INDEX

Note: Page numbers in italics represent figures; those in boldface, tables.

Absorption factor, 174
Achiral object, 12
Allegra’s model, 322
Anisotropic temperature factors, 176
Atomic lattice plane, reflection of X-ray by, 123, 124
Atomic positions, identification of, 137
Atomic scattering factor
 definition, 175
 for various atoms, 175

Bernoulli-type distribution, 325, 327
Bessel functions, 149, 149, 320
 in calculated diffraction intensity, 159
 contributing to structure factor on each layer line, 163
 and diffraction pattern of complex helix, 153–154, 154–157
 and experimental distribution of intensity, 161, 161–162
 of first kind, 146, 146
Bond angles, 18
 typical values of, 21, 21
 values of internal coordinates of, 38, 38–39, 39
Bond length
 and calculation of unit twist, 40, 40, 41–42
Bragg condition, 123
 of diffraction, 125
 vector form of, 124, 124
Bragg distance, 93
Bragg peaks, 3, 172, 315, 317

Bragg reflections, 134, 248, 296
 intensity of, 298
 in X-ray diffraction patterns of semicrystalline polymers, 123
Bragg’s law, 123, 124, 127, 136
β-Brass, limit ordered structural model of, 300, 301
Buckingham function, 52
cis-2-Butene, 68
Butene units
 as defects in iPP chains, 396–397
 effect on iPP properties of, 404

Calculated structure factors, 176
Cameras, charge-coupled detector (CCD), 140
Carbon atom, asymmetric, 12, 12
Cartesian coordinate system, 53, 53
Catalysts. See also Metallocene catalysts; Ziegler-Natta catalysts
 for polymerization of propene, 422, 423, 424
 for synthesis of highly syndiotactic polypropylene, 423, 424
Cavitation, vs. plastic deformation, 372. See also Plastic deformation
CDs. See Conformationally disordered crystals
Chain folding, 341
 constraints set by, 104, 104
 impact on crystal structure symmetry of, 103–107, 103–107, 349–352, 350–354, 355
Chain microstructures, 370
Chain repetition distance, 21
Chain symmetry
 entropic principle of conservation of, 92, 95
 principle of conservation of, 92, 97–98, 98
Chains, 342, 349–350
Charge-coupled detector (CCD) cameras, 140
Chiral crystallization of polymers with helical chain
conformations, 110–112, 110–113
Chirality, and helical stems linked by folds, 104, 104
Chirality centers, 7, 12, 12
Close packing, principle of, 88, 97–98, 98, 139
13C NMR-CPMAS spectrum, of highly stereoregular sPP
sample, in mesomorphic form, 280, 281
13C-NMR data, 170
Cochran, Crick, and Vand (CCV) formula, 144, 147–153, 148,
 149, 151, 152, 320
Cochran-Crick-Vand (CCV) theory, 150
Columnar mesophase, 225
Combikke polymers, 271
Comonomers, and
 constitutional units, 212–215,
in PVDF, 212–215,
in PE, 215–216,
nonenantiomeric
 constitution, of cr,
in isotactic
 stereoregular units,
 homoeptaxy, 359–361,
and growth rates,
 344–345
Conformations, 18
Conformations, 18
 helical
 in isotactic polymers, 46–49, 46–51
 in syndiotactic polymers, 46–48, 46–51, 50
of polymer chains in crystalline state
 basic principles, 21
 equivalence principle, 21–33, 22–24, 25–29, 30, 31, 32, 33
 internal coordinates and conformational
 parameters, 36–46, 38–39, 40–42, 43–44
 principle of minimum conformational internal
 energy, 33–36, 33–36
 of polymers, symmetry operators for, 22, 22
Conglomeration, 112
Conservation of chain symmetry, principle of, 88–92, 89–91,
 92, 95, 97–98, 98
Conservation of helical symmetry of chains, principle of,
 92
Constitution, of crystalline polymers, 3–5
Constitutional defects, and crystallization defects of
 iPP, 395–396
Constitutional repeating units, 3, 4–5, 7, 8, 10, 11
Constitutional unit, 3, 4–5
Copolymers. See also specific copolymers
 alternating, 68–73, 69–73
 of iPP, 391–406
 melting temperatures of, 94
 stereodefective iPP samples, 395
Copolymer sequences, 189
Couples of structural motifs, interaction of, 297
Crazing, in plastic deformation, 371
Crystal growth rate, negative slopes of, 349
Crystal habits
 chain folding, 4–5
 lathes, 2, 17–18
 measurement of integrated intensity of observed reflections
 for, 171–174, 173, 174
 structural analysis of disordered, 299
Crystalline polymorphs, 341, 343
Crystallinity
 modern view of, 190
 in polymers, 2
 and structural disorders, xii
Crystallites, 369
Crystallizability, 2, 17–18
Crystallization
 of solid mesophases, 369–370
 and structural disorders, 369
Crystallographic plane, 355, 357
Crystallography
 classic, 137
 Fourier synthesis and phase problem in, 134–140
 polymer, xi, 95–96
Crystals. See also Polymer crystals
 classification of defects in, 187
 definitions for, 1, 185, 296
 enlarged recent definition of, 190
 of γ-form of iPP, 208, 376–377, 377
ideal, 1, 185, 186
intrinsic stability of, 369
of polymers, 1–3, 2
structural disorders of, xii, 208

