 45, 46, 59, 63, 302, 399, 422
likelihood ratio, 48, 49, 142, 243, 305
test, 401, 407, 424
linear BGe model, 285
linearization
criterion, 345, 352, 355
matrix, 355
principle, 344
linear models, 84–5
connectivity matrix
by least squares methods, 89–90
via LMI-based optimization, 97–9
convex optimization methods, 97
CORE-Net algorithm, 100
CTLs, 91–5
methods based on least squares, 90–1
PACTLS algorithm, 95–7
reconstruction methods based on, 89
top-down approach, 99–100
linear noise approximation, 372
linear regression model, 260
liquid chromatography–mass spectrometry, 468
live cell imaging, 182, 187–8
fluorescent probes, 188–90
local bifurcations, 353
local FDR, 21
locus for enterocyte effacement (LEE), 453
logarithmic scalings, 63
logic sampling, 247
logistic regression algorithm, 23
log-likelihood ratio, 305
log-linear models, 115, 126–9
Lotka model, 345
trajectories in, 346
Lotka–Volterra model, 351
L₂ regularization, 27
L₁ regularization function, 28
LS algorithm, 91
Lyapunov exponents, 333, 334, 348, 349, 357
Lyapunov time trajectories, 335
lysate-based assay, 182, 185
machine learning algorithm, 72, 194, 262
TESLA, 262
magnetic moment, 164
major histocompatibility complex (MHC), 458
MAMC, see Markov chain Monte Carlo (MCMC)
Maraviroc, 462
Markov blankets, 240, 243
Markov chain, 323
Markov chain Monte Carlo (MCMC), 57, 61, 63, 115,
262, 273, 276–7, 283–4, 370–2, 376, 379, 425–6,
473
algorithm, development, 368
Markov jump process, 360–4
random time-change representation, 363
Markov partitions, 337
Markov process models, 362, 365, 366, 367
inference, 366–72
approximate Bayesian computation, 370–1
data augmentation MCMC approaches, 368
iterative filtering, 371
likelihood-based inference, 366–7
likelihood-free approaches, 369–70
partial observation and data augmentation, 367–8
particle MCMC, 371
stochastic differential equation models, inference for,
372
stochastic model emulation, 371–2
Markov property, 63, 239, 246, 257, 361,
366
Markov structure, 34
MARKS graphical Gaussian network, 245
MaSigPro, 72
mass-action stochastic kinetics, 360–1, 367
mass spectrometric protein complex identification
(HMS-PCI), 291
mass spectrometry (MS), 164
mass spectrometry analysis, 471
mass to charge ratio (m/z), 164
matching alleles (MA) models, 451
maximum a posteriori (MAP), 35, 156
maximum likelihood estimation (MLE), 18, 33, 398,
400
MCMC, see Markov chain Monte Carlo (MCMC)
membrane yeast two-hybrid (MYTH) assays, 228
metabolic circuits, 5
metabolic control analysis (MCA), 454
metabolic correlation networks, 173–6
metabolic data, 171
metabolic modelling, 453
metabolic networks, 227
of pathogens and symbionts, 454
metabolite data
probabilistic peak detection, 472–3
software development for, 474–5
statistical inference challenges, 473–4
metabolite identification
challenges of, 468–9
data integration, 472
probabilistic approach, 471
schematic of, 470
thermodynamic integration, 474
metabolome-wide association studies (MWAS), 172
dietary status for caloric restriction data, 173
metabolome-wide significance level (MWSL), 173, 174
metabolomics, 163, 467, 469–71
analysis techniques, 468
software development for
mzMatch pipeline, 474
mzMine, 474
mzML, 474
mzXML, 474
PeakML, 475
XCMS, 474
MetAssimulo, 177, 178
Metropolis algorithms, 63
Metropolis–Hastings algorithm, 61, 273, 276, 368
Metropolis-within-Gibbs algorithms, 63
Michaelis–Menten kinetics, 87, 88, 398, 441
microarray gene expression data (MGED), 67–8
microarray repositories, 67, 75
microarray technology, 67, 76, 136–7, 273, 380
miRNA expression estimates from, 136–7
quantitative mRNA/protein profile data from, 68
microRNA–mRNA datasets, analysis of, 484
microRNA–mRNA regulatory modules, 485
microRNAs
biogenesis, 490
cellular signals, 479
computational tools, developments of, 478–9
Dicer cleavage, 479
efficacy depends on target abundance, 489
gene expression, data, 482–5
gene regulation, kinetic modeling of, 486–90
basic model of, 487
depends on target abundance, 489
