Index

Note: Page numbers in italics refer to figures; those in bold to tables.

Aachen approach 542–6
ACD method 568, 572
acentric factor (ω) 41–2
acetic acid 341, 344
 association parameters of 403
 association scheme 266
 gas solubility in 341
 mixtures with:
 acetic anhydride 344
 acetone 344, 345
 carbon dioxide 342
 water 341, 348, 364, 403
acetic anhydride, mixtures with acetic acid 344
acetone 8, 12, 198, 318, 336, 364, 539
 activities of 141
 mixtures with:
 acetic acid 344, 345
 alkanes 404
 butanol 30
 chloroform 12, 29–30, 49, 50, 201, 295, 338–41
 heptane 181
 hydrocarbons 52
 methanol 176
 methanol–chloroform 121, 125
 methyl acetate–methanol 121
 water 52, 118, 165, 176, 414, 617
 modeling 341
acetonitrile 525, 617
acid–base concepts, in adhesion 591–4
acid–base theory 581
 industrial examples 593–4
acids 197, 236, 262
 hydrogen bonding of 261
 industrial-process applications 477, 478
mixtures with:
 alkanes 341
 water 403
see also aromatic acids; organic acids; phenolic acids

acridine 573
acrylic acid 452–3
activity coefficient models 79–107, 109–57, 160, 198, 315, 463, 504
 engineering-oriented 476
activity coefficients 7–8, 137, 186, 503
 absolute deviations in 499
 and adsorption models 636–7
 of n-alkanes 55, 56
 of amino acids 625
 for aqueous hydroxides 495
 asymmetric 480
 for bromide salts 494
 of n-butane 56
 derivation of 11
 electrolyte models 473–82
 of ethanol 533
 of ethylbenzene 357
 for evaluating mixing and combining rules 61–5
 experimental 80–2
 expressions of LC models 114
 and Flory–Huggins model 93–4
 of heptane 55
 infinite dilution 82, 302
 mean 476–7
 ionic 466–7
 molal-based 465–6
 osmotic 467–8
 and PDH formula 481
 of peptides 625
 prediction of 532
 of proteins 634
 rational asymmetric 465–7
 single ion 463
 of solvents 513
 trends of 81–2
 values at infinite dilution 8
 for water–NaCl 488
additives, control of 552
adhesion 579, 582
 acid–base concepts in 591–4
 industrial examples of 593–4
 and interfacial forces 591–3
 and interparticle forces 590–1
 pull-off tests for 593
 relative 592
adhesive, pressure-sensitive (PSA) 592
adhesive pressure 590
adsorption 604–9
 applications of 605–8
 and chromatographic separation 631–3
 isotherms 605
 low protein concentration model 633–5
 of proteins 631–7, 644
adsorption models, and activity coefficients 636–7
adsorption theory 591
advanced models 195–459
AFC correlation model 568–9, 571–2
alanine 628
 solubility of 628
albumin 643
alcohol ethoxylates, log K_{ow} predictions 571
alcohols 197, 199–200, 204, 207, 210, 213, 234, 236, 241, 333, 543, 617
 application of SAFT to 395–401
 association scheme for 249, 266, 399
 bonding types 203
 in complex mixtures 262
 derivative properties of 244–5
 generalized associating parameters 401
heavy 247, 262, 283, 320
 aqueous mixtures with 334–6
 hydrogen bonding of 261
 linear oligomers of 266
miscibility in 578
mixtures with:
alcohols 201, 276–9
alkanes 117, 213, 245–7, 268, 272, 274, 303
chloroform 201
esters 414, 416
ethers 414
hydrocarbons 201, 272–3, 401
ketones 201
water 617
models for 216, 283
 and organic acids 341
organic phase estimation of 281
parameters
 estimation of 237
for SAFT 400
 shape factor 247
PC-SAFT equations for 238
 and polar GC–SAFT 416
pure 268
 aldehydes, shape factor parameters 247
aldrin 563
aliphatic acids 180
aliphatic hydrocarbons 246, 275, 420
alkanes 28, 46–7, 65, 137, 163, 207, 213, 241, 244–5, 338, 434, 579
 aliphatic 279
dispersion forces in 579
 heavy 244, 247, 272
homomorph 276
linear 236
mixtures with polyolefins 444
ratio of T_c/P_c against vdW 60
n-alkanes 25, 231, 242, 247
 activity coefficient of 55, 56
 carbon atoms of 169, 178
 derivative properties of 244–5
 difference of combinatorial terms 170
 infinite dilution solubility coefficients of 449
 specific gravity for 325
alkanolamines 262, 266, 318, 333
 application of SAFT to 395–401
 capabilities of 501
 for CO$_2$ and H$_2$S removal 500–3
 and CPA 352–7
 structures of 502
 thermodynamic models for 500–19
alkenes 244
 1-alkenes, electronegativity of 276
alkylbenzenes, and polar GC–SAFT 416
n-alkylcyclohexanes 177
alternating tangents method, for LLE calculation 456–7
aluminum 591
Ambrose method 47
amides 617
amines 197, 200, 204, 234, 262, 333, 617
 application of SAFT to 395–401
 association scheme 249, 266
 and CPA 336–41
 hydrogen bonding of 261
 mixtures with:
 acids 420
 alcohol 52
 models for 283
 shape factor parameters 247
 amino acids 472, 613
Index 666
activity coefficients of 625
chemistry and relationships 619–24
dissociation of 623
formation of dipeptides from 623
mixtures with water 622, 628
models for 619–31, 622
partition coefficients of 626–7
relative solubilities of 625–6
2-amino-2-methyl-1-propanol (AMP) 503
and e-NRTL model 509–10
and Gabrielsen model 505–6, 508
ammonia 501
ammonium sulfate 634, 637
analytical solution of groups (ASOG) 129
Anderko model 199
aniline 383
mixtures with water–toluene 385
partition coefficient of 385
pure component parameters 382
anthracene 573
Antoine equation 6
aqueous mixtures
complex 357–61
with heavy alcohols 334–6
aqueous two-phase systems (ATPS) 641–2
argon 22, 33, 83, 94, 95, 120
aromatic acids 180, 333, 360
aromatic hydrocarbons 241, 246, 265, 275–6, 300, 302, 420
polycyclic (PAHs) 245, 360–1
and solvation 265
and tPC–SAFT 412
Aspen’s process simulator 154
asphaltenes 89, 249, 299–300, 307, 329
and flow assurance 422–4
instability onsets and bubble points 424
precipitation of 99–100, 423
associated perturbed anisotropic chain theory
(APACT) 198–9, 595
association energies 263, 269, 376, 393, 539
association models 197–219, 483
parameters
of acetic acid 403
of alcohols 401
and QC 531–40
association schemes 234–5, 266, 273, 356, 387
1A 266, 283, 341
3B 266, 269, 273, 279, 318, 337, 344, 352, 354, 375, 379, 381, 383, 391, 399, 489, 538–9
4C 266, 273, 283, 354, 356, 391, 401, 412, 489, 492, 495, 538–9, 628
4D 356
6A 356
6D 356
7D 356
for alcohols 399
choice of 369
association sites 369
and ether groups 437
association strength 226
association terms 198
of CPA EoS 264–5
parameters of 268
of SAFT 225–7
association theories 197–219
key property of 202–4
and polar chemicals 381–3
similarities between 204–6
use of 206–7
and spectroscopy 202–13, 208
types of 197–8
see also chemical theories; lattice–fluid theories; perturbation theories
association volume 263
asymmetric mixtures
EoS/Gk approaches for 168–74
mixing rules for 171
atomic force microscopy (AFM) 593
average absolute deviation (AAD), of Kkw values 570, 570
azeotropes 11–12, 49, 272, 278, 336, 395, 397, 399, 404
and COSMO–RS 529
prediction of 412, 412, 413
Bancroft rule 599
benzene 7, 19, 83, 282, 542
in BTEX 300–2
mixtures with:
heptane 89
isooctane 86
toluene 302
water 584
quadrupole moment 416
benzo[a]pyrene 81
benzoic acid 54, 572
solubility of 621
Berthelot combining rule 494, 543
bicarbonates 505
dissociation of 503
binary mixtures, Gibbs free energy for 111
bioaccumulation 553, 557, 563
bioconcentration factors (BCFs) 551, 556, 562
biodiesels 333, 358, 359, 360
biomagnification 553, 553, 563
of pollutants 559
biomolecules 604, 644
and classical models 613
types of 614
biopolymers, charged 613
biotechnology
thermodynamics for 613–54
challenges in 659–60, 659–60
biphenyl 563
boiling temperature 24, 247
and hydrogen bonding 27
Boltzmann constant 309
Boltzmann distribution 469
Boltzmann factors 111, 126, 130, 146, 226
expression 109
bonding
in real associating fluids 235
see also hydrogen bonding
Born equation 516
Born term 472, 477, 483, 490–1, 515, 519
and phase equilibria 489
BTEX compounds see compounds, BTEX
bubble point pressures 401–2
and COSMO–RS 529
deviations in 166
percentage error in 173
butadiene rubber (BR) 444
butane 447, 451
n-butane
activity coefficient of 56, 178
solubility in water 177
butanol, mixtures with:
butane 274
decane 57
hexane 211
water 52
1-butanol, monomer fraction of 211
butene 182
n-butyl acetate 142
butyl-ethanolamines, and e-UNIFAC model 511
butyronitrile 415, 421
mixtures with heptane 25
caffeic acids 360
caffeine, removal from coffee 572
Cahn–Hilliard theory 595
calcium chloride 491
calcium hydroxide 491
calcium sulfate 491
e-capro lactam 437
carbamates 503, 505, 510, 515
carbon dioxide (CO2) 19, 54, 90, 95, 163, 166, 169–70, 177, 181, 240, 244, 318, 349
as anti-solvent 447, 448
and asphaltenes 422, 423
hydrolysis and ionization of 503
mixtures with:
acetic acid 342, 343
alcohols 399
alkane 172
benzoic acid 179
cresols 316
DEG 320, 322
esters 248
ethane 50
ethanol 316
glycerides 248
glycol 320
heavy acids 248
hexamethyl benzene 178
hexatriacontane 243
hydrocarbons 48, 180
hydrogen sulfide–MEA–MDEA 510
MEG 320
methane–water–MDEA 517
methanol 320
methylphenol 323
neopentane 544
octacosane 243
phenol 179, 323, 399
salicylic acid 179
stea ric acid 179
water 320
water–acetic acid 318
water–alcohol–hydrocarbons 320
water–alkanolamines 318, 483, 504–5, 507, 509–10, 520
water–1-butyl-3-methylimidazolium nitrate 500
water–DEA 509–10, 515, 517–18
water–DME 349
water–ethanol 318, 320
water–hydrocarbons 320
water–MDEA 509–10, 513, 517
water–MEA 509–10, 513
water–MEG 320
water–methanol 320
water–NaCl 496, 516
water–PZ–MDEA 509
partial pressures of 518
removal from gases 500–3
removal and sequestration of 552
solubility of 322, 323, 402, 413, 448, 516–18
thermodynamic models for 500–19
carbon disulfide (CS₂) 89
carbon monoxide (CO) 19, 33, 244
mixtures with methane 89
carbon tetrachloride (CCl₄) 89, 606, 607
carboxylic acids 248
adsorption of 607
PEG derivatives of 593–4
Carnahan–Starling equation 31, 32, 36, 227–8, 284
chain term, SAFT 225–7
chain–free volume (FV) model 186
Chao–Seader method 41
Chapman model 405, 413–14, 418
mixtures investigated by 408
charge-transfer complexes, and phase behavior 31
chemical industries, thermodynamic challenges 656–8
chemical theories 198–201, 205, 216
ε² term in 200
and mixtures 201
and underlying assumptions 214–15
chemicals
fugacity of see fugacity, of chemicals
global production of synthetic organic 552
hydrophilic and hydrophobic 557–8, 561
multifunctional 352–7
polar 381–3
thermodynamic challenges in 658
Chen–Kreglewski constants (Dij) 229
Cheng model 480
chloroform 8, 12, 198, 241, 265
mixtures with:
acetone 81, 420, 540
alcohols 241
modeling 341
solvation 265, 364
cholesterol 180
chromatography 631–7
gas–liquid (GLC) 567
hydrophobic interaction (HIC) 631–6, 634
ion-exchange (IEC) 631–6, 633
reversed-phase 631
high-pressure liquid (RP-HPLC) 568
thin-layer (RP-TLC) 568
chymotrypsin 643
a-chymotrypsin 638
cimetidine 615
classical mixing rules 41–77
classical models 39–193
clathrate hydrates see gas hydrates
Clausius–Mossotti equation 20
cleaning 579
ClogP see Leo–Hansch ClogP
cloud-point curves 143
of PP–n-pentane–CO₂ 448
cloud-point isobars, for poly(ethylene-octene)–hexane 450
cloud-point pressure curves
for poly(ethylene-co-acrylic)–ethene 452
for poly(ethylene-co-acrylic)–ethene–acrylic acid 453
cloud-point pressures, for poly(ethylene-co-alkylacrylate–ethylene) 452
copolymer systems 186
copolymers 450–1, 629
bonding fraction for 439
parameters for 438–9
polyolefin 450
cosolvents 572
CO₂–methanol 573
colume parameter 267
cocurrence curves 121
cohesive strength 590
colloid and surface chemistry 577–611
colloids
and interparticle forces 585–7
stability of 587–90
combinatorial terms, differences in 170
combining rules 71, 239, 335, 532
and activity coefficients 61–5
beyond vdW1f and classical rules 65–7
choice of 334
classical 50, 64
alternative to 69–74
for cross co-volume parameters 73–4
for cross-associating mixtures 399–401
QM-based 545
compounds
amphiphilic 600
BTEX 300, 302
cross-associating 339, 419–20
familial parameter values of 123
immiscible 262
inert 284, 303, 340, 348, 387
non-polar 244
polar 248, 300, 318, 387, 419
non-associating 404–22
pseudo self-associating 404
pseudo-associating 387
pure see pure compounds
self-associating 284, 303, 336, 374–9, 419–20
Dalton law 7
data, availability of 3
Davies–Rideal method 599, 599
Debye length 587
inverse (κ) 469, 630
Debye thickness 588
Debye–Hückel equation 492–3, 630
simplifications and modifications of 475
Debye–Hückel limiting law 474
Debye–Hückel term 146, 153–4, 329, 472, 491, 628
Debye–Hückel theory 463, 468–72, 519
Debye–Langevin equation 20
demixing, liquid–liquid 447
density 270
of methanol 270
density functional theory (DFT) method 531, 538, 539, 545
Derjaguin–Landau and Verwey–Overbeek (DLVO)
theory 26, 587–90, 589
desertification 556
Design Institute for Physical Property (DIPPR),
correlations 6, 324–5, 375
detergency 601
Dextran 642, 643
diameters, temperature-dependent or temperature-
independent 226
dichlorodiphenyltrichloroethane (DDT) 553, 555, 555, 559, 563
the story of 564–5
dieldrin 559
dielectric constants (ε) 20–2, 477, 513, 519
role of 473
diesel fuels 152
diethanolamine (DEA) 318, 354, 356
and e-NRTL model 509–10
and Fürst–Renon EoS 515–19
and Gabrielsen model 505–6
diethyl ether 318
solvation 265
diethylamine 337
diethylene glycol (DEG) 300, 402, 437
mixtures with water–benzene 402
diffusion 284
diglycine
densities and vapor pressures of 629
relative solubilities of 625
dimers 200
dimethyl ether (DME) 318, 349
dipeptides 631
formation of 623
mixtures with water 622
dipole moments (μ) 18, 234, 410, 413–14, 472
dipropyl ether (DPE) 348
dispersion coefficients 543
dispersion energy 393, 542
dispersion forces 23–4, 36, 579
importance and additivity of 25
dispersion terms, in SAFT 227–33
association strength 119, 120
association term 119
association theory 119
association constants 119
association coefficient 119
association origin 119
dissociation temperature 311, 312
distance of closest approach 469
distribution ratio 634
DMFO 414
Dortmund approach 420
double-layer forces 587
Drago–Wayland method 539, 540
drugs
controlled release of 95–7, 96
prediction of solubility 617
Dupre equation 579
Economou method 405, 409–13
mixtures investigated by 408
ecosystems 3
distribution of chemicals in 552–72
importance of Kow in 558–9
potential pollutants of 552
elastomers 95
electrolyte systems
importance of 463–4
models for 463–523
electrostatic forces 587
Elliott–Suresh–Donohue (ESD) EoS 241, 383
Elliott’s combining rule (ECR) 241, 264–5, 278–9
for alcohol–alcohol 336
for alcohols–alkanes 336
for alcohols–water 334
for association strength 539
choice of 363
for MEG–water 303, 304, 305, 312
for water–methanol 312
Elvax 40 97
emulsions/emulsifiers 599
energies of interaction 126
Index 672

