SUBJECT INDEX

Accelerating rate calorimeter (ARC):
- nitro compound evaluation, 72–74
- process safety and, 67–68
O-Acetyl-L-threonine, 218–219
Acid scavengers, ionic liquids and, 350–351
Acrylonitrile, electrochemical hydodimerization, 368
Active pharmaceutical ingredients (APIs):
- assay and stability, 120–122
- bureaucracy reduction and, 327–332
- chemical development objectives concerning, 53–56
- chemical process development and, 3–4
Chemistry, Manufacturing, and Controls (CMC) document requirements, 131–133
- controlled environment for manufacture, 186–190
- crystal form and particle size, 119–120
- crystallization process, 124–126, 177–181
- development report requirements, 133–135
dilevalol hydrochloride case study, 268–294
Good Manufacturing Practices and, 110–113
- last process steps for, 122–126
- organic process waste disposal, 100–103
- outsourcing trends in, 335–337
- particle size engineering, 190–195
- patent considerations, 141–142
- pilot plant production of, 186–190
- quality control system for, 113–114
- quality specification and last process steps, 115–126
- regulatory issues, 109–113
- scale-up process, 167–169
- structure selection, 116–118
- sustainable discovery and development, 377–380
- synthesis process selection, 13–14, 127–131, 268–294
- technology transfer and, 135–137
- therapeutic team development of, 51–53

The Management of Chemical Process Development in the Pharmaceutical Industry by Derek Walker
Copyright © 2008 John Wiley & Sons, Inc.

401
SUBJECT INDEX

Active pharmaceutical (cont.)
 toxicology batch, 114–115
 validation process, 133, 137–139
 wastewater treatment, 103–107
 workplace safety practices and, 84–86
ACV tripeptide, cephalosporin C fermentation, 204–208
Adaptation, leadership skills and, 6–8
Addiction chemistry, future trends in, 381–387
Administrative procedures and SOP manuals, 60
Absorption, Distribution, Metabolism, and Excretion (ADME) studies, 54, 116–118
Adverse drug events (ADEs), regulatory consequences, 111–113, 378
Agenda, for internal symposia, 58–61
Agitation equipment, 171
Air pollution, process emissions, 89, 92–96
Albuterol manufacture, process emissions control and, 30, 93–96
Alkaloids:
 fantasy, 382–387
 opiates poppy, 383–387
 steroidal, 228
Alkylation, microwave-assisted, 361
Amikacin case study, patent protection and, 150–152
7-Amino-3-acetoxymethylceph-3-em-4-carboxylate (7-ACA), 13, 19, 220, 267–268
 patent protection in production of, 145–146
5-Aminoimidazole-4-carboxamide (AIC) intermediate for temozolomide manufacture, 295, 298–312
dihydrohypoxanthine hydrolysis, 311–312
 preparation from hypoxanthine, 299–307
hypoxanthine reduction, 307–311
7(R)-Amino-3-methylceph-3-em-4-carboxylic acid (7-ADCA):
 polymer synthesis, 353–355
 quality control issues, 214–215
 ring expansion research, 208–214
6-Aminopenicillanic acid (6-APA):
 patent protection in production of, 145–146
penem synthesis and, 216–217
 process patent case study involving, 152–155
 quality control issues, 214–215
5-Amino-1β-D-ribofuranosylimidazole-4-carboxamide-5′-phosphate (AICAR), 299
Amorphous compounds, stability of, 119–120
Amoxicillin development, 14
 process patents and, 152–154
Anabolic steroids, underground design of, 249
Analytical Research and Development organization, 57
Androgens, natural sources, 229
Antibiotics, treatment in wastewater, 106–107
Anti-inflammatories commercialisation of, 240–249
API-hypochloride (API-HCl), crystallization process, 178–181
“Applied common sense” principles, Standard Operating Procedures and, 63
Arapahoe Chemicals, visionaries and operating philosophy, 9–11
Artemesinin, preparation of, 341–343
Aspergillus family, dilevalol hydrochloride case study, 293–294
Assays for quality control, active pharmaceutical ingredients, 120–122
Audit of facilities, preparing for a pre-approval inspection, 138–139
Auxoploses and auxochromes, 69–70
Awards:
 purpose and guidelines for, 32
 safety award programs, 86
Bank security system, patent for, 164
Barbasco roots, status as a raw material source, 258–260
Batrachotoxin A, toxicity of, 228
Beckmann rearrangement, oral contraceptive production, 236
Beecham Amoxicillin process, patents case study and, 152–154
Behavior-based safety programs, characteristics of, 83–84
Benzophenone hydrazone, electrochemical oxidation, 373–374
Betamethasone:
preparation of the alcohol, 260–264
intermediates and synthesis approaches to, 255–264
Betnovate, structure identification, 249
Bile acids:
cholesterol degradation, 230–231
cortisone manufacturer, 240–241
Bill of Rights, 326
Biological oxygen demand (BOD):
Clean Water Act provisions, 89
waste management, 199–200
wastewater treatment and, 103–107
Bioluminescence process, patents involving, 162–163
Bioremediation techniques, wastewater treatment, 105
Biotechnology Department, chemical process development and, 57
Biotowers, wastewater treatment using, 105
Biotransformation department:
purpose of, 58
ring expansion research and, 213
Bisesterification, microwave-assisted chemistry, 361
Boron intermediates, patent issues surrounding, 147–150
Brain chemistry, a fantasy, 381–387
Bristol-Myers:
cephalosporin research and, 12–14
patents case study and, 152–154
scientists and engineers in, 18–20
N-Bromoamides, 10
Buchi-type filters, utility of, 181–182
Bureaucracy, chemical process development and reduction of, 326–332
Business Development organization, involvement of, 53
n-Butanol in dilevalol racemization and recycle, 285
Calorimeters, description of types, 67–69
Capitalist economy, enhancing education in, 319–325
Carbon dioxide, supercritical, 345–347
Carbon oxygen demand (COD):
Clean Water Act provisions, 89
waste management, 199–200
wastewater treatment and, 103–107
Carboxyl protecting groups:
patent protection issues and, 145–146, 154–155
ring expansion and, 209–213
Catalytic hydrogenation, hypoxanthine reduction to dihydrohypoxanthine, 308–311
in (S)-Metolaclor manufacture, 339–340
Catalytic oxidation, process emissions control, 93
Cefaclor:
manufacturing process for, 225–226
Cefadroxil, 214
Ceforanide, 215
Cefotaxime, 215
Cefituben dihydrate, licensing and development, 220–226
Ceftiraxone, 215
Cefuroxime axetil, 215
Center for Disease Control and Prevention (CDC), 65–66
Centrifugal pumps, 195
Centrifugation:
basic equipment, 181–183
vapor explosions and, 81–82
Cephalexin:
active pharmaceutical ingredient competing processes, 11–12
patent infringement issues, 154–155
polymer-supported synthesis, 353–356
quality control issues, 214–215
ring expansion research and, 210–214
Cephalosporins:
cephalosporin C fermentation, 204–208
development of, 204–226
classical cephalosporins, 220–226
penem synthesis, 215–220
penicillin G/cephalosporin C fermentation, 204–220
penicillin sulfoxide-cephalosporin ring expansion, 208–211
semisynthetic compounds, product quality, 214–215
electrochemistry and, 220–226, 369–374
404 SUBJECT INDEX