fold-changes of mRNAs and proteins, 488
influence of protein and mRNA stability, 489
6-mer seed sequence, 479
post-transcriptional, 478
reconstruction, 489–90
genome-wide effects of, 482
mediated regulation, 486–7
network approach for, 485–6
regulation, 478
seed sequence, 483
sequences, 480
signature, 482, 483
single input motif (SIM), 490
systems biology of, 477–8
target predictions, 479–81
3′ UTRs, 479
Milstein method, 365
minimum description length (MDL), 245
miRanda algorithm, 480
miRbridge, 485, 486
MIRIAM Resources, 68, 70
mirSVR approach, 481
mitogen-activated protein kinase (MEK), 197
mixed integer linear programming, 227
mixed model inference, 18
MNI algorithm, 90
model based target ranking, 387–90
evaluation results, of different rankings, 390
model fit for two different classes of Gaussian process
model, 389
model of translation from TF mRNA concentration,
387–8
evaluation using data from ChIP-chip experiment,
388
TF protein concentration, 388
mRNA expression levels, 387
modeling of cell signaling systems, 3–5
model invariants, 124–6
modelling transcription factor activity, 440–50
applications, 447–9
biological system, nature of, 443–5
computation of nonzero entries of, 443
estimating intermediate points, 449–50
index bounds, approximation time point, 446
ODE, integration, 441–3
polynomial extrapolation, 445
polynomial interpolation, bounds choice for, 445–7
model of gene expression, 377
modified diffusion bridge method, 372
modular protein interaction domains, 4
molecular mechanisms
of cell, 247
of cellular information processing, 4
of immunity and subversion by intracellular parasites, 459
molecular therapeutics, 5
Monte Carlo methods, 59–61
Monte Carlo simulations, 246, 406
moral graph, 257
mRNA
 rate of production, 377
 regulation, 255
mRNA concentration, 84, 377, 379, 380, 382, 385–7
mRNA expression levels, 135
 estimates from microarrays, 137
HTS technologies, 68, 137–40
mRNA–microRNA base-pairing, 488
multidimensional scaling (MDS), 299
multinomial distribution, 32, 246, 271
multiple testing, 19, 20
multiple transcription factors, 391–3
 basic single-TF ODE model, 391
 inferred TF profiles, 391–3
 multiple TF model, 391
 receiver operating characteristic (ROC) curves, 393
multivariate Gaussian distribution, 243
multivariate regression methods, 171
Mutoss R-project, 22
Mycobacterium avium subsp. paratuberculosis (MAP), response to environment, 457
Mycobacterium tuberculosis, 454
 map of the central metabolism of, 456
 metabolic models, 454
NCBI database, 67, 69
nearest neighbour (NN) algorithm, 24
Neimark–Sacker bifurcation, 353
Network Analysis tools, 77
 network merging, 78
 network structure, 6, 33, 87, 110, 242, 246, 262, 270, 275, 276, 311, 420
 network topology, 84, 94, 99, 209, 228, 265, 454
Newton polytopes, 115
NIR algorithm, 90
NMR sensitivity, 164
node association by transcription factor, 78
noise control
 stochastic differential equations, 486
noninformative priors, 40, 53
nonlinear dynamics, 333
 chaos in biology, 338
Kolmogorov–Sinai entropy, 335–6
Lyapunov exponent, sensitivity to initial conditions, 334
 natural measure, 334–5
 symbolic dynamics, 336–8
nonlinear ODE models, 84, 85
nonlinear regulation process, 287
nonlinear state space process, 285
nonlinear systems
 chaotic dynamics, 333
 linearizations, 345
 non-parametric additive regression, 257
 nuclear magnetic resonance (NMR) spectroscopy, 164, 166–7
nuisance parameter, 53
null hypothesis, 21, 141
numerical algorithms, 242
ODE models, for reaction networks, 396–7
 dynamics of protein concentration, 397
 non linear nature, 399
 rate equations, 397–8
oligonucleotide chips, 83
oncogenes, 4
online predicted human interaction database (OPHID), 226
 probability density plots, 226
ontologies
 and experimental data, 77
 Gene-set analysis, 77
 GO biological terms, 77
 KEGG pathways, 77
Open Biomedical Ontologies (OBOs), 70, 77
ordinary differential equations (ODEs), 5, 83, 340, 359, 377, 395, 440, 478, 486, 487