enthalpy 28, 29, 199, 201, 234, 270, 539
of association, for ethanol 400
of chloroform–acetone 305
of ethylacetate–cyclohexane 414
excess 544
of MEG–water 305
of methanol–water 305
and micellization 602
of TEG–water 357
of vaporization 236–7, 271–2
of water 271
entropic–free volume (FV) model 92, 94–5, 103, 137, 138, 139–40, 141–3, 186
entropy 199, 201, 234, 270
and hydrophobic effect 28, 29
and micellization 602
environmental policies 556–7
environmental thermodynamics see thermodynamics, environmental
epoxy surfaces 593
characterization of 593
equations of state (EoS) 5, 6, 512–19
APACT see associated perturbed anisotropic chain theory (APACT)
applied to CO2–water–alkanolamines 505
and asymmetric mixtures 168–74
chemical-based 198–200
combining rules in 32–3
CPA see cubic-plus-association (CPA)
cubic 41–77, 42, 44, 160, 198–9, 483
advantages of 51–2, 58, 187–8
analysis of 51–8
applications of 160, 175–6
co-volume parameter of 46
and electrolyte terms 486–8
energy parameter of 46
EoS/GF mixing rules for 159–93, 381–3
for polar chemicals 381–3
for polymers 181–7, 185–6
recent developments with 58–67, 59
shortcomings and limitations of 52–8, 58, 187–8
electrolyte models 463, 483–6, 484–5, 520
capabilities and limitations of 486–500
Elliott–Suresh–Donohue (ESD) 241, 247–8
e-NRTL see non-random two liquid (NRTL) model, electrolyte model
Fürst–Renon 472, 486–7, 489, 515–19, 516–17
Solbraa version 516–17
GERG-water 316, 317
and gradient theory 595
group contribution (GC) 247
GC–Flory 286
group-contribution-plus-association (GCA) 248
improved terms in 31–2
Myers et al. (MSW) 487–8, 491
NRHB see non-random hydrogen bonding (NRHB) model
NRTL see non-random two liquid (NRTL) model
parameter estimation 45–50
mixtures 47–50, 48
for polymers 187, 429–31
pure compounds 43, 45–7
using liquid densities 59–61
Peng–Robinson (PR) 315, 595
polar SAFT 413–19
performance comparisons 417
SAFT type 221–5, 429–39, 595
see also Statistical Associating Fluid Theory (SAFT)
Sanchez–Lacombe (SL) 595
Skjold–Jorgensen 248
Soave–Redlich–Kwong (SRK) 262, 277, 300, 305, 323, 325
two-dimensional 605
van der Waals 84–6, 103
application to polymers 182–4
equilibria see phase equilibria
equilibrium constants 539, 631
regressed parameters for 506
esters 246–8, 283–4, 333, 617
in biodiesels 360
in complex mixtures 262
fatty acid 170
heavy 333, 358
mixtures containing 348–51
and organic acids 341
and polar GC–SAFT 416
and SAFT 404
shape factor parameters 247
estimation methods, for octanol–water partition coefficients 568–72, 568, 571
ethane 166, 240, 391, 572
dissociation temperature 312
mixtures with:
alkanes 172–3
carbon dioxide 544
eicosane 166
ethanol 7, 11, 117, 208, 277, 282, 318
activity coefficients of 533
as an additive 299
aqueous mixtures of 334
enthalpy of association 400
mixtures with:
 acetone 539
 acetone–benzene–hexane 413
 alkanes 272, 533
 butanol 279
 heptanes 162, 209
 water 165, 176, 278, 617
 virial coefficients of 269, 270
ethers 265, 283–4, 318, 333, 381, 543, 617
mixtures with water 617
and organic acids 341
shape factor parameters 247
and solvation 265, 342
2-ethoxyethanol, mixtures with methanol 353
ethylacetate 318, 348, 421
mixtures with cyclohexane 414
ethylbenzene 3
activity coefficient of 357
in BTEX 302
mixtures with TEG 357
ethylbutanoate 359
ethyldecanoate 359
ethylene 182, 244, 447, 452, 572
ethylene glycol 436
European Gas Research Group (GERG) 315
European Union (EU), environmental policies 556
excess Gibbs energy see Gibbs energy, excess
excess solubility approach 624, 627
extrapolation methods 431
fabrics, surface tensions of 583
ferulic acids 360
Fischer model 418
Flory–Huggins equation 100, 116, 130
Flory–Huggins model 63, 92, 103, 142, 423, 614–15
and activity coefficients 93–4
for multicomponent mixtures 104
Flory–Huggins term 128, 149, 168
flow assurance 422–4
 and application of SAFT and CPA 423
fluids 221
 and NRHB model 649
see also polar fluids
fluorides, alkali 494
fluorocarbons 28, 89, 358, 583
miscibility in 578
foam formation 601
forces
 attractive 22
dipolar 23
dispersion 23–4
hydrogen bonding 26–30
induction 23
quasi-chemical 26–30
repulsive 21
formic acid 333, 341, 344
mixtures with water 403
fouling release systems 591–2, 592
Fowkes equation 579–80, 583
Fowkes theory 580–1
free volume (V_f)
 definition of 68
 effects 137
 expressions for 68
 non-random-mixing models 137–40
free-volume theories 68–9
freezing curves 295, 305, 339
fugacity 307
 capacity 560–3
 of chemicals
 in air 561
 in biota 562–3
 in soil and sediment 561–2
 in water 560–1
 coefficients 5, 6, 159–60, 503
 calculation with CPA EoS 287–94
 calculation with sPC–SAFT EoS 249–54
of empty hydrates 310–11, 311
and Gibbs energy calculation 62, 159
of ice 307–8, 316
models 558
vapor phase 510
furfural 421
Gabrielsen model 505–7, 507–8
gallic acids 360
gamma–phi approach 7, 79
gas 281
 condensate mixture 326–7
 natural 279, 299, 307, 313, 315
 removal of CO$_2$ and H$_2$S from 500–3
 water content of 315–16
gas hydrate inhibitors 276, 279, 281, 299, 305
 and flow assurance 422–4
gas hydrates 306–15, 422
dissociation temperatures 313
 empty 309–11
equilibria calculation 308–11
structures of 306–7
thermodynamics of 307–8
gas industry
see oil and gas industry