Crystals, disordered
diffraction analysis from, 298–300
short-range order in
class A, 302–305, 303
with substitution-type disorder, 305–309, 307, 308, 310
short-range order vs. long-range order in, 309–311
Crystals, single
deforation, 352, 352
electron micrographs or, 342, 345, 345, 343–345, 344
nomenclature for sectors and fold surfaces of, 355
Crystal structure symmetry, impact of chain folding on, 103–107
Crystals with partial three-dimensional order (class A), 191, 191–192
conformational isomorphism, 202–204, 203, 204
kink-band disorder in, 211
in cooperative crystal-crystal polymorphic transitions, 218, 220
in PE, 215–216, 216, 218
in PVDF, 212–215, 213–215
in sPP, 216–218, 217–219
stacking faults, 104
in α- and γ-forms of iPP, 206–209, 207–210
in β-form of sPS, 209–211, 211, 212
in Form I and Form II of sPP, 104–205, 205–207
substitutional isomorphism of different chains
disorder in orientation of chains around chain axis, 197–200, 198–200
disorder in positioning of up and down chains, 195–197, 196–198
in positioning of right- and left-handed helical chains, 192–195, 192–196
substitutional isomorphism of different monomeric units, 200–201, 201
Crystal systems
interplanar distances for, 170, 171
multiplicity factors for hkl reflections in, 176, 177–179
reciprocal and direct lattices for, 125, 126
C₆₉-symmetric zirconocene complexes, 3/4, 374, 374, 319, 375
Cycloheptene, 68
Cyclopentene, 68
Cylindrical coordinates
calculation of, 140, 141
and diffraction intensity, 150, 151
symmetry relations for, 29, 29–30, 30, 30
Data reduction, 138
Debye function, 338
Debye-Waller factor, 299, 320
Deformation. See also Plastic deformation
in iPP samples, 414, 414
plastic vs. elastic, 373
of semicrystalline polymers, 373
stress-induced phase transformations during, 371–373
Density (entropy)-driven phase formation, xi, 92–95, 92–96
Diffraction, 125. See also Electron diffraction; Selected-area electron diffraction; X-ray diffraction
Diffraction analysis
of complex helical structures, 154
methods, 298–300
Diffraction data
collection of, 299
effect of b/4 shift disorder on, 331
and order-disorder phenomena, 210, 211, 212
Diffraction intensity
average values of, 158, 160, 160–161
calculations of average, 328
stacking fault disorder in β-form of sPS, 333–337, 334, 336
in substitution-type disorder, 328–330, 330
in translation-type disorder, 331–333, 333
for disordered structures, 306, 306
integration method of calculating, 357, 357–358
Diffraction modeling, xi, 299, 311
Diffractometer, 134, 135
Diffuse scattering
analysis of, 297
possible shapes of, 306–308
Dihedral angles, typical values of, 21, 21
Directionality, and helical stems linked by fold, 104, 104
DISCUS program, 309
Dislocations, 189
Disordered models, with perturbations occurring over continuous ranges, 311–315, 313, 315
Disordering transition, 226
Disorders. See also Solid mesophases; specific disorders
Distortions
of first kind, 186, 186, 187, 188, 291, 297
paracrystalline, 187
of second kind, 186, 186, 187, 188, 188, 297, 297
DNA, X-ray diffraction pattern of oriented gel of helical, 147, 147
EFTE terpolymers, alternating, 261, 263, 263
Electron diffraction (ED)
selected-area electron diffraction (SAED), 359, 360–361, 362
of single crystals, 3
Electron diffraction (ED) data, collection of, 299
Electron diffraction (ED) techniques, 298
Electron diffraction patterns
in α-form of syndiotactic polystyrene, 100–101, 100
of form II of ip4MP, 105, 105, 107, 107
of hexagonal single crystals, 109, 109
for ip4MP, 107, 101–102
of sPS single crystals, 336, 336–337
of stacking fault disordered structures, 205, 206, 207
Electron diffraction studies, of polymer single crystals, 2
Electron microscopy, dark-field, sectors visualized in, 350, 350–351
Enthalpic elasticity, of sPP, 439, 439–440
Entropic elasticity, of sPP, 439, 439–440
Epitaxy, alpha to alpha, 361
Equivalence principle, xii, 21–33, 22–24, 25–29, 30, 51, 52, 53, 138
Erythro/threo terminology, 15–17, 16, 17
Ethylene and propylene (EP) copolymers
pseudohexagonal form of, 241–242, 241–245
random, 259–243, 240–243
X-ray fiber diffraction patterns for, 240
Ethylene-chlorotrifluoroethylene (ECTFE), hexagonal
mesomorphic form, 263–264
Ethylene-cis-2-butene, configurations of chain of
alternating, 68, 69
Ethylene-cis-2-butene copolymer, chain of alternating, 68, 70
Ethylene comonomeric units, and rr stereodefects, 396–397, 397
Ethylene copolymers, commercial production of, 398
Ethylene-cyclopentene copolymer (ECC)
chains of meso-disotactic alternating, 69, 70
conformation for alternating, 69–70, 71
Ethylene-norbornene copolymers (ENCs), 228
alternating, 264
c-axis of structure of, 270, 271
chains of, 266, 266
crystalline phase of, 271
crystal structure of, 266, 266, 268
disordered model of packing of isotactic chains of, 268, 269
ionene and polymeric ionic salts, 270
isotactic and syndiotactic, 267
structural disorder in, 268, 268
Ethylene-tetrafluoroethylene (ETFE)
half-width of main diffraction peak of, 258–259, 260
mesomorphic forms of class B, 256
orthorhombic and hexagonal mesophases of, 260, 260–261
proposed crystal structure for, 256, 257
Ethylene-tetrafluoroethylene (ETFE), alternating, order in
crystals of orthorhombic form of, 259–260, 260, 261
Ethylene-tetrafluoroethylene (ETFE) copolymers
alternating, 265–264, 265–264
TFE concentrations of, 260, 262
Ewald’s sphere of reflection of radius, 125, 127, 127, 128
Eyring’s transformation, 52
Fiber diffraction patterns, 132–133, 133. See also X-ray fiber diffraction patterns
Fisher projections, 6
rotated, 7, 13, 13–14, 14, 14
of tetrahedral structure, 7
Force field, for calculation of conformational energy, 52, 53
Fourier synthesis, 137
Fourier transform calculations, 142, 240–241, 241, 248
of discontinuous helix, 147–148
of lattice function, 320
for mesomorphic form of iPP, 276
of mesomorphic form of PTE, 276
of system of planes in real space, 148, 148
Fourier transform infrared (FTIR) spectroscopy, 79, 165, 228
Frustration, concept of, 107–108
Gaussian function, 172, 311–312, 313
Geometrical morphology, xi
Geometry
of molecule, 18
reflection (Bragg-Brentano), 134, 135
tilted, 142, 143
Glide plane t: symmetry, chains with, 45–46
Helical chains
structural factors of more than one, 163, 165, 165
structural factors of single, 162–163, 164
Helical conformation, and optical activity, 66, 67, 68
Helical structures, diffraction theory of, 248
Helical symmetry
chains with $s(M/N)$ helical symmetry, 44–45
and one-atom chain, 37–38, 38
and two-atom chain, 38–42, 40–42, 43, 44