 integrating with differential operator, 441–3
 polynomial integration, 449
2-oxoglutarate, 170
PACTLS algorithm, 95–7, 101, 102
 performance of, 103
pAkt-S6 formation, 432
parameter estimation, 115, 122–3, 398
 confidence intervals, 401–3
 maximum likelihood estimation (MLE), 398
 objective function, 398
 sensitivity equations, 399–400
parameter learning, 242, 246
partial correlation graphs derived from genomic data,
see gene association, networks
partial differential equations (PDEs), 340
partial least squares (PLS) regression, 171
partially observed Markov process (POMP) models, 368
particle marginal Metropolis–Hastings (PMMH) algorithm, 371
particle MCMC methods, 371
partition function, 275
pathogen–host protein interactions, 460
Pearson’s χ^2-test, 400–401
penalized likelihood methods, 154
and Lasso, 154–5
ordinary least squares (OLS) estimator, 154
penalized logistic regression, 27
performance of a model, 156–7
cross-validation (CV), 157
hold-out method, 156–7
training error, 156
period-doubling route to chaos, 353
pharmacological inhibition, of receptor tyrosine kinase, 5
pharmacological perturbations, 4
phosphorylation-specific antibodies, 182
photobleaching technique, 188
photoconvertible fluorescent proteins, 188
PITA algorithm, 481
p53 KD tour, 68–70
Plasmodium falciparum, 455
metabolic models, 455
parameter estimation for network models, 209
Plasmodium proteins
interolog approach, 457
PLS algorithm, 171
PLS Discriminant Analysis (PLS-DA), 171
PLS modelling of caloric restriction data, 172
PMMH algorithm, 371
point null hypotheses, 49–50
Poissonian degree distribution, 325
Poission processes, 363
Poisson random variable, 263
polynomial and rational models, approaches based on, 105
chemical reaction networks, 105–6
gene regulatory networks, 106–7
polynomial dynamical system (PDS), 129
polynomial equations, 114
POMP models, 368, 371
maximum likelihood approaches to, 368
population Monte Carlo (PMC), 60
positive predictive value (PPV), 102, 265
posterior distribution, 40–7, 55, 58–63, 62, 155, 156, 209, 264, 272, 274, 276, 279, 280, 369, 370, 385, 425, 430, 432, 469
post-translational modification, 4
power-law approximations, 104
PPI data, 228
PPI networks
computational analysis of, 205
extreme eigenvectors, components, 296
predicting function using, 221–3
PPINs
applications, 317–20
collection, 322
datasets, 312, 317, 320
of *H. sapiens*, 311
pRDRG model, 303, 304
periodic spectral reordering algorithm, 304
precision, 102
predicting interactions, using PPI networks, 223–4,
see also PPI networks
limitations, 227–8
tendency to form triangles, 224
using triangles for predicting interactions, 224–5
predictive distribution, 55, 56
principal component analysis (PCA), 169
sensitivity analysis, 430–5
stim principal components (PCs), 434
prior distribution, 42–6
prior knowledge, 102
prior knowledge matrix, 278
probability distribution, 40, 72, 117, 118, 122, 259, 274, 283, 361, 362, 422, 425
profile likelihood approach, 405–6
applications, 408
assessing the identifiability of parameter, 407
experimental design, 406
model reduction, 407
observability and confidence intervals of trajectories, 407–8
proline-rich sequence, 4
protein association, 78
protein binding microarray (PBM), 72
protein binding site (PBS) annotation, 72
protein complexes, 4
Protein Data Bank, 68
protein degradation, 84
protein/DNA interaction data, 267
protein interaction data, 204
genome scale, integration of, 455
protein interaction networks
 approximate Bayesian computation, 209–10
 comparison, 211
 based on subgraph counts, 211–13
 functional annotation for network alignment, 215–16
 network alignment, 213–15
 evolution, 217
 affecting network alignment, 217–18
 integrating transcription regulation
 using dynamic gene-expression data, 227
 interactome concept and, 205
 models of random networks, 207–9
 network analysis, 205–7
 parameter estimation for network models, 209
 threshold behaviour in graphs, 210–11