gas solubility (GLE)
in acetic acid 341
apparatus 566–7
gases 543
flue, removal of CO₂ and H₂S from 500–3
infinite dilution solubility coefficients of 449
mixtures with:
 alkanes 170, 241, 245
 hydrocarbons 49, 67, 262
 and organic acids 341
gasoline, additives to 299
generator column method 567
gerERICAN mean rule 201, 539, 544–5
GERG-water model 315
Gibbs adsorption equation 604–5
Gibbs energy 10–11, 28
 equation 474
 excess (\(G^E\)) 79, 110, 159, 480, 482, 527
 and activity coefficients 10–11, 82
 and asymmetric mixtures 168–74
 for binary mixtures 111
 calculation of 62, 147
 change of mixing 11
 and FH model 104
 and fugacities 10–11
 for multicomponent mixtures 114
 pressure effect 161
 and micellization 602
 residual 456, 457
Gibbs–Duhem equation 308, 468, 608–9
Gibbs–Helmholtz equation 294
Girifalco–Good equation 581
glycine 621, 628
 solubility of 628
glycolethers 207, 262, 333
 application of SAFT to 402–3
 and CPA 352–7
 mixtures with water 402
glycols 3, 241, 262, 265–6, 277, 302, 320, 617
 application of SAFT to 402–3
 association scheme 249, 266
 in complex mixtures 262
 heavy 303, 356
 hydration inhibition by 299
 loss in gas phase 300
 mixtures with:
 alkanes 300, 302
 glycol oligomers–water 402
 heptane 402
 hydrocarbons 300–3, 402
 water 303–6
 water–hydrocarbon 300–6
 models for 283
 parameter estimation of 237
 PC-SAFT equations for 238
 SAFT parameters for 400
glycyl-l-alanine 631
 glycylglycine 631
 Good–Hope rule 74
 gradient theory 594–7
 Gross–Vrabec model 405, 414–16
 mixtures investigated by 408
 group contribution (GC) methods 47, 47, 129, 247–8, 360, 431, 526
 and NRHB model 649
 and UNIFAC 129–35
 group contribution models 141
 GCSKOW model 526–7, 571–2
 predictions from 526
 Group Européen de Recherche Gazière (GERG) 315
 group-contribution-plus-association (GCA), equations of state (EoS) 248
groups
 first-order (FOG) 246, 254–5
 heteronuclear 247
 second-order (SOG) 246, 255–6
 Gubbins–Twu polar term 416
 Gubbins–Twu theory 407
 Guggenheim theory 111
halides
 alkali 494
 solutions of 487
 Hamaker constant (\(A\)) 20, 36, 586–7, 590–1
 estimation of 21–2, 26
 negative 586
 Hansen parameters 92, 94, 136, 580
 Hansen solubility parameter (HSP) model 615
 Hansen–Beerbower theory 580–1, 583
 hard-core volumes (\(V^*\)) 68
 and Van der Waals volume (\(V_w\)) 68, 69
 Harkins spreading coefficient 584
 Hartree–Fock (HF) method 531, 538, 539
 HDPE
 CO₂ solubility in 448
 methane solubility in 448
 heat of absorption, for H₂S 509
 heat capacity 244
 isobaric 245
 residual 245
 Heidemann–Prausnitz model 199–200
Helmholtz energy 10, 147, 167, 202, 225, 229–30, 405, 407–8, 469
excess 470–1, 472, 630
and gradient theory 596
residual 221, 233, 251, 409
Henry law 7, 505–6, 558
constants 315, 560, 567
heptane 272, 282, 422
activity coefficient of n-heptane 12
heptanes plus (C7+), characterization of 324–5
herring gulls, and DDT 553
hexadecane 272
hexane 7, 182, 244, 272, 282, 617
mixtures with:
ethanol 213
heptane 302
methanol 213
n-hexane 89
difference of combinatorial terms 170
hexene 182
Hildebrand equation 99
Hildebrand model 95
Hildebrand parameters 94, 96, 136
homomorph approach 302
Hudson–McCoubrey equation 543–4
Hudson–McCoubrey theory 67, 239–40
Huron–Vidal mixing rule 161–3, 162, 262, 276, 277, 305, 323, 325, 515
and CPA 364–6
derivation of 189–90
and Fürst–Renon EoS 516–17
modified (MHV1, MHV2) 163–4, 165, 382
achievements and limitations of 187–8
applications of MHV2 174–80
and NRTL 383
for water–acid mixtures 344
Huron–Vidal model 159, 174, 364–6
hydration 519
of ions 472
hydrocarbon plastics 583
hydrocarbons 90, 152, 166, 240, 247, 543, 617
heavy 272
inert 284
miscibility in 578
mixtures with:
water 578
water–gas hydrate inhibitors 382
and organic acids 341
P, N, A 99
in petroleum 300
polynuclear aromatic (PABs) 563
shape factor parameters 247
solubilities 278
transfer into water 28
see also aliphatic hydrocarbons; aromatic hydrocarbons; olefinic hydrocarbons
hydrochloric acid 491
hydrofluoroethers, derivative properties of 245
hydrogen bonding 26–30, 197–8, 217, 247, 419, 573, 579
acetone–chloroform 339, 364
and boiling temperature 27
energies 268
enthalpies and entropies of 538
and equilibrium constant (K) 199, 201
and hydrophobic effect 26–9
importance of mixtures 261–2
and NRHB model 647–9
and phase behavior 29–30
physical properties for compounds 26
temperature effect 577
see also lattice–fluid hydrogen bonding; non-random hydrogen bonding
hydrogen fluoride 525
hydrogen sulfide (H2S) 240, 244
mixtures with:
alkanes 49, 318
DEG 323
methanol 318, 320
water 318
water–alkanolamines 509, 520
water–DEA 509–10, 515, 518
water–MDEA 509, 513
water–MEA 509, 513
removal from gases 500–3
hydrophilic–lipophilic balance (HLB) parameter 598–9, 599, 600
hydrophilicity 597–600
hydrophobic effect 47, 275, 391
and entropy 28
and hydrogen bonding 26–9
implications of 29
hydrophobicity 597
hydroquinone 573
hydroxides, alkali 494
p-hydroxybenzoic acid 572
imidazolium 413
immiscible systems 55
Imperial College approach 540–2
induced association 265, 348, 358, 361, 405, 414
importance of 419–22
infinitoto dilution activity 141, 375
coefficient in environmental thermodynamics 559
infinite pressure limit 161–3
insulin 631
interaction coefficients, binary 275
interaction energy–distance plot 589
interaction parameters 47, 48, 144, 244, 274, 303, 323, 341
and cross-associating mixtures with 334
for DME–methanol 351
for DME–water 351
generalized expression for 277–8
and LC models 123–6, 128
for solvating systems 362–3
for ternary systems 348
for water–MDEA 516
interfaces
fluid 595–7
solid 582–4
interfacial forces, and adhesion measurements 591–3
interfacial tension theories 577–84
interfacial tensions
of CO2–n-butane 597
from thermodynamic models 594–7, 595
liquid–liquid 578, 579
of mercury–alkanes 580
of mercury–water 580
of methane–water 578
intermolecular forces 18
applications in model development 30–5
comparison of 23
vs. interparticle forces 577–85
potential functions for 19, 33–4, 35
relative magnitudes in methanol 24
and theories for interfacial tension 577–81
and thermodynamic models 17–37
intermolecular potential 525
interparticle forces
and adhesion 590–1
and colloid stability 587–90
in colloids and interfaces 585–91
vs. intermolecular forces 577–85
intramolecular association, and NRHB model 650
ion dispersion energy 498
ionic diameters, optimized 490
ionic interactions
equations for 470–1
theories of 468–73
ionic liquids (ILs) 500
ionic strength 465
ionic terms, short-range 472
ions
complex 472
dipolar 472
iso-butane, dissociation temperature 312
isobaric thermal expansivity 245
isobutylene 434
isoelectric point 621
isomers
and COSMO–RS 527–8
mixtures of 7
isothermal compressibility 245
isotherms 340
IVC-SEP electrolyte database 477
Joback method 47
Joule–Thomson coefficients 244
of polar fluids 412
K-charts 41
Kamlet–Taft parameters 30, 318, 356, 361, 363
Kent–Eisenberg approach 503, 505
ketones 81, 248, 265, 283–4, 333, 381, 617
and CPA 336–41
mixtures with alkanes 413
and organic acids 341
and SAFT 404
and tPC–SAFT 412
ketoprofen 619
solubility of 620
Kihara parameters 315
Kihara potential 34, 309
Kirkwood approach 630–1
Kirkwood theory 463, 472, 526
Kong combining rule 74
Kouskoumvekaki et al. method 431–5
PC–SAFT parameter estimation by 436
PMMA parameter estimation by 436
Krafft point 601–2
krypton 33
Langmuir adsorption, multicomponent 608–9
Langmuir constants 309–11, 311
Langmuir equation 308, 605, 635–7
Langmuir isotherms 606–7
Langmuir theory 308
lattice theory 527
lattice–fluid hydrogen bonding (LFHB) 205–6
hydrogen bonding monomer fractions in 216–18
lattice–fluid theories 198, 205–6, 216
Lee–Sandler rule 74
Lennard–Jones diameters 517
Index