and three-atom chain, 42–44, 43, 44
Helical symmetry of chains, principle of conservation of, 92
Helical symmetry $s(A*M/N)$, 22
Helices
class of, 22, 25, 26, 28
continuous, 144–147, 145–147, 146, 148
discontinuous, 147–148
incommensurable, 153–162, 152, 152, 158, 159, 160, 160,
161, 162
parameters for, 22
right-handed vs. left-handed, 41, 41
HELIX program, 152–153
Helix residue, 22, 25, 26, 28, 40
Heteroepitaxy, bright-field TEM image of iPP crystallized
by, 362
Hexene units, and mechanical properties of iPP, 403, 403
Homoeptix
bright-field TEM image of, 359, 359–360
of α-form crystals, 360, 361
in iPP, 361, 363, 364
of polymers, 359, 359–361, 363
iPP samples
elastic recovery in, 388, 389
with rr detects, 383, 384
Ideal crystals, 186, 186
Ideal structures, 185
Identity period, 21
Independent infrared (IR) experiments, 244
Integrated intensities measurement of, 171–172, 173, 174
diP (isotactic polybutene), 371
conformational energy calculations for, 56, 56–57, 57
crystal structure of form III of, 112–113, 114
models of packing for, 90, 91, 91
packing for crystal structures of, 96
iP3MB, packing for crystal structures of, 96
iP4MP
conformational energy calculations for, 56, 56–57, 57
crystal structures of, 105, 106–107
electron diffraction patterns of, 101, 101–102, 107, 107
models of packing for, 90, 91, 106, 106
packing for crystal structures of, 96
packing of chains in form III of, 102, 103
solid-state 13C NMR-CPMAS spectrum of form III of, 102, 102
structure of form II of, 106
IPP (isotactic polypropylene)
α-form of
 crystallization of, 377–378
 packing of, 92, 92
alpha-to-alpha homoeptaxy in, 360, 361, 362
bright-field TEM image of heteroeptaxy in, 362
conformation in chains of, 25
crystalization and physical properties of, 370
crystallization via mesophase of, 417, 417
 crystals of morphologies of γ-form of, 364, 365, 366
 structure of γ-form of, 206, 207
 structures of trigonal form of, 95, 95
defects and disorder of
 influence of conditions of crystallization on mesomorphic form of, 406–420, 407–417, 419–421, 422
 influence of constitutional defects on crystallization behavior of, 390–391, 392–393, 394
 influence of constitutional defects on physical properties of, 397–406, 399–403, 405, 406
 influence of stereo- and regiodefects on, 378–381, 378–382
 influence on crystallization behavior of, 3/4–3/1, 374–378
 stress-induced phase transformations, 382, 382, 383, 384, 385, 386, 386–388
 disordered forms of, 275–276, 275–277
 disordered packing of chains of, 2/6, 276
γ-form of
 cross-β orientation of crystals of, 385, 385–386
 crystallization of, 377–378
 mechanical instability of, 382–383, 394
 in stereodefective IPP samples, 38
 helical conformation of, 30
homoeptaxy in, 361, 363, 364
isotated stereodefect in chain segment, 3/1, 373
line repetition groups for, 33, 34
mesomorphic form of, 406–407
 crystallization pathways of, 413, 413
 DSC heating scan of quenched, 410–411, 412
 mechanical properties of solid mesophase of, 412–417, 413–417
 micrograph of IPP films of, 417, 417
 solid mesophase and γ-form in metallocene IPP, 417–422, 419–421
 stress-strain curves of, 414, 414–418, 419, 420
 tensile-stress-strain behavior of, 414, 414–415
 yield strength of, 415, 415–417, 416
 metalloocene-based samples, 207–208
 modulus data of, 415, 416
 packing of chains in β-form of, 109, 109
 packing of threefold helices of, 197, 198
 phase diagram with regions of stability in, 386, 386, 387
 properties of, 373
 right- and left-handed chains of, 196
 spherulites of, 360, 360
 stacking fault disorders in, 206–209
 stacking of, 92, 92
 stress-strain curves with different stereoregularities of, 90, 99
 stereodefective
 elastic properties and phase transformations in, 388–390, 388–390
 melt-crystallization procedures for, 3/1, 377
 stereoirregular samples with stress-strain hysteresis cycles, 388, 388, 389
 in threefold helical conformation, 103, 103
IPP (isotactic polypropylene) copolymers, with branched comonomers, 276–279, 278–280
IPP (isotactic polypropylene) samples
 α-form of, 386
crystallized from melt
 AFM images of, 409, 410, 411
 AFM phase-mode images of, 408, 408
 optical micrographs of, 408, 409
 metalloocene-made with defects inside crystalline phase, 381
 quenched from melt in mesomorphic form, 410, 410
 with rr defects, 378, 379
 elastic modulus values, 3/9, 380
 and elastomeric properties, 380
 highly stereoregular, 386
 with metalloocene catalysts, 381
 stereodefective
 effect of stress-induced transformations on, 420, 421
 X-ray powder diffraction profiles of, 418, 419
 stress-strain curves with different stereoregularities of, 3/9, 379
 transformation of γ-form into α-form of, 386–387
iPPBu copolymers, 285, 395, 393, 394, 406
 behavior of, 404
 influence on IPP of, 398, 399, 400
 maximum amount of γ-form in, 394, 394, 395
 mechanical behavior of, 403–404
 stress-strain curves in, 401, 402–403
 stress-strain curves of compression-molded films of, 400, 401
 X-ray fiber diffraction patterns of fibers of, 405
 X-ray powder diffraction profiles of samples of, 391, 392
iPPe samples, melting temperature of, 94, 94
ippET copolymers, 402, 406
 behavior of, 404
 influence on IPP of, 398, 399, 400
 maximum amount of γ-form in, 394, 394
iPPEt copolymers (cont’d)
 mechanical behavior of, 403–404
 stress strain curves of compression-molded films of, 400, 401
 X-ray fiber diffraction patterns of fibers of, 405
 X-ray powder diffraction profiles of samples of, 391, 392
iPPHe, melting temperature of, 94, 94
iPPHe copolymers, 393, 393, 394, 406
 behavior of, 404
 f(ω) data for, 395
 influence on iPP of, 398, 400
 maximum amount of γ-form in, 394, 394
 mechanical behavior of, 403–404
 melting temperature and crystallinity, 399, 400
 stress-strain curves of compression-molded films of, 400, 402
 X-ray fiber diffraction patterns of fibers of, 405
 X-ray powder diffraction profiles of samples of, 391, 392
iPPOct copolymers
 organization of chains of, 279, 280
 X-ray fiber diffraction patterns for, 279, 279
iPS (isotactic polystyrene)
 conformational energy calculations for, 55, 55–56
 minimum energy conformations for chains of, 81 packing models for, 90, 90
iP(S)3MP, crystal structure of, 110, 110–111
iPVCH crystals
 characteristic streaks in ED patterns of, 357, 358, 359
 twinned morphology of, 357, 358, 359
 Isomorphism, conformational, 202–204, 203, 204, 213
 Isoprene, constitutional units of, 3
 Isotactic polypropylene. See iPP
 Isotactic polystyrene. See iPS
iSTCO, helical repetition for chain of, 71, 72
Jogs, 189