Protein kinase B pathway, 426, 427
protein networks, 78
protein phosphorylation, 115, 185
protein-protein interactions (PPI), 83, 200, 202, 420
 error in PPI data, 204–5
 network models, 290, 294–301
 geometric graphs to, 299
 geometric networks, 297–301
 geometric random graph model, 301
 lock and key, 294–7
 random graph models and application, 290
 range-dependent graphs, 301–5
 physical basis, schematic representation, 291
proteins, 201
 experimental techniques, for interaction detection, 202
 co-immunoprecipitation, 203
 tandem affinity purification, 203
 yeast two-hybrid system, 202–3
 function, 201–2
 protein interaction databases, 204
 structure, 201–2
protein synthesis by pulsed SILAC (pSILAC), 478
proteomics, 5, 174, 203, 205, 459, 478
protozoan parasites, dataset, 471
pseudo-Bayes factors, 52
pseudo-marginal approach, 371
p53 targets, 447
p-values, 21, 22, 142, 146
 quadratic penalization function, 28
 quantitative measurements
 of biological entities, 66
 of proteins, 183
 use of microscopes, 187
quantitative mechanistic dynamic models, 419
quantitative mRNA/protein profile data, 68
quantitative reverse transcription polymerase chain reaction (qRT-PCR), 396
quasiperiodic attractors, 345
query nodes, 247
Raf signalling pathway, 278
cytometry data, inferring hyperparameters from, 279
dysregulation, 277
 empirical evaluation on, 277–81
 reconstruction, 281
random inference algorithm, 102
randomness, 40
random time change representation, 363
random variables, 237, 243
range-dependent interaction probabilities, 302
range-dependent random graph (RDRG) model, 302, 303
 separation distance, 303
R/Bioconductor package, 447
reaction networks, based on ordinary differential equations, 115
reaction rate equations (RREs), 365
receiver operating characteristic (ROC) curve, 280, 300–1
receptor tyrosine kinase, pharmacological inhibition of, 5
recovery plot, 357
regression coefficients, 260, 263, 267
regression model, 52, 262–4
regulatory networks in biology, 255–6
regulatory systems, 5
repositories, 67
restricted maximum likelihood (ReML), 18
reverse engineering, 84, 116, 129
 chemical reaction networks, 105
reversible-jump Markov chain Monte Carlo (RJMCMC), 172, 263, 264, 284
RNA-induced silencing complex (RISC), 479
RNA interference (RNAi), 227
RNA-Seq, 67, 68, 139, 420, 490
robust multichip analysis (RMA), 137
Runge–Kutta fourth order scheme, 442
Saccharomyces cerevisiae, 101
 cell cycle regulatory subnetwork, 102
 gene regulatory subnetwork, 103–4
 saddle-node bifurcation, 349
sampling biases, of experimental methods, 228
SBML models, 77, 370
score-based algorithms, 242
score equivalent functions, 245
self-organising map (SOM), 170
sequential Monte Carlo (SMC), 57, 60–1, 63, 210, 371, 425, 430

ABC-based approaches, 428–30
sequential quadratic programming (SQP), 108
Shannon’s information theory, 336
SH3 binding domain, 4, 295
signal cell measurement data, analysis of, 194
Bayesian network modeling, 197
quantifying sources of cell-to-cell variation, 197–9
time series, 194, 197
signaling protein, 4
signalling pathway models, inference of, 419–35
Akt signalling pathway, 426
epidermal growth factor (EGF), 427
exploring different distance functions, 428–9
nerve growth factor (NGF), 427
principal component analysis (PCA), sensitivity analysis, 430–5
type-2 diabetes and cancer, 426
dynamical systems, parameter inference, 422–5
model selection methods, 424–5
optimization algorithm, 422
stochastic dynamic models, 423
inference techniques, overview of, 420–2
signal transduction, 419
SIMoNe (statistical inference for modular networks), 260
simulation
algorithms and analysis, 373
based on the assumption of the ARTIVA model, 265
computational modelling and, 453
FBA simulations, 455
hybrid simulation approaches, 365, 371
MCMC simulations, 277
of metabolic profile data, 176–8
method by Markov chain generation, 61
Monte Carlo simulations, 406
network-free simulation, 8
rule-based model, 8
of SBML models, 370