Lennard–Jones potential 26, 32–4, 36, 72, 221, 231, 239–40
Leo–Hansch ClogP method 568–9, 572
Leonhard method 543
Lewis acid–Lewis base (LA–LB) 27, 30, 36, 201, 318, 349, 358, 500
components 583
interactions 581
solvation 361, 364, 573
Lewis–Randall framework 463, 472, 486, 519
Lewis–Randall law 7, 153
Lifshitz theory 587
lindane 559
linear combination of Vidal and Michelsen mixing rules (LCVM) 172–3, 173
achievements and limitations of 187–8, 573
applications of 174–80, 176–8
electrolyte model (e-LCVM) 483, 512–14
linear gradient theory (LGT) 597
linear mixing rule 161
linear oligomers, of alcohols 266
liquid density 212, 236, 244, 247, 263, 265, 376–7
of m-cresol 385
lack of 287, 360
and multifunctional chemicals 352
liquid surface tensions 578
liquids, ionic (ILs) 500
lithium chloride 492, 496
local composition (LC) models 109–57, 127, 463, 474, 624, 627
derivation of 147–9
expressions 110
FV models for polymers 135–40
group contribution (GC) versions 109
interaction parameters of 112, 128
limitations of 128–9
local mole fractions for 111
necessity for three models 116
one-parameter 123–5
overview of 110–14
parameters, compared to quantum chemistry 125–6
range of applicability of 116–23, 117
significance of interaction parameters 123–6
successes of 128–9
theoretical limitations of 114–16, 115
unifying concepts 126–9
local compositions, concept of 110
London coefficient 21
London forces 581, 583
London rule 543–4, 546
London theory 586
long-range interactions see ionic interactions
Lorentz rule 74
Lorentz–Berthelot rules 67, 74, 239, 630
Lorentz–Lorentz equation 20
low-angle laser light scattering (LALLS) 638, 642
lower critical solution temperature (LCST) 9, 138, 145, 444, 446, 456–7
prediction and correlation of phase behavior for
PIB–octane 442
lubrication 579
Lyngby approach 420
lysozyme 634, 638, 643
solubility of 637, 639
Mackay fugacity model 558–60
McMillan–Mayer framework 463, 471, 486, 519
macroscopic (Lifshitz) approach to A 21–2, 26
malathion 559
Margules equations 82–4, 83, 84
Margules expression 150
Matthias–Copeman expression 315, 383
Matthias–Copeman parameters 513
mean spherical approximation (MSA) theory 323, 468–72, 489, 491–2, 515, 519
Mecke–Kempter equation 200
mercury 577, 579
mesitylene, solvation of 265
metallic bonding 577, 579
metals 582
clean 583
heavy 563
methanol 318
methane 22, 177, 240, 316, 391
and asphaltenes 422, 423
dissociation temperature 312
as help gas 307
hydrate formation 314
liquid phase concentration 280
mixtures with:
acetic acid 342
alkanes 48, 61
hexadecane 243
n-hexadecane 180
water 578
m-xylene 180
in reservoir fluids 325
salting out 492
solubility 448
in NaCl solutions 490
in water 490
water content of 275, 276, 317
in water phase of gas condensate 327
methanol 7, 11–12, 24, 207–8, 210, 212, 282, 318, 327, 364, 500, 525
aqueous mixtures of 334
aqueous solutions 121
density of 270
gas phase content 280
hydration inhibition by 276, 279, 281, 305, 307, 314
loss in gas phase 279
miscibility 272, 281–2, 302
mixtures with:
 acetone 81
 alcohols 395
 alkanes 418
 benzene 11, 176
 n-butane 282
 butyronitrile 414
 chloroform 81, 539
decane 272
glycols 395
 heptane 57
 n-heptane 12
 hexane 209
 octanol 279
 pentane 274
 propane 54, 272, 272, 399, 412
 water 127, 133, 176, 295, 299
 water–methane 279, 280
monomer fraction for 218, 269
partition coefficient for 279–83, 280
pure 197
SAFT parameters for 399
solid complex of 294–5
speed of sound in 271
methanol–hydrogen fluoride 525
2-methoxyethanol, mixtures with ethyl acetate .352
methoxyethanol 29
methyl acrylate (MA) 450–1
N-methyl aniline 618
methyl diethanolamine (MDEA) 354, 356
dissociation of 503
 and e-LCVM model 512–14, 514
 and e-NRTL model 509–10
 and e-UNIFAC model 511
 and extended UNIQUAC model 510–11
 and Fürst–Renon EoS 515–19
 and Gabrielsen model 505–6, 508
parameter estimation 356
methyl ethyl ketone (MEK)
mixtures with:
toluene 83
 water 25
methyl fluoride 525
methyl formate, mixtures with methanol 50
methyl methacrylate 421
methyl oleate, mixtures with methanol–glycerol 248
methyl tetradecanoate 359
methyl-isobutyrate 435
methylene 337, 338
m-methylformamide, mixtures with water 127
micelles
 formation of 600
 and partition coefficients 639–41
 reversed 639, 640–1
 structure and CPP 598
micellization 601–2
 and surfactant solutions 600–4
Michelson approach 163–5, 163
microscopic (London) approach to A 21–2, 26
Mie expression 32–3
Mie m–n potential 245
 function 70, 72
mirex 559
miscibility 578
 blend–solvent 586
 polymer–solvent 104, 105
mixing rules 34, 64, 65, 71, 239
 a/b 56
 and activity coefficients 61–5
 alternative to classical vdW1f 69–74
 applications of 174–80
 for asymmetric mixtures 171
 beyond vdW1f and classical rules 65–7
 classical 41–77
 for cross three-body terms 411
 and cubic EoS 58–9, 159–93
 for e-SAFT 496–7
 EoS/GEm 59, 159–93, 171, 381–3
 applications of 175–6
linear combination of Vidal and Michelsen (LCVM) 172–3, 173
universal (UMR-PR) 170, 172, 181
vdW1f 7, 43, 50, 51, 53–4, 55, 56, 58–9, 64, 65
zero reference pressure 164
mixtures
 with acid gases 316–23
 plus alkanolamine 483
 with acids 420
 with alcohols 52, 201, 376–9
 aqueous 334–6, 348–51, 357–61
 associating 389–427
 importance of 261–2
asymmetric 168–74
mixing rules for 171
athermal 444
binary 338–9
and chemical theories 201
with CO₂ 316–23
cross-associating 249, 264–5, 334, 387, 399–401
electrolyte 463–8
with esters 248, 348–56, 414, 416
with ethers 348–56, 414
with fluorocarbons 579
with gases 49, 67, 170, 241, 245, 248, 262, 483
with H₂S 316–23
with hydrocarbons 48–9, 52, 67, 180, 200, 262, 272–3, 300–3, 382, 401, 402, 578
with micelles 639–41
monomer fraction data for 213
multicomponent 114, 201, 303–6, 320, 341
natural gas 313, 315
with organic acids 341–8
with pharmaceuticals 621
polar 389–427
fluid 409–13
with polymers 186
with proteins 639–41
with refrigerants 544
SAFT parameters for 239–41
with salts 483, 487, 491–2, 495
of self-associating compounds 284
solvating 265, 338–41
with solvents 186, 621
see also under individual compounds
models
acetone–chloroform 341
addressing future needs with 660–1
advanced 195–459
for amino acids 619–31, 622, 644
association 197–219, 483
classical 39–193, 624–7
engineering 381
closed-form thermodynamic 198
for commercial process simulators 505
continuum solvation 525
CO₂–water–alkanolamines 500–19
for electrolyte systems 463–523
activity coefficients 473–82
EoS 483–6
high-pressure 41
hybrid 614–15, 618
ion-specific 489
local composition see local composition (LC) models
organic acid 200, 341
perturbation 624
for pharmaceuticals 613–19
for polypeptides 619–31, 644
primitive (PM) 468
restrictive (RPM) 468
recommended 188, 189
semi-empirical 614
semi-predictive 637–44
of solid complex 294–5
thermodynamic 500–19, 644
overview of 503–4
Moelwyn–Hughes rule 543
molal ionic activity 467
molal strength see ionic strength
molality (m) 464–5, 467
for NaCl–KCl–water 496
molar density 513
molarity 464
mole fractions 464
of CO₂ in water 319
of water in CO₂ 319
molecular descriptors 545–6
molecular dynamics simulations 578
molecular orbital methods 531–2, 539
molecular weight (MW) 434
molecules
associating two-site 204
formation in SAFT model 222
guest 306
inert 339, 370
multifunctional 613
non-polar 241–5
oligomeric complex 613
self-associating 234
three-site (3B) 247
two-site (2B) 247
Mollerup model 635–7
monoethanolamine (MEA) 318, 354, 356, 501
dissociation of 503
and e-LCVM model 512–14, 514
and e-NRTL model 509
and e-UNIFAC model 511
and extended UNIQUAC model 510–11, 511–12
and Gabrielsen model 505–6, 507
monoethylene glycol (MEG) 402
hydration inhibition by 299–300, 305, 307, 312, 314
LLE of 30
mixtures with:
 benzene 57, 300, 301
 heptane 122, 301, 302
 hexane 300, 301
 methane 53, 303
 toluene 301, 302
 water 295, 299
 water–CO₂ 322
 water–methylene 300, 303, 305
solid complex of 294–5
VLE of 53
monomer fractions 205–6, 213, 217, 237
of 1-butanol 211
data for mixtures 213
of hexane–alcohol mixtures 213
of methanol 218
of methanol–hexane 209
of 1-octanol 211
of pentanol–hexane 209
of propanol 211–12
of propanol–hexane 269
of pure alcohols 210
pure compound data 212
spectroscopic data for 207, 208–11
of water 212, 237
monomer mole fraction 202–3
monomers 199
morphine 91
multicomponent mixtures 114
mutual saturation 584
nanotechnology 577–611
naproxen 573, 619
solubility of 620
neo-pentane, mixtures with carbon tetrachloride 89
Newton target function 457
Newton–Raphson method 292, 294
nicotine, removal from tobacco 572
nitric acid 477, 478
nitriles 414, 543
mixtures with alkanes 414
and SAFT 404
shape factor parameters 247
nitrobenzene, solvation 265
nitroethane, mixtures with:
 hexane 119
 isoctane 118
 octane 119
nitrogen 19, 33, 95, 120, 163, 240, 244, 316, 318, 349
and asphaltenes 422
dissociation temperature 312
as help gas 307
mixtures with:
 alkanes 49
 n-tetradecane 176
 water–DME 350
solubility in octacosane 242
non-random hydrogen bonding (NRHB) model 205–6,
 212, 213, 216, 614, 646–52
for alcohol–water 398
applications of 649–52
compared to SAFT 652
and hydrogen bonding fluids 647–9
for pharmaceuticals 618–19
non-random mixing 109
FV models 137–40
non-random two liquid (NRTL) model 110–12, 122, 248,
 379, 474
adjustable parameters 323
electrolyte model (e-NRTL) 477, 478, 481, 507,
 509–10, 519
parameters of 507, 509
applications of 477, 509–10
entropic and energetic terms 115
modification of 149–51, 364
non-randomness parameter (a₁₂) 111–12
one-parameter version 125
parameters for nitroethane–isooctane 118
polymer model (polymer-NRTL) 481, 615–16, 644
segment activity coefficient model
(NRTL–SAC) 614–18, 644–6
uses of 118
variables of 110–11
nonyl phenyl ethoxylates 599
nylon 446
PC–SAFT parameters for 437–8
octacosane, nitrogen solubility in 242
n-octacosane, vapor pressure of 52
octanol 212, 526, 558–9
mixtures with:
 tetradecane 274
 water 334, 335
 spreading in water 584
1-octanol 210
mixtures with water 627
monomer fraction of 211
oil 89, 279, 281
condensate 327
industry see oil and gas industry
spreading on water 584
transport 99
oil and gas industry
applications of CPA to 299–331
hydrate inhibition in 281, 299
olefinic hydrocarbons 265, 276, 300, 395
olefins 450
oligomers 199–201, 216–17, 436, 482
creation 206
linear 205, 266
oligopeptides 619, 628
organic acid model 200
organic acids 201, 333, 403–4, 617
application of SAFT to 403–4
in complex mixtures 262
mixtures involving 341–8
models for 283
Ornstein–Zernicke equation 472
osmotic coefficient (Φ) 467–8
osmotic virial equation 638
Oster mixing rule 513
ovalbumin 638
Owens–Wendt theory 580–1, 583, 594
oxygen 33, 83, 95, 120
oxylethylene 498
PA-11
CO₂ solubility in 448
methane solubility in 448
packing factor, reduced 285
Padé approximation 405, 409, 413
paints and coatings 135
Paracetamol 618
Parachor method 594
paraffins 152, 177
parameter tables 163, 246, 254–6
parameter testing, of pure compounds 266–72
parameterization, of SAFT 393–5, 393–4
parameters
chronic daily intake (CDI) 559
QM calculation of 525
partition coefficients 526, 563, 565, 644
of amino acids 626–7
of aniline 385
of methanol 279–83, 280
of methanol–water 282
of octanol–water (K_{ow}) 526, 556–8, 557, 560, 563, 565, 598
definition of 566
experimental determination of 566–72
importance in ecosystem studies 558–9
in protein–micelle systems 639–41, 641
in two-phase separation systems 641–4, 643
Patel–Teja model 180
Pauling diameters 487, 490, 517
peel energy 592
PEMA, mixtures with propylene 451
Peneloux translation parameter 271
Peng–Robinson equation 41, 59, 65, 315
co-volume and energy parameters 60
electrolyte model (e-PR) 491
G^E expression for 161
Peng–Robinson rule 170
Penicillin G 615
pentane 7, 137, 182, 244, 422
relative volatility of 406
n-pentane 242
pentanol, mixtures with hexane 209
peptides 472, 622
activity coefficients of 625
segment number of 629
percentage average absolute deviation (AAD) 277–8
perfluorocarbon, mixtures with water 358–9
perfluorohexane 244
perturbation theories 198, 201–2, 204–5, 216, 407, 624
third-order 405
pesticides 553, 555
solubility in water 557, 558
structural diversity of 555
petroleum 281, 300
and asphaltenes 422
reservoir fluids 323–8
thermodynamic challenges 656–8
PEU2000E 97
pharmaceuticals 91, 613, 644
mixtures with solvent 621
models for 613–19, 616
solubility of 537
solvent screening for 90
structures of 615
thermodynamic challenges in 659–60
phase behavior
and charge-transfer complexes 31
and hydrogen bonding 26–9
phase composition 328
phase diagrams
of aqueous salt solutions 479
for binary mixtures and phase envelopes 11–14
cricondenbar in 13
cricondentherm in 13
phase diagrams (Continued)