Kevlar, 224
Kink-band defect, 214–215. See also Conformational kink-band disorders
Kink-band disorders, in cooperative crystal-crystal polymorphic transitions, 218, 220

Kink defects, indirect observations of, 244–245, 245
Kinks, 189

Lamellae, formation of nonplanar, 352, 353, 354, 355
Lamellar crystallites, formation and growth of, 229
Lamellar mesophase, 223, 225
Lamellar model, to describe polymer structure, 369
Lattice, crystal. See also Reciprocal lattice
 of monoclinic crystal, 124, 124
 parameters of reciprocal and direct, 125, 125
Lattice distortions
 of first kind, 186, 186
 types of, 297, 297
Lattices, disordered
 long-range order in class A, 300–302, 301, 302
 substitution-type, 303, 303
Laue functions, 181–183, 182, 316, 325
Laue’s conditions, 136
Laue symmetry, for powder and fiber diffraction, 176, 177–179
Lauritzen-Hoffmann theory of polymer crystallization of, 348
LC mesophases, 219
LCs, See Orientationally ordered liquids
Lennard-Jones function
Limit ordered model
Limit disordered model
Limiting sphere, 127, 129
Limit ordered forms, models of packing of, 436–437, 437
Limit ordered model, 192, 192, 193
Linear absorption coefficient, 174
Line repetition groups
 application of symmetry elements of, 29–30, 30
 configuration and, 24
 for iPP and sPP, 33, 34
 for symmetry operators, 23, 23
Liquid crystalline state, 221
Long-range order
 determination of amount of, 30
 vs. short-range order, in disordered crystals of classes B and C, 309
Lorentz factor, in polymer crystal structure analysis, 174, 174
Lorentzian function, 172
Macromolecules
 conformations of, 51
 internal parameters of, 19–20, 19–21
Markov chain, first-order, 305
Markov model, 308
Markov process, 322
Mass absorption coefficient, 174
Melting temperatures
 and crystallization behavior of sPP, 424, 424–425
 and X-ray degrees of crystallinity, 399, 400
Mesogenic, use of term, 221
Mesogenic groups, 221, 222, 223, 223
 of polymers with main- or side-chain, 226
 rod-shaped and disk-shaped, 221, 222
Mesomorphic, use of term, 220
Mesomorphic modifications, 219. See also Solid mesophases
Mesomorphic state, 219–220
Mesophases
 chiral smectic C, 225
 classification of, 221
 columnar, 225
 lyotropic, 221
 PCs as, 228
 solid, 2, 190, 191
 thermotropic, 220–221
Metalocene catalysts
 chains of sPP prepared with, 422, 423
 single-center, 373
Metalocene complexes, and catalytic behavior, 422
Methyldialimonoxane (MAO), 375
Miller indices, 166, 168–169, 170, 350n
Minimum internal conformational energy, principle of, 35–36, 33–36, 138
Modulus data, of iPPI, 415, 416
Molecular mass, and crystallization of γ-form of iPPI, 378
Molecules, classes of, 222–223
Monomeric units, substitutional isomorphism of different, 200–201, 201
Monte Carlo simulation of disordered structures for squared lattice, 309, 310
of PET in confined geometry, 274
Nematic mesophases, 223, 224, 225, 225
Nematic phase, 223
Newman projections, for application of equivalence principle, 31, 31, 32, 32
Norbornene-ethylene-norbornene (N-E-N) diad sequences, 266, 266
Nuclear magnetic resonance (NMR) spectroscopy, 165, 296
for analysis of PAN, 239
for solid mesophases, 228
Nylons chain conformations of, 28, 28–29
crystalline polymorphic modification of, 118
hydrogen-bonding schemes, 118, 118
sheets of hydrogen bonded chains in, 116, 116, 116, 117
Nylon 6 (poly(ε-caprolactame)) β-form of, 235
chains of helical extended conformation of, 232–233, 233
low internal energy of disordered conformations of, 233–234, 234
solid mesophases of, 232–234, 232–235
X-ray diffraction profiles for model structures of β-form of, 234, 234–235
Nylon chains conformation and packing mode of, 114, 115
minimum energy conformations of, 115, 115–116
Observed structure factors, 174
bis(4-n-octyloxybenzal)-1,4-phenylenediamine, 227
Olefin, polymerization of, 370
Optical activity, in isotactic polymers, 66, 67, 68
Optical microscopy, polarizing, 408
Ordered liquid mesophases (LCs), 227
Orientation disorder, 269, 270, 271
Orientationally disordered glasses (PC glasses), 222
Orientationally ordered liquids (LCs), 220
forming flexible polymers, 226
in small molecules and polymers, 222, 223–227
Packing of chains in β-form of iPPI, 109, 109
of chains of sPP, 206, 206, 206
of conformationally disordered chains of nylon 6, 233–234, 234
Packing disorders and long-range positional order, 296
of polymer chains, 189
polymorphism associated with, 301–302, 302
Packing energy calculations, 396, 397
Packing in polymer crystals chiral crystallization of polymers with helical chain conformations, 110–112, 110–113
effects on conformation of polymer chains, 113–118, 115–118
frustrated polymer crystal structures, 107–110, 108–110
general principles, 88–92, 89–91
impact of chain folding on, 103–107, 103–107
models of, 90, 90, 91
and principle of density-driven phase formation, 92–95, 92–96
symmetry breaking, 96–103, 96–103
tetragonal mode of, 89, 89
Packing models in limit ordered form II of sPP, 219
for limit ordered forms, 436–437, 437
Packing requirements, and vicinal requirements, 108
PAN conformation of chain stretches of, 236, 236
diffraction intensity I, for disordered isolated chain of atactic, 238–239, 239
disordered conformations of atactic chains of, 235, 237–238
packing of atactic and conformationally disordered chains of, 238, 238
pseudo-hexagonal crystalline form of, 239
side views of chain stretches of, 236–237, 237
solid mesophases in, 235–238, 235–239
X-ray diffraction intensity distribution of fiber of, 235, 235
Paracrystal, concept of, 186
Paracrystalline, 186, 276
Paracrystalline disorders, 317n
Paracrystalline lattice factor, 312–313, 313
Patterson function, 137
Patterson map, 137
PCs. See Plastic crystals
Pearson function, 172
PET (poly(ethylene terephthalate)), 272–274, 272–275
chain conformation of, 272
characteristics of, 274–275
disordered conformations of, 274, 274
X-ray fiber diffraction pattern of stretched fiber of, 319, 319
Phase problem, in crystallography, 134–140
“Pinning” effect, 349
Planes, 189, 189
Plastic crystals (PCs), 220, 227
characteristics of, 221
structure of, 223
Plastic deformation vs. elastic deformation, 373
mechanisms of, 371–373
polymorphic transformations during, 372–373
role of cavitation in, 372
transformations during, 386, 387
PLLA/PDLA stereocomplexes, 345, 346, 347
Point and line defects, 189
Polarization, in polymer crystal structure analysis, 174, 174
Polyamides, aliphatic, 113–118, 115–118, 143–144
Poly(butadiene)
chain conformations for, 26, 26–28, 27
conformations in, 33, 33
constitutional units for, 4
trans-1,4-Poly(1,3-butadiene) (trans-PBD)
disordered form II of, 231
model of packing of chains of, 231
solid mesophase in, 230