Spatial simulations of bacterial and immune cell behaviour, 459
stochastic simulation algorithm, 362, 363
single-cell assay, 182
single-cell dynamics, 421
single-species ecosystem
population growth, discrete-time model for, 338
singular value decomposition (SVD), 364
slice sampler, 62
SMC algorithm, see sequential Monte Carlo (SMC)
sparcity coefficient, 101
sparcity pattern, 100
spectral reordering algorithms, 304
splicing, 135
sponge RNAs, 479
Src homology 2 (SH2) domain, 4
Staphylococcus aureus, 459
RNAi screening for phagocytosis, 459
state-space graph, 282
state-space models, 250
static Bayesian network, 257, 259, 276, 281, 421
static modelling approaches
Bayesian networks, 256
correlation networks, 256
graphical Gaussian models, 256
stochastic approximation EM (SAEM), 34
stochastic block model (SBM), 33
stochastic chemical kinetics, 360–6
chemical master equation, 361–2
diffusion approximation, 364–5
Gillespie algorithm, 362–3
Markov jump process, 360–4
modelling extrinsic noise, 365–6
random time change representation, 363
reaction networks, 360
reaction rate equations, 365
structural properties, 363–4
stochastic differential equation models, 372
stochastic dynamical systems, 359
Markov process models, inference, 366–72
approximate Bayesian computation, 370–1
data augmentation MCMC approaches, 368
iterative filtering, 371
likelihood-based inference, 366–7
likelihood-free approaches, 369–70
partial observation and data augmentation, 367–8
particle MCMC, 371
stochastic differential equation models, inference for, 372
stochastic model emulator, 371–2
stochastic chemical kinetics (see stochastic chemical kinetics)
stochasticity, origins, 359–60
low copy number, 359–60
noise and heterogeneity, sources, 360
stochastic EM (SEM), 34
stochastic kinetic model, 363
stochastic model emulator, 372
stochastic process, 257
stochastic simulation algorithm (SSA), 362
stoichiometry matrix, 360, 363
Stokes shift, 185
structural stability, 341
structure learning algorithms, 242
Student’s t distribution, 56
predictive distribution based on, 56
support vector machine (SVM), 28
support vector regression (SVR) algorithm, 481
symbolic dynamics, 336–8
synthetic network
datasets, 293
marginal edge posterior probabilities for, 285
Systems Biology Graphical Notation (SBGN) project, 5
Systems Biology Markup Language (SBML), 370

target prediction algorithms, 479–80
testing hypotheses, 48
Bayes factor, 48–9
Bayesian multiple testing, 54–5
decisions, 48
improper priors, ban on, 50–2
nuisance parameters, 52–4
point null hypotheses, 49–50
TF–microRNA transcriptional regulatory network, 485
time-discrete system, 341
time homogeneity assumption, 261
time of flight (ToF), 164
time series analysis, 356–7
time-T map, 341
time-varying DBNs
graphical representation for, 258
time-varying network inference, 267
topological transitivity, 335
total least squares (TLS) technique, 90
transcriptional regulatory network, 227, 376
transcription factor activity, 448
transcription factor (TF) concentration, 377, 478
TRANSFAC PWM, 72
transfection, 190

trye-leaurs (QQQ) instruments, 164
Trypanosoma brucei
Bayesian analysis of metabolomic data, 471
metabolic models, 454
Trypanosoma cruzi
metabolic models, 455
TSNI algorithm, 90
t-test, 141, 171
tumor suppressor genes, 4–5
type I error, 143
tyrosine kinase, 4
UCSC Genome Browsers, 69
undirected graph evaluation (UGE), 280, 281
uropathogenic E. coli (UPEC), response to environment, 457
	n validation of probes, 189–90
van der Pol oscillator dynamics, 356
variance components, 16–17
vector-autoregressive (VAR) model, 250
virulence, 460
VirusMINT database, 456
visualization software, as integrative tools, 77
Viterbi algorithm, 35

Wald t-statistics, 142
Ward linkage, 170
Western blot analysis, 183, 184, 197, 203, 396, 402
Wiener process, 364
Wilcoxon rank-sum test, 141, 483
worm ‘core’ network (Wcore), 305

yeast PPI network, 305
adjacency matrix, 292
YEASTRACT database, 104
yeast two-hybrid (MYTH) assays, 228