for methanol–n-heptane mixture 13
for PDMS–n-pentane 431

Pxy 11–12
Txy 11

phase envelopes

atypical 14
for natural gas mixture 14

PT diagram for ethane–heptane 12

phase equilibria

for acetone–pentane 406
for alcohol–alcohol 276–9
for alcohol–BTEX 302
for alcohol–hydrocarbon mixtures 401
for alcohol–water 398
of aqueous mixtures 357–61
for asphaltene–oil 99
of associating systems 261
and Born term 489

calculation by molecular simulation 525
of complex mixtures 262, 357
design data for 4
of fluid and solid/hydrate phases 312–15
fundamental equation 5
of gas hydrates 308–11
gas–liquid (GLE) 91–2
for glycol mixtures 402
for glycol–water–hydrocarbon 300–6
for glycol–water–hydrocarbon 300–6
high-pressure 447–50
of complex mixtures 262, 357
design data for 4
of fluid and solid/hydrate phases 312–15
fundamental equation 5
of gas hydrates 308–11
gas–liquid (GLE) 91–2
for glycol mixtures 402
for glycol–water–hydrocarbon 300–6
high-pressure 447–50

liquid–liquid (LLE) 30–1, 55, 57, 116, 146, 182,
262, 266
for acetone–chloroform 340
for acetone–hexane 404
for acetone–n-hexane 406
for alcohol–alkane 266, 397
for alcohol–hydrocarbons 272–3
for alcohols–water 334, 531
for alkanolamines–alkanes 354
for alkanolamines–hydrocarbons 354, 356
alternating tangents method for 456–7
for aniline–octane 382
for aniline–water 384
of aqueous systems 358
for benzene–water 394
for 1-butanol–water–benzene 401
for butanone–water 421
for 2-butanone–water 421
for 2-butoxyethanol–water 353, 354
for CO2–dodecane 244
for m-cresol–water 386
for DEA–hexadecane 355