Poly(1-butene). See also iPB; sPB
conformational energy calculations for, 55, 55–56
maps of conformational energy of, 61–62, 62
Polycatenary mesogens, 221, 222
Polycrystalline specimens, 133, 135
Polydienes
conformational energy maps for, 75, 76, 78
conformations for, 73–78, 76, 77, 78
diatic, 78
line repetition symmetry groups for, 73–74, 74
structural data of, 75, 77, 78
syndiotactic, 78
cis-Polydienes, repulsive nonbonded interactions arising between atoms of, 75–76, 78
Poly(di-n-alkyl-siloxane), 229
Poly(ɛ-caprolactame). See Nylon 6
Polyethylene (PE)
anabaric, 215
conformational kink-band disorder in, 215–216, 216, 218
single crystals of, 341
electron micrographs of, 342, 343–345, 344
nonplanar lamellar, 352, 353
1st/M images of, 352, 353, 354
planar images, 355, 356
trans-planar conformation of chains of, 27
twinned sixfold star crystal of, 355–356, 357
unit cell parameters in structure of, 239, 240
Polyethylene (PE) fraction, decorated single crystal of, 351, 351–352
Polyethylene lozenges, TEM images of, 350, 350–351
Poly(ethylene oxide) (PEO), 43, 44
Poly(ethylene terephthalate). See PET
Poly(ethylene), regular, 8
Poly(γ-methyl-L-glutamate (PMG), 156, 157–158, 158, 159
Polyisobutylene, helical parameters for, 39
Poly(isoprene)
constitutional units for, 4
regular conformation of, 30, 30
cis-1,4-Poly(isoprene), 202, 203, 212
Poly(L-lactide)/PLLA/poly(D-lactide) (PDLA) 50/50 mixture, 111, 345, 346, 347
Polymer chains
with glide plane tw symmetry, 45–46
with $s(M/N)2$ helical symmetry, 44–45
stereoregularity of, 13
Polymer crystallography, xi
Polymer crystals. See also Crystal habits
characteristics of, 341
conformation in, 18, 18–19
disorders
analysis of, xii
types of, 190–191
lack of three-dimensional long-range order in, 188, 188–189
and principle of close packing, 88
and principle of conservation of chain symmetry, 88–92, 89–91, 95
single, 341, 342, 343, 343–345, 346, 347
twinning in, 355–356, 357
Polymer crystal structures, frustrated, 107–110, 108–110
Polymeric materials
correct crystal structure analysis of, 300
crystallinity in, xi–xii
macromolecules in, 370
main characteristics of, 185–186
semicrystalline, xii, 1, 2
stress-strain behavior of, 372–373 (see also Stress-strain curves)
Polymerization, chain migratory insertion mechanism of, 422
Polymers
atactic, 5
chiral polymorphic forms of, 112, 113
cis-tactic, 5
collection of diffraction data of, 299
combitke, 2/1, 271
crystals of, 1–4, 2
diisotactic, 9, 10
dis syndiotactic, 9, 10, 17, 17
di tactic, 9, 11–12
heterotactic, 15
homeot eptaxy for, 361, 363
irregular, 3, 4, 5
isotactic, 8, 13
packing of antichiral helices in, 105
plastic deformation in, 371–372
regular, 3–4, 5
semicrystalline, 373
solid mesophases in, 227–229
syndiotactic, 14
tactic, 5–6
trans-tactic, 5
Polymers, crystalline
configuration of, 5–14, 6, 12–14
constitution of, 3–5
relative configurations for, 14–18, 15–17
Polymers, isotactic
conformational energy calculations for, 54–66, 55–56
58–60, 60–66
conformations of chains of, 47, 60, 61
helical conformations in, 46–50, 46–51
helical conformations of chains of, 61, 61
inversions of helical sense of, 80, 80
nonhelical chain conformations of, 78–81, 79–81
structural data for, 57, 58–60
Polymers, semicrystalline, tensile loading of, 416–417
Polymers, syndiotactic, 8
 conformational energy calculations for, 54–66, 33–37, 58–60, 66–69
 helical conformations in, 46–50, 56–51
 structural data for, 57, 58–60
Polymer single crystal models, 341, 342
Poly(methylene-1,3-cyclopentylene) (PMCP), 318–319
Poly(4-methyl-1-hexene), syndiotactic (sP4MH), 158
 fiber diffraction pattern of, 161
 indexing schemes of layer lines for, 162
 X-ray fiber diffraction pattern of, 158, 160
Poly(4-methyl-pentadiene), isotactic (iP4MPD)
 diffracted intensity of chains of, 163
 helical chirality in, 55–66
 indexing scheme of, 151, 152
 18/5 helix of form II of, 152
 X-ray fiber diffraction patterns of, 150, 151, 152
Poly(4-methyl-1-pentene)
 conformational energy calculations for, 55, 55–56
 maps of conformational energy of, 61–62, 62
Poly(4-methyl-1-pentene), isotactic (iP4MP), 150, 151, 152
Poly(m-methylstyrene), syndiotactic (sPMMS), 286–287, 287
Polymorphism, packing disorders associated with, 301–302
Polylefinis
 isotactic, 66
 with molecular defects, 370
Poly(o-methylstyrene), models of packing for, 90, 91
Poly(1-oxo-2-phenyltrimethylene), packing model of, 171, 172
Poly(oxy-2,2′-dimethylazobenzene-4,4′-diol)
 diffracted intensity of, 227
Polyoxymethylene (POM), electron micrographs of single crystals of, 343, 343
Polypeptides
 α-polypeptides, 156
 torsion angles for conformations of, 43, 43
Poly(p-methylstyrene), syndiotactic (sPPMS), 286–287, 287
Poly(p-phenylene terephthalamide), 223, 224
Polypropylene
 conformational energy calculations for, 55, 55–56
 maps of conformational energy of, 61–62, 62
 production of, 370
 ZN, 373–74
Polypropylene, syndiotactic. See sPP
Polypropylene chain, conformations for, 34, 35
Poly((S)-3-methyl-1-pentene), isotactic (iP(S)3MP)
 conformational energy of chain of, 66, 67, 68
 conformational isomorphism of, 203–204
Polystyrene, isotactic. See iPS
Polystyrene, syndiotactic. See sPS
Poly(tert-butylacrylate oxide) (PBEO), 43, 44, 111–112, 112
Poly(tert-buty1acrylate sulfide), isotactic
 crystal habits of, 345, 345
 single crystal of, 345, 346
Polytetrafluoroethylene. See PTFE
Poly(vinylcyclohexane), 90, 91
Poly(vinylidene fluoride). See PVDF
Poly(vinylpyridine), 110, 110
Poly(2-vinylpyridine), isotactic, 345, 346
Positionally disordered glasses (LC glasses), 222
Powder diffraction analysis, Rietveld method for, 181. See also X-ray powder diffraction profiles
Powders, polymer samples in form of, 133–134, 135
Prochirality, 12, 12
Prochirality centers, 12–13, 13, 13
Propene-butene (sPPBu) copolymers, syndiotactic, crystallization of, 433
Propylene, enchainment of, 4. See also iPP; sPP
Propylene-butene (sPPBu) copolymers, syndiotactic, 200–202, 201
Propylene copolymers, commercial production of, 398
Propylene-ethylene copolymers
 properties of, 431
 syndiotactic (sPPet), 285
Propylene-hexene, isotactic, 93, 93
Propylene-pentene, isotactic, 93, 93
Pseudo-Voigt function, 172
PTFE (polytetrafluoroethylene), 38
 conformationally disordered chain of, 250
 form I of, 250
 form II of, 247
 form IV, 247–248, 250
 hexagonal packing of chains of, 247, 247
 high melting temperature of, 251
 kink-based disorder in, 211
 long-range order of chain axes tor, 247, 250
 models of chains of, 249, 249
 solid mesophase of, 251
 and solid mesophases of class B, 245–247, 245–251, 249, 250
PVDF (poly(vinylidene fluoride))
 conformational kink-band disorder in, 212–215, 213–215
 single crystals of, 341, 342