for DEG–heptane 402
for DPE–water 349
for formic acid–benzene 341, 342
for glycol–hydrocarbons 531
for glycols–alkanes 266, 301, 356, 531
for HDPE–butyl acetate 442
for hexane–water 394
and LC models 120, 128
for MEA–benzene 354, 355
for MEA–heptane 354
for MEG–benzene 301, 536
for MEG–heptane 301, 536
for MEG–n-heptane 403
for MEG–hexane 301
for MEG–hydrocarbons 301
for MEG–toluene 301
for methanol–alkanes 412, 418
for methanol–cyclohexane 396
for methanol–n-decane 273
for methanol–hexane 273, 396
for methanol–hydrocarbons 397
for methanol–pentane 395, 397
for methanol–propane 395, 397
for mixed solvents–salts 487
molecular weight effect 145
and NRTL 122, 123
for octane–water 393
for 1-octanol–water 335, 537
for PBMA–alkanes 441
for n-pentanol–water 335
for perfluorobenzene–water 359
for perfluorohexane–water 359
for PIB–diisobutyl ketone 441
for PMMA–chlorobutane 436, 444
for PMMA–heptanone 436
for PMMA–4-heptanone 444
for PMMA–solvent 444
for polymer–solvent 246, 446–7
for polypropylene–propane 448
pressure effect 145
for PS–acetone–methyl cyclohexane 443
for PS–butadiene rubber 444
for PS–cyclohexane 433
for PS–methyl cyclohexane 443
for sulfolane–cycloalkane 375
for sulfolane–cyclohexane 379, 380
for sulfolane–cyclooctane 377, 377
for sulfolane–hydrocarbon 379
for sulfolane–methyl cyclohexane 376, 377, 379, 380
for TEG DME–alkanes 418
for TEG–benzene 302
for TEG–heptane 301
for TEG–hydrocarbons 302
for TEG–toluene 302
UCST type 183–4
and UNIQUAC 122, 123, 142
for water–acetic acid–benzene 348
for water–acetic acid–hexane 348
for water–acetic acid–xylene 348
for water–alcohol–alkanes 418
for water–alcohol–hydrocarbons 262
for water–alkanes 266, 275, 412, 424
for water–alkenes 412
for water–benzene 276, 277
for water–butanol 334, 336, 413
for water–cycloalkanes 412
for water–decane 412, 493
for water–esters 349, 359
for water–ethers 349
for water–ethyl acetate 349
for water–fatty acids 348
for water–fluorocarbons 359
for water–hexane 369, 493
for water–n-hexane 412
for water–hydrocarbons 395, 421
for water–ionic liquids 534
for water–pentane 412
for water–pentanol 334, 335
for water–1-pentanol 398
liquid–liquid–liquid (LLL) 283
low-pressure 439–46
for methanol–ethylene 398
and PC-SAFT parameter tables 242
for PDMS–n-pentane 432
for polymers 429
practical uses of 261–2
solid–gas (SGE) 44, 53, 54
and LCVM model 178–9
solid–liquid (SLE) 57, 90–1
for alcohol–hydrocarbons 272–3
of aqueous systems 358
for BaSO4–water 479
for drug–solvent 617
and experimental activity coefficients 80–1
and LC models 119
for MEG–water 303
for methanol–water 278
for 1-octanol–dodecane 401
for n-octanol–tetradecane 274
simplified equation 618
for SrSO4–water 479
for sulfolane–benzene 371, 372
for water–butanol 336
for water–DEG 303
for water–fatty acids 348
for water–MEG 304
for water–phenolic acids 360
for water–TEG 303
and wax formation 97–9
with sPC-SAFT equation 25
types of 6, 9
vapor–liquid (VLE) 41, 50, 53–4, 57, 61, 65, 116
for acetic acid–acetic anhydride 346
for acetic acid–octane 341
for acetic acid–n-octane 342
for acetic acid–water 347, 365
for acetone–chloroform 340
for acetone–chloroform–benzene 413
for acetone–hexane 404
for acetone–methanol 407
for acetone–pentane 337, 371, 405–6
for acetone–water 337, 337, 415
for alcohol–acid 344
for alcohol–alcohol 279, 400
for alcohol–alkanes 245, 274, 417, 531
for alcohol–hydrocarbons 272–3, 397
for alcohol–water 417
for alkane–water 489
for alkanolamine–water 356
for aniline–toluene 383–4
of aqueous systems 358
for asymmetric mixtures 172
for benzene–cyclohexane 416
for benzene–n-methylformamide 531
for t-butanol–butane 274
for butanone–water 421
for 2-butanol–water 421
for n-butyl acetate–n-heptane 344
for n-butyl acetate–propionic acid 344
for butyronitrile–heptane 415
for chloroform–ethanol 420
for CO2–alkane 414
for CO2–DEG 322
for CO2–hexatriacontane 243
for CO2–MEG 321
for CO2–methyl oleate 246
for CO2–octacosane 243
for m-cresol–alkanes 386
for cyclohexane–benzene 545
for DEG–water 304
for diisopropyl ether–formic acid 343
phase equilibria (Continued)

- and EoS/GE models 166, 172
- for ethanol–acetone–benzene 413
- for ethanol–benzene–hexane 401
- for ethanol–butanol 279
- for ethanol–heptane 162
- for ethanol–water 398
- for ethyl propyl ether–ethanol 350
- for ethylacetate–cyclohexane 414
- and experimental activity coefficients 80
- for formic acid–1-butanol 345
- for formic acid–water 347
- for glycol–methane 356
- for glycol–water 303, 356, 417
- for isopropanol–benzene 535
- for ketone–alkane 336, 412
- and LC models 116, 128–9
- and LCVM model 176–7, 179
- low-pressure 89–90, 439–46
- for MDEA–methane 354, 356
- for MEG–methane 303
- for MEG–water 303, 534
- for MEG–water–methane 303, 305
- for methane–hexadecane 243
- for methane–TEG 650
- for methanol–alkane 412
- for methanol–cyclohexane 396
- for methanol–DME 351
- for methanol–hexane 273, 396
- for methanol–H₂S 321
- for methanol–octanol 279
- for methanol–pentane 274
- for methanol–propane 272
- for methanol–sulfolane 377
- for methanol–water 278
- for methyl propanoate–propanol 417
- and MHV2 mixing rule 165
- for mixed solvents–water 487
- for nitric acid–water 478
- and NRHB model 650
- and NRTL 118–19, 122
- for nylon–water 446
- for PEG–benzene 437
- for PEG–propane 437
- for PEG–water 437, 651
- for n-pentanol–water 335
- for PIB–2-methyl-1-propanol 440
- for polymer–solvent 246, 439–40, 446, 453
- for propanoic acid–water 346
- for propanol–water 162
- for 1-propanol–water 413