Racemate structure, 111
Racemic compound, 112
Racemic polymers, optical compensation of, 112, 112
Raman spectroscopy, 228
Reciprocal lattice, 136
 concept of, 124, 125, 126, 127
 of crystal, 131, 131, 132
 for crystal systems, 125, 126
 of isotactic polypropylene, 166, 167
Refining procedures, with X-ray diffraction, 180–181
Reflection (Bragg-Brentano) geometry, 134, 135
Regiodefects, 370
 controlled incorporation of, 371
 and crystallization of iPP, 395–396
 influence on crystallization behavior of iPP, 374–378
 and mechanical properties of iPP, 378–381, 378–382

Relative configurations
 erythro, 15–16, 16, 17
 meso, 14–15, 15, 16
 racemo, 14–15, 15, 16
 three, 15–16, 16, 17
Repeating units, 21–22, 25, 26, 27, 28
Rietveld method, for powder diffraction analysis, 181
Rod group symmetry, of isolated polymer chains, 23–24,
24
Rotating single crystal method, to collect diffraction
pattern, 127, 129, 130
Rounded lateral habits, formation of, 347, 348
rr triad stereoblocks, 5/5, 5/5
Rubber, natural, X-ray fiber diffraction pattern of, 173, 173
Scattering intensity I(S), 326
Secondary nucleation, kinetic theory of, 341
Selected-area electron diffraction (SAED), 359, 360–361, 361
and epitaxial relationships, 361, 362
and stem orientation, 364, 364
and tilting, 365, 366
Self-poisoning effect, 348, 348–349
Semicrystalline polymers, deformation behavior of, 373
Semicrystallinity, 369
Sequence-rule procedure, 12, 13
Shear yielding, in plastic deformation, 371
Short-range order (SRO)
in disordered crystals of class A, 302–305, 303
in disordered crystals with substitution-type
order, 305–309, 307, 308, 310
vs. long-range order, 309
Silks, fiber morphology of, 385
Similar distortions, principle of, 65
Slater-Kirkwood equations, 52
SmC mesophase, 224, 225
Smectic phase, 223, 224
Solid mesophases, 190, 191, 229
classification of, 227–228
crystallization of, 369–370
definition, 219
in polymers, 227–229
Solid mesophases of class B, 219, 228, 229
alternating ENCs, 264–271, 265–271
alternating ETFE copolymers, 255–264, 256–264
comlike polymers, 271, 271
ethylene-propylene random copolymers, 239–243, 240–243
PAN, 233–238, 235–239
poly(e-caprolactame), 232–234, 232–235
pseudohexagonal form of PE, 243–245, 244–245
P1PE, 240–247, 245–251, 249, 250
random copolymers of TFE with fluorinated
comonomers, 251–255, 252–255
1,4-trans-poly(1,3-butadiene) (trans-PBD), 230
Solid mesophases of class C, 219, 228
crystals of long-range positional order in 1 or 2
dimensions, 271–272
copolymers of iPP with branched comonomers,
276–279, 278–280
copolymers of sPP, 284–286, 286
iPP, 275–276, 275–277
PE, 272–274, 272–275
sPP, 2/19–284, 280–284
sPS and methyl-substituted polystyrenes, 286–288, 287
Solid solutions, 112
Space group, xiii
sPB (syndiotactic polybutene)
chains in helical conformation, 65
form I of, 112–113, 114
maps of conformation energy of, 63–64, 64
Newman projections of conformations for, 66
packing for crystal structure of, 98, 98
Spherical surfaces in reciprocal space, calculating diffraction
intensity for, 55’, 55’–55’
S4MP
helical conformation in chain of, 65
maps of conformation energy of, 63–64, 64
sPP (syndiotactic polypropylene)
chiral form II of, 113, 114
conformational kink-band polypropylene
conformations for, 216–218, 217–219
conformations of, 25, 25–26
conformations of chains of, 62, 63

crystallization behavior of
influence of constitutional defects on, 431, 432, 433–434
influence of stereodefects on, 424, 424–427, 425, 427
crystallized at different temperatures, 194, 195
crystal structures of form II, 112–113, 114
elasticity of, 437, 439, 439
electron diffraction pattern of single crystals of, 98, 99
eintropic and entropic elasticity of, 439, 439–440
influence of stereodefects on
crystallization of mesomorphic form of, 427–428
mechanical properties of, 434–440, 435–439
trans-planar and helical forms, 428, 429, 430–431, 431
line repetition groups for, 33, 34
mechanical properties of, 422
monodimensionally disordered models of, 322, 323, 325
and novel catalyst production, 422
origin of elasticity in, 435
packing of chains in form I of, 98, 98, 99
physical and mechanical properties of, 434
plastic deformation and elasticity in, 435–436
polymorphic behavior of, 285
single crystals of, 341
electron diffraction patterns of, 529, 530, 532, 533
electron micrograph of, 342
lamellar, 352, 352
solid mesophase of
class C, 2/19–284, 280–284
mechanical properties of, 440, 440–442, 441
stacking fault disorder in, 204–205, 205–207
stereoregularity of, 432–434
stress-strain curves for different stereoregularities,
434–435, 436
stress-strain hysteresis cycles for, 437, 438
X-ray fiber diffraction patterns of stereoregular, 432
X-ray powder diffraction profiles of compression-molded films, 440–441
sPP (syndiotactic polypropylene) copolymers, with higher 1-olefins, 285–286, 433–434
sPS (syndiotactic polystyrene)
α-form of
limit ordered and disordered models of, 199, 199, 200
models of packing of chains in, 100, 100–101
symmetry breaking in, 100, 100
conformations of, 62, 63
maps of conformational energy of, 61–62, 62
and methyl-substituted polystyrenes, 286–287, 287
models of packing for, 210, 212
stacking fault disorder in β-form of, 334, 334–335
stacking faults in, 209–211, 211, 212
trans-planar chains of, 200
X-ray powder diffraction profiles of, 198–199, 199
sPS (syndiotactic polystyrene) single crystals, ED pattern of β-form of, 336, 336–337
sSTCO, glide plane to c repetition for chain of, 71, 72
Stacking faults, 211. See also Kink-band disorders
in α- and γ-forms of iPP, 206–209, 207–210
in β-form of sPS, 209–211, 211, 212, 334–335
in Form I and Form II of sPP, 104–205, 205–207
X-ray powder diffraction profiles of, 210, 211, 211
Statistical disorder, 187, 187
Stem orientation, 360–362, 363
Stereodefects, 370, 375
controlled incorporation of, 371
and crystallization of iPP, 395–396
influence on crystallization behavior of iPP, 374–377, 374–378
and mechanical properties of iPP, 378–381, 378–382
Stereoheterotopic groups, 12
Stereoisomeric centers
double bonds, 5
prochiral, 12
tetrahedral, 6, 15
Stereoisomerism, 5–6
main-chain sites of, 9
sites of, 11
Stereoregularity
defects of, 18
in structural transformations during stretching of sPP, 283–284
Stereoregular vinyl polymers, application of equivalence principle to, 31, 31–33, 32, 33
Stereorepeating units, 5, 8, 9, 9
Stereosequence, 14
Steric hindrance, 34–35, 36
Stress-induced phase transformations, during deformation, 371–373
Stress-strain behavior, of polymeric materials, 372–373
Stress-strain curves
of iPP samples, 413, 414
and shape of elastomeric materials, 380
in sPP samples with different stereoregularities, 434–435, 436
of stereodefective iPP samples, 420
Stress-strain hysteresis cycles
for sPP samples, 437, 438
of stereoregular samples of iPP, 388, 388, 389
Stretching experiments, yield point in, 372
Structural analysis, in classic crystallography, 137
Structural disorders
average diffracted intensity in, 328
stacking fault disorder in β-form of sPS, 333–335, 335
substitution-type disorder, 328–330, 330
translation-type disorder, 331–333, 333
classification of, 185–191
conditions for, 189
with correlations in succession of adjacent layers coupled with translational disorder, 324, 324–325, 326
and diffuse scattering, 296–298, 297
dynamic, 296
and semicrystallinity, 369
substitutional isomorphism of different chains, 317–318
X-ray diffraction intensity, 316
X-ray diffraction intensity calculations
basic formalism in X-ray modeling, 316–319, 319
for effect of longitudinal translational disorder, 319–321
for rotational displacements of chains about their axes, 319–321
substitutional and translational disorder in one dimension, 321–328, 325, 324
Structural features, non-point-centered repeating, 189, 189–190
Structural refinement, of crystal structure determination, 180–181
Structure factors, calculation of, 174–179, 175, 177–179
Styrene-CO copolymers
conformations of chains in isotactic and syndiotactic alternating, 73, 73
constitution of isotactic and syndiotactic alternating, 71, 71–72
Substitutional isomorphism of different chains, 212, 213–214, 214
Substitution-type disorder, 303, 303
Swallow-tailed mesogens, 221, 222
Symmetry breaking
eamples of, 96, 96
in α-form of syndiotactic polystyrene, 100, 100
frustration and, 110
Symmetry operators
for conformations of polymers, 22, 22
line repetition groups for, 23, 23
parameters of, 22
for vinyl polymer chains, 24
Temperature, and structural disorders, 370. See also Melting temperatures
Tensile deformation, stress-induced phase transformations during, 382, 382, 383, 384, 385, 386, 386–388
Tensile stress-strain curves, of mesomorphic iPP, 414, 414, 418–419, 419, 420
Tensile stress-strain testing, for iPP samples, 415, 415
Terephthal-bis-(butylaniline), 225
Tetrafluoroethylene. See TFE
TFE copolymers
 effect of CF₃ groups on, 254
 with fluorinated comonomers, 251–255, 252–255
TFE-hexafluoropropene (HFP)
 DSC heating curves in, 251, 252
 phase diagram of, 252
TFE-HFP copolymers
 increase of unit cell parameter for, 255
 and PTFE homopolymer, 254
 segregation of HFP defects in, 255
 X-ray diffraction profiles of fiber of, 253, 253–254
TG TG sequences, 215, 216
Thermal diffuse scattering (TDS), 299–300
Tilted geometry, 142, 143
Titanocenes, 422
Torsion angles
 and calculation of unit twist, 40, 40, 41–42
 calculation of the values of, 43, 43
 definition of, 18, 18, 19, 19
 with different symmetries, 33, 33
 maps as function of, 42, 48, 48
 of polypeptides, 43, 43
 and principle of staggered bonds, 34, 35
 restrictions of availability of, 20
 values of internal coordinates, 38, 38–39, 39
 for vinyl polymers, 46, 46
 True real-space approach, 311
Twinning, and secondary nucleation theory, 355–357, 357, 358, 359