for 2-propanol–benzene 401
for 1-propylamine–PVAC 650
for PS–acetone 433
for PS–benzene 433
for PS–carbon tetrachloride 433
for PS–chloroform 433
for PS–cyclohexane 433
for PS–MEK 433
for PS–nonane 433
for PS–propylacetate 433
for PS–toluene 433
for PVAC–2-methyl-1-propanol 440
for PVAC–water 445
for PVC–CCl₄ 434
for PVC–dibutyl ether 434
for PVC–1,4-dioxane 434
for PVC–tetrahydrofurane 434
for PVC–toluene 434
for PVC–vinyl chloride 434
and solvation 349, 350
for sulfolane–benzene 372
for sulfolane–heptane 379
for sulfolane–hydrocarbons 370, 371, 379, 381
for sulfolane–methanol 374, 375, 377, 381
for sulfolane–toluene 378
for sulfolane–water 374, 375, 377, 381, 381
for TEG–benzene 302
for TEG–toluene 302, 379
for 1-tetradecanol–undecane 535
and UMR-PR model 180
and UNIFAC 133
and UNIQUAC 119–20, 120, 122
for water–acetic acid 404
for water–acetone 336
for water–alcohol–hydrocarbons 262
for water–alkanes 412
for water–butanol 334, 336, 413
for water–CO₂–acetic acid 348
for water–decane 412
for water–1,4-dioxane 530
for water–DME 351
for water–MEG 304
for water–methane 489
for water–pentane 412
for water–pentanol 334, 335
for water–1-pentanol 398
for water–propane 417
for water–PVAC 651
and Wilson equation 125
vapor–liquid–liquid (VLLE) 262, 329
for CO₂–DME–water 350
for CO₂–DME–water–methanol 350, 351
for CO₂–water–alcohol 399
for CO₂–water–phenol 399
for DiPE–water 350
for MEG–water–methane–propane–toluene 306
for MEG–water–methylene–toluene 306
for methanol–water–methylene 281
for methanol–water–methane–propene–n-heptane 281
for water–alcohol–alkanes 418
for water–alkanes 275
for water–ethanol–cyclohexane 413
for water–methylene–hydrocarbons 279–83
vapor–vapor–liquid (VVLE), for
acetone–n-hexane 406
for water–hydrocarbon 273–6
for water–hydrocarbon–inhibitor 422
for water–methanol 276–9
phenanthrene 181
pheno–formaldehyde, urea-modified (PUF) 593–4
phenolic acids 360
phenols 180, 197, 199–200, 358, 383–6, 553
association scheme 266
phi–phi approach 7
phthalates, log K_pe predictions 571
physical term 198
of CPA EoS 264
phytochemicals 247
phytoplankton 553
piperazine (PZ)
carbamate 510
and e-NRTL model 509–10
and Gabrielsen model 505–6
Pitzer model 476–7, 497, 519
Pitzer–Debye–Hückel formula 477, 480–1
Poisson equation 469
Poisson–Boltzmann (PB) equation 469
polar bonding 579
polar fluids
application of tPC-SAFT to 409–13
and SAFT 405–8
polar terms, comparison of 416–19, 417
polarity, and boiling temperature 27
polarizability, definition of 19–20
polarizable models see continuum solvation models
pollutants
biomagnification of 559
concentration of 553
polyamides
liquid volume of 438
optimum segment diameter of 438
PC-SAFT parameters for 437–8
polyaromatic hydrocarbons 437–8
and polar GC-SAFT 416
polybutadiene (PBD) 144
polybutyl methacrylate, mixtures with:
octane 183, 184
n-pentane 183
polychlorinated biphenyls (PCBs) 553, 555, 555, 563
polychlorotrifluoroethylene 592
polycyclic aromatic hydrocarbons (PAHs) 245, 360–1
poly(dimethyl silamethylene) (PDMSM) 449
poly(dimethyl siloxane) (PDMS) 138, 429, 449
estimation of parameters for sPC–SAFT 434
polyethylene 113, 138, 236, 429, 453, 583
high-pressure technology 447
mixtures with ethylene 186
polyethylene glycol (PEG) 139, 435–7, 641–2, 643
chemical structure of 437
polyethylene terephthalate (PET) 422
Zisman plot for 583, 584
poly(ethylene-co-butene), mixtures with propane 451
poly(ethylene-co-ethyl acrylate), mixtures with ethylene 451
poly(ethylene-co-methyl acrylate) (EMA) 450, 451
mixtures with:
ethylene 451
propylene 451
solubility of 452
poly(ethylene-co-propyl acrylate), solubility of 452
poly(ethylene-co-propylene) 186, 450
poly(ethylene-co-vinyl acetate), mixtures with solvents 451
poly(ethylene–octene), mixtures with hexane 450
polyisobutene 182
polyisobutylene (PIB) 440–2
mixtures with octane 442
polyisoprene (PIP) 95, 141, 143
solubility of gases in 95
poly(isopropyl methacrylate) (PIPMA) 455
polymer models 62
polymeric binders, surface tension of 594
polymers 92–7, 236, 582, 633
adhesion of 591
adsorption of 607
applications:
of SAFT to 429–59, 430–1
of vdW EoS to 182–4
aqueous systems of 446
blends of 446
cubic EoS for 181–7, 185–6
density data 429
polymers (Continued)
estimation of EoS parameters for 187
FV percentages 138
gas solubilities in 94–5
high-pressure thermodynamics of 181–2
LC–FV models for 135–40
miscibility with solvents 104, 105
mixtures with solvent 186
and NRHB 652
nylon 437–8
parameter estimation using GC–sPC–SAFT 454–5
PC–SAFT parameters for 432–3
polar and associating 435–8
silicon 447, 450
solubility of 447
parameters 88
surface tensions of 583
thermodynamic challenges in 658
thickness of 590
volumetric data 429
water soluble 641–2
poly(methyl methacrylate) (PMMA) 431, 435, 444, 454, 591
adsorption on silica 607
pull-off force 592
polynuclear aromatic hydrocarbons (PABs) 563
polyolefins 135, 182, 186, 429, 435, 447
polyoxyethylene 601, 603, 604
polyoxylethylene 498, 603
polypeptides
chemistry and relationships 619–24
mixtures with water 622
models for 619–31
poly(styrene (PS)) 93, 143–4, 443
blends 444–5
estimation of parameters for sPC–SAFT 433
mixtures with:
acetone 142, 145
cyclohexane 183
cyclohexane–CO₂ 447
methylcyclohexane 145, 447
poly(vinyl acetate) (PVAC) 422, 440, 445
poly(vinyl alcohol), mixtures with water 146
poly(vinyl chloride) (PVC) 422
estimation of parameters for sPC–SAFT 434
polyvinylidene fluoride 592
Posey values 517
potassium carboxylates 481
potassium chloride 492, 496, 517, 631, 643
potassium nitrate, solubility in aqueous ethanol
solutions 480
potential energy 585
potential functions, for intermolecular forces 19, 33–4, 35
Pottel expression 490
Poyntel factor 307
Poynting factor 307–8
praline, solubility of 628
Prausnitz, LC developments of 116
precipitation, model for proteins 638–9
pressure 338–9
CO₂–acetic acid 343
primitive models (PMs) 468
process simulators, models used in 505
product design, thermodynamic challenges in 658
propane, dissociation temperature 312
propionic acid 333
propanoic acid 333
propanol 277, 320, 573
mixtures with:
heptane 212
hexane 268, 269
nonane 181
water 11, 53, 162, 176, 334
monomer fraction of 211–12
1-propanol
mixtures with hexane 211
reduced chemical potential of 419
properties
excess (E) values 9–10
mixing (mix) values 9–10
propionic acid 341, 344, 618
proportionality constant (C) 206
propylene 182, 434
propylene glycol (PG) 402
proteins 472, 613, 619, 621–2
activity coefficients of 634
adsorption of 631–7
low concentration model 633–5
mixtures with micelles 639–41
and partition coefficients 639–41
partitioning 640
precipitation model for 638–9
semi-predictive models for 637–44
two-phase separation systems 641–4
proximity effect 526–7
pure component parameters
for aniline 382
for sulfolane 371, 379
pure compound parameters
choice of 369
for m-cresol 385
estimation of 43
and tPC–SAFT 412
pure compounds 200–1, 265–72
 monomer fraction data for 212
 parameter testing 266–72
 SAFT parameters for 233–8
PVDF, CO₂ solubility in 448
pyrene 563
pyridines 200
quadrupole
 of butanol 413
 of ethanol 413
 of propanol 413
quadrupole moment (Q) 18–19, 410
 of benzene 416
quantitative structure–activity relationships (QSAR) 614
quantum chemistry (QC) 525
 and association model parameters 531–40
 in engineering thermodynamics 525–49
 SAFT-type models 540–6
quantum mechanics (QM) 126
 software packages 525
quasi-chemical forces 26–30
quasi-chemical theories see lattice–fluid theories
radial distribution function (RDF; g) 202, 206, 231, 284–6
 justification of sCPA 286
 and repulsive terms 284–5
 and role of \(\frac{b}{4V} \) 285
 in SAFT 227
random-mixing models 79–107
 introduction to 79–80
Raoult law 7, 8–9, 12
Redlich–Kwong equation 41, 630–1
 refrigerants 543
 mixtures with alkane 544
 regular solution theory (RST) 84, 86–8, 103
 applications of 88–97
 Renon–Prausnitz rules 112
reservoir fluids 323–8
 restrictive primitive models (RPM) 468
retrograde condensation 13
retrograde phenomena 14
ribonuclease 641
rubidium chloride 494
safety parameters 552
 Sako–Wu–Prausnitz model 286
salting out 492, 517
salts
 and amino acids 631
dissociation of 464
 inorganic 563
 mean ionic concentrations 466
 mean ionic mole fraction 466
mixtures with:
 solvents 483
 water 491, 495
solubility of 468
Schrödinger equation 525
Schulze–Hardy rule 589
Scott–Magat equation 100
screening length see Debye length
segment diameter 236
segment energy 236
segments, conceptual 616–17
 selection tree, for thermodynamic models 4
self-associating compounds 284, 303, 336, 374–9
self-association 197
 in pharmaceuticals 619
separation, environmentally friendly 552
serine, solubility of 628
shake-flask method 566
shape parameter (\(\frac{c}{b} \)) 247
silica gel 606, 607
silicon polymers 447, 450
silicones, shape factor parameters 247
Simonin expression 490
site fractions 208, 213
 for different bonding types 234
site–site energy 247
size parameters, estimation of 540–6
Soave–Redlich–Kwong model
 predictive (PSRK) 164
 achievements and limitations of 187–8
 applications for 174–80, 177–8
 Soave–Redlich–Kwong (SRK) equation 41, 59, 60, 189–90, 262, 300, 373, 510
 electrolyte model (e-SRK) 491, 515, 517, 518, 520
G\(^E \) expression for 161
sodium alkyl sulfates 481, 482, 498, 602
sodium alkyl sulfonates 481, 602
sodium carboxylates 481–2, 482
sodium chloride 491, 492, 496, 517, 518, 631, 633, 643
mixtures with:
 KCl–LiCl–water 496
 water 472
sodium dodecylsulfate, surface tension 601
sodium hydroxide 491
sodium nitrate 631
sodium sulfate 491
solid complex behavior 339
solid interfaces, characterization of 582–4
solid surface, characterization of 582
solids, and UNIQUAC 151–2
solubility 496
of alanine 628
of amino acids 625–6
of diglycine 625
of glycine 628
of KNO3 in aqueous ethanol 480
of K2HPO4 in water 479
of lysozyme 637, 639
for NaBr–KBr–water 496
for NaCl–KCl–water 496, 496
of NaH2PO4 in water 479
of praline 628
of serine 628
of valine 628
solubility index (SI) 468
solubility parameters 247, 614
for gaseous solutes 88
for polymers 88
for solvents 88
solubility prediction 91
solvation 284, 358, 420, 519, 573
accounting for 387
acetone–methanol 407
acids–BTEX 387
alcohol–hydrocarbon 281–2
alcohols–BTEX 302, 387
binary interaction parameters for chloroform-diethyl ether 265
CO2–alcohols 387
CO2–glycols 387
CO2–methanol 387
CO2–water 318, 387
and ethers 342
formic acid–benzene 387
glycol–BTEX 302, 387
H2S–alcohols 387
H2S–glycols 387
H2S–methanol 387
H2S–water 318, 387
importance of 419–22
induced 284
of ions 472
LA–LB 318, 361, 364
methanol–ethylene 398
mixtures with 265
nitrobenzene–mesitylene 265
one- and two-site schemes 349
and predicted solubilities 349, 351
role of 361
schemes 369
and VLE 349
water–alkenes 276, 387
water–BTEX 302, 387
water–esters 387
water–ethers 387
water–hydrocarbons 275–6
water–perfluoro-aromatics 387
solvatochromic parameters 30
solvents
choice of 93
environmentally friendly 572–3
FV percentages 138
miscibility with polymers 104, 105
solubility parameters of 88
supercritical (SC) 572
Soret coefficients 284
Source 30Q media 633
specific forces 579
specific heat capacities, of polar fluids 412
spectroscopy 268
and association theories 202–13, 208
data for monomer fractions 207
FTIR spectrum 209
role of 197–219
theory validation data from 207–13
speed of sound 244–5, 270
in methanol 271
spheres
interaction between 221
sticky spots 221
spherocylinder 540
spreading 584–5
spreading coefficient 585
spreading pressure 582
square-root rule 241
square-well potential 33, 221, 229
square-well width 234
SR2 (short-range ionic) term 472–3, 483, 486, 489–91, 515
standard states 463–6
static cell measurement (GLE) 566–7
Statistical Associating Fluid Theory (SAFT) 24, 31, 202, 204–7, 221–59, 344, 531
applications:
to alcohols, amines and alkanolamines 395–401
to electrolytes 223, 224
to glycols and glycolethers 402–3
to non-polar molecules 241–5
to polar and associating mixtures 389–427, 390–1
to polar non-associating compounds 404–22
to polymers 429–59, 430–1
association parameters of 538
availability of 453–4
chain and association terms 225–7
Chen–Kreglewski (CK-SAFT) 226, 228–9, 229, 234, 391, 429, 451
compared to NRHB 652
computational aspects of 223
computer versions 249
dispersion terms in 227–33
electrolyte model (e-SAFT) 492–9, 519
e-SAFT LJ 497–8
e-SAFT1 and e-SAFT2 495–7
equation of state (EoS) 221–5
estimation of polymer parameters 429–39
universal model constants in 232
equations 225–33
extensions
to new systems 369–88
to polar fluids 405–8
and flow assurance 423
group contribution (GC) versions 223, 224, 225, 240, 245–8, 416
DTU method 246–7
equations for 245–6
and ESD models 247–8
French method 245–6, 416
polar model 416
SAFT–γ method 247
Lennard–Jones (LJ–SAFT) 391, 497–8
models from QC 540–6
models for water–acetic acid 404
original 221, 227–8, 416, 429
parameterization of 233–41
for methanol 399
for mixtures 239–41
for pure compounds 233–8
for water 392
for water–alkanes 393–5, 393–4
activity coefficients 242
for amino acids and polypeptides 627–30
applications of 439–46
electrolyte model, (e-PC–SAFT) 493–4, 495, 628
parameters of 237–8, 254–6
for pharmaceuticals 618
polar (PCP–SAFT) 224, 244, 544–6, 544–5
performance comparisons 417
simplified (sPC-SAFT) 231, 233, 242–4, 246, 254–6, 379–81, 398, 401, 439–46
truncated (tPC-SAFT) 409–13, 500
radial distribution function 227
reviews of 225
SAFT-HS 402
simplified 229, 399, 403
and size-asymmetric systems 241, 243
soft-SAFT 429, 451
temperature-dependent diameter in 226
variable range (SAFT-VR) 226, 229–30, 234, 416, 429, 451
electrolyte version of (SAFT–VRE) 492–3
Mie variant of 245
parameters of 540, 541–2
variants of 221–2, 222, 399
polar and quadrupolar 224, 444
SAFT1 and SAFT2 495–7
and water–alkane mixtures 389, 391
and water–hydrocarbon mixtures 389–95
Statoil (Statoilhydro) 300, 302
Staverman–Guggenheim model 526
Staverman–Guggenheim term 128, 137, 149
Staverman–Guggenheim theory 130
Stell theory 405
steric stabilization 590, 607–8
steroids, correlation of flux data 97
Stokes diameter 487, 517
styrene 3
sulfadiazine 618
sulfates 494
sulfides 247
sulfolane 262
application of sPC–SAFT to 379–81
chemical structure of 370
CPA application 370–9
inertness of 370–4
mixtures with methylcyclohexane 375
pure component parameters of 371, 379
as self-associating compound 374–9
uses of 370
sulfuric acid 477
supercritical fluids 572–3
extraction (SCFE) 572
surface pressure, of valinomycin 606
surface tensions
vs. concentrations 605
from thermodynamic models 594–7, 595
of n-hexane–mercury–n-octanol 579
for polymeric binders 594
of sodium dodecylsulfate 601
surfactants
CMC values for 499
CPP of 598
HLB–CPP correlation for 600
ionic 479–83, 498
Krafft–CMC relationship 602
LLE equation for 480
and micellization 600–4
molecules of 600
uses of 600