Uniaxial stretching, plastic deformation induced by, 371. See also Plastic deformation
Unit cell, determination of parameters of, 165
 from oriented fibers, 165–170, 169, 168–169, 171
 from powder samples, 170–171, 172
Unit twist, 38, 38, 41, 49
 for helix s(M/N), 49
 maps of values of, 40, 40, 46–47, 47
 positive value of, 41, 41
Up/down disorder, 195–197, 196–198

Welberry model, 315, 315

X-ray diffraction
 crystal structure determination from
 calculation of structure factors, 174–179, 175, 177–179
 due to Laue function, 181–183, 182
 integrated intensities measure, 171–174, 173, 174
 structural refinement, 180–181
 of crystal structures of polymers, 3
 and determination of parameters of unit cell, 165
 from oriented fibers, 165–170, 169, 168–169, 171
 from powder samples, 170–171, 172
 fiber analysis, 140
 CCV formula for helical structures, 147–153, 148, 149, 151, 152
 continuous helix, 144–147, 145–147
 determination of fiber period, 140–142, 147, 148
 diffraction intensity values, 150, 151
 of helical molecules with more than one chain per unit cell, 163, 165, 165
 nonhelical and helical structures, 142–144, 144
 structure factors of single helical chain, 162–163, 164
 measurements of, 127–128, 130
 of semicrystalline polymers
 basic principles, 123–128, 124, 125, 126, 126–130
 experimental techniques for, 128–134, 131–136
 structure analysis from, 138, 139
 X-ray diffraction intensity
 of fibers of PET, 272–273, 273
 for irregular chain of PET, 274, 274
 X-ray diffraction intensity calculations
 basic formalism in X-ray modeling, 316–319, 318, 319
 for effect of longitudinal translational disorder, 319–321
 for effect of rotational displacements of chains about their axes, 319–321
 substitutional and translational disorder in one dimension, 321–328, 323, 324
 X-ray diffraction patterns
 of fiber of iPP in mesomorphic form, 2/6, 277
 of fiber of 11F-1HjHjP copolymer, 253, 253–254
 of PE fibers in high-pressure hexagonal form, 244
 of stacking fault disordered structures, 205, 206, 207
 X-ray diffraction profiles
 for limit disordered models, 208, 209, 2/0
 of melt-crystallized compression-molded samples, 399
 for model structures of β-form of nylon 6, 234, 234–235
 of sample EN2, 208, 270
 X-ray fiber diffraction patterns, 131, 133, 140, 141
 of ETFE copolymer fibers, 256, 256, 257
 of fibers of alternating EN copolymer, 265, 265–266
 of fibers of highly stereoregular sPP, 432
 of fibers of mesomorphic form of iPP homopolymer, 278, 279
 of fibers of PTFE, 245, 245, 246, 249, 249
 of iamiPP samples with rr defects, 382, 383, 384, 389, 390
 of iPP samples with rr defects, 382, 382, 383, 384, 420, 421
 for kink bands, 214
 of mesomorphic forms of sPS, sPPMS, and sPMMS, 286, 287
 of oriented sample of nylon 6 in β form, 232
 of PEn, 2/1–2/13, 273
 of trans-planar mesophase of sPP, 286
 of sPP in mesomorphic form, 281–282, 282
 of stereodefective iPP sample, 389, 389
 of 11F-1HjHjP copolymers, 251, 252, 253
 of uniaxially oriented PE sample, 243
X-ray powder diffraction profiles
 of alternating ETFE, 257–258, 258, 259
 of copolymer isothermally crystallized from melt, 391, 392, 393
 diffuse halo in, 265, 267
 of EN copolymers, 264–265, 265, 266
 of ETFE copolymers, 261, 262, 263
 examples of, 134, 136
 of iPP, 93, 95
 containing \(rr\) triad stereodefects, 378, 378, 418, 419
 crystallized from melt, 407, 407
 mesomorphic form, 2/15, 275
 stereodefective iPP, 375–376, 376, 418, 419
 structural disorders, 208, 209
 of iPPOct copolymers, 277, 278
 of mesomorphic form of sPP, 2/19–281, 280

of sample EN2, 268, 270
of sPP
 compression-molded films of, 434–435, 435
 of different stereoregularitites, 282–283, 283, 426–427, 427
 disordered, 424, 425–426
 mesomorphic form, 279–281, 280
 stereoregular, 216, 217, 280–281, 281, 440, 440–441
 of stacking faults of disordered structures, 210, 211, 211
 symmetry breaking, 97
 of TFE-FMVE copolymers, 254, 254–255

Young’s modulus, 404, 406, 406, 435, 436

Ziegler-Natta (ZN) catalysts, 68, 370, 373–374, 379, 381, 386, 406, 422
Zirconcene complexes, \(C_2\)-symmetric, 422, 423
Zirconocene complexes, \(C_3\)-symmetric, 3/4, 374, 3/5, 375