Tassios approach 151
Teflon 583, 592
temperature dependency 263
temperature dissociation 311, 312
tetradecane 272
tetraethylene glycol 356, 437
tetrahydrofurane (THF) 414
mixtures with water 414
thermodiffusion coefficients 284
thermodynamic models
closed-form 198
and CMC estimation 602–4
and intermolecular forces 17–37
overview of 503–4
selection tree for 4
surface and interfacial tensions from 594–7, 595

thermodynamics 461–663
for biotechnology 613–54
challenges of 5
per industrial sector 656–7
in twenty-first century 655–63
and colloid and surface chemistry 577–611
definitions of ideality in 7
electrolyte 463
environmental 551–75
basic relationships of 559–65
key concepts of 557–9
scope and importance of calculations 552–7
functions and partial derivatives 10
of gas hydrates 307–8
high-pressure polymer 181–2
important equations in 9–11
polymer 105–6
for process and product design 3–15
quantum chemistry in 525–49
thermopane windows 94, 95
theta temperatures 608
thiols 247
shape factor parameters 247
toluene 7, 93, 282, 379, 422
in BTEX 302
total potential energy 587
toxicity indices 559
tributylphosphate (TBP) 573
triethylene glycol (TEG) 356, 437, 563
hydration inhibition by 314
mixtures with:
heptane 300, 301
water 357
solubility of 300
2,2,4-trimethyl pentane 83
TURBOMOLE 527
two-fluid theory 147–8

United States of America (USA), environmental policies 556
universal mixing rule (UMR-PR) 170, 172, 181, 187
universal quasi-chemical functional group activity coefficient (UNIFAC) 142–3, 383, 530, 615
advantages of 136
applications of 134–5, 135, 614
association model 248
and CMC estimation 603–4, 603
disadvantages of 136, 627
electrolyte model (e-UNIFAC) 479–81, 482, 511
free volume (UNIFAC–FV) model 94, 137, 140, 141
and group contribution principle 129–35
for Kow calculations 569–72
and LCVM 173
variants of 131–2, 133–4
Dortmund version 132–3
Lyngby version 132
universal quasi-chemical (UNIQUAC) model 112–13, 122, 143, 474, 526
applications of 119
electrolyte model (e-UNIQUAC) 152–4, 479–83, 519
energy parameters of 113–14, 119
evaluation of 140–7
extended 120, 151–4, 510–12, 512
modified 113
one-parameter version 125
problems of 115
and quantum mechanics 126
for solids and waxes 151–2
variables of 112–13
and Wilson equation 127–8
upper critical solution temperature (UCST) 9, 142, 145, 183, 443–4, 446, 456–7
valine, solubility of 628
valinomycin 606, 606
van der Waals equation 32, 41, 84–6
G^e expression for 161
van der Waals forces 20, 21–6, 36, 48, 581, 583, 585–7, 590–1
van der Waals models 101–2
van der Waals one fluid mixing rules (vdW1f) 7, 43, 50, 51, 53–4, 55, 56, 58–9, 64, 65, 159
for CK-SAFT 239
van der Waals repulsive term 284
van der Waals volume (V_w) 267–8
and hard-core volumes (V^*) 68, 69
van der Waals–Platteeuw framework 120, 146, 329
van der Waals–Platteeuw model 422
van der Waals–Platteeuw solid solution theory 608–9
Van Laar equation 85–6, 117
application of 86
Van Laar model 84–8, 103
van Oss et al. theory 581, 583, 593
van Oss–Good parameters 591
van Oss–Good theory 583
vapor compositions 121
vapor phase mole fractions 338–9
vapor pressure 212, 236, 244, 247–8, 263, 265, 376–7
of m-cresol 385
and critical properties 52
in environmental thermodynamics 559, 561
lack of 287, 360
and multifunctional chemicals 352
of n-octacosane 52
of perfluorohexane mixtures 244
of water 139
vapor pressure curve 12
vaporization, enthalpies of 236–7
virial coefficients 34, 167–8, 269, 309, 315
of ethanol 270
osmotic second 638–9, 639
of polar fluids 412
virial equation 34
volume, calculation of 253, 292–4
volume packing fraction, values for 174
volume parameters 247
volume-translated Peng–Robinson model 187
water 138, 208, 212, 234, 236, 241, 543, 617
association scheme 249, 266
bonding types 203
in complex mixtures 262
content of natural gas 315–16
density as function of temperature 27
empirical equation for 200
energy term 316
enthalpy of vaporization of 271
free OH groups for 28
gas phase concentration 280
hydrate phase of 308
in hydrocarbon phase of gas condensate 326
hydrogen bonding of 261
hydrogen bonds of 27–8, 275
ice phase of 307–8
ionization of 501
LLE with heavy alcohols 30
miscibility of 358
mixtures with:
acetic acid 341, 348, 364, 403
acetone 168, 414, 420
alcohols 294–5, 400, 412, 420
alcohols–alkanes 248
alcohols–gases 248
alcohols–hydrocarbons 262, 279
alkanes 172, 578
alkanes–salt 493
alkenes 276
benzene 249, 276, 277, 284, 302
butane 282
butanol 624, 626
carbon dioxide 323
cyclohexane 57
decane 275
esters 414
ethanol 627
ethers 414
fluorocarbons 579
formic acid 364
glycol 294–5
glycol–hydrocarbons 262
hexadecane–n-butanol–isopropanol 283
hexane 275, 276, 284, 302
hydrocarbons 47, 201, 273–6, 303, 305, 389–95
hydrogen sulfide 323
methane 323, 486, 492
methane–sodium chloride 489
methanol 29–30, 197, 249, 276–9, 305, 314, 401, 625
methanol–benzene 282
methanol–butane 282, 283
methanol–hexane 281
methanol–hydrocarbons 269, 279–83
methanol–propane 281
methanol–toluene–methane 282
nylon–caprolactam 446
Index 692

water (Continued)

octane 275
octanol 624
PG–MEG 402
propane 275
propanol 168
salts 487, 492
salts–gases 483
sodium chloride 329, 489
models for 283
monomer fraction of 212
and organic acids 341
percentage free OH groups in 210
pure 197, 207, 268
solubility 277–8
in CO₂ 395
in environmental thermodynamics 559
and spreading coefficient 585
solvation 265
thermodynamic models for 500–19
three-dimensionality of 201
waxes 89, 307, 315, 422
definition of 97
formation and SLE 97–9
and UNIQUAC 151–2
Wertheim expression 498
Wertheim model 201–2, 210
Wertheim term 248, 370
Wertheim theory 373
wetting 579, 582–3
Wilson equation 109, 116, 117
entropic and energetic terms 115
parameters 114
performance of 120
single parameter 123–4, 125
Tassio approach to 123
and UNIQUAC 127–8
Wang–Eckert approach to 124
Wilson interaction energies 124
Wilson model 526
Woll–Hatton model 639–41
Won model 98
Wong–Eckert method 126
Wong–Sandler model 159
predictive 167
Wong–Sandler (WS) mixing rule 167–8, 515
achievements and limitations of 187–8
applications of 174–80
work of adhesion 579, 582–3
work of cohesion 579–80
xenon 33, 83
xylene
in BTEX 302
mixtures with:
acetic acid–water 348
Lutensol FSA10–water 533
partitioning of 533
Young equation 582–3
Young–Dupre equation 582
zero reference pressure limit 163–5, 163
zero reference pressure mixing rules 164
zero reference pressure models, successes and
limitations of 165–7
Zisman plot 583, 593–4
for PET 584
zwitterions 472, 621–3, 630