Cephalosporins: (cont.)
esterification, 12, 118, 145–146, 152, 154, 209–212, 222–225, 348, 361, 369
extraction process, 171–174
extractive esterification, 212, 369
penicillin sulfoxide ring expansion: patent issue, 154–155
Cepapirin, 215
Cephradine, patent infringement by, 144–145
Chemical engineering:
agitation, 171
computer applications, 200–201
crystallization, working example, 177–181
distillation/evaporation, 174–177
education in, 321–325
extraction, 171–174
filtration, washing, and drying, 181–190
flow measurement, 196–198
heat exchange, 169–171
overview stages of process development, 165–167
pilot plant and plant maintenance, 201–202
particle size reduction, 190–195
process containment, 186–189, 282–284
process scale-up, 167–169
pumping systems, 195–196
reactor volume measurement, 198–199
waste management systems, 199–200
Chemical Engineering for Chemists, 165
Chemical libraries, polymer-supported reagents, 357–358
Chemical process development:
bureaucracy reduction and, 326–332
current Good Manufacturing Practices for, 113–139
dilevalol hydrochloride case study, 268–295
education and, 318–325
evolution of, 166–167
fantasy on brain chemistry, 380–387
Florfenicol case study, 155–162
mission and structure, 53–62
objectives, 53–56
organization, problems, needs, structure, functions and development, 49–63
overview, 1–4
patent protection and content, 141–143
public image of, 50–51
sustainable chemistry and evolution towards, 377–380
synthesis methodology for, 127–131
therapeutic teams for, 51–53
water and enzymes, 337–344
Chemical Safety and Hazard Investigation Board (CSB), mission and duties, 66
Chemical safety organization, workplace safety practices, 82–86
Chemicals handling, 96–103
Chemistry, Manufacturing, and Controls (CMC) document:
bureaucracy reduction and, 327–332
FDA requirement for, 131–133
Chiral hydroxylation, safety issues with an oxaziridine reagent, 75–76
Chloramphenicol stearate, amorphous and crystalline forms of, 119–120
Chloroform, contaminant and carcinogenic properties of, 217
Cholesterol, biosynthesis, 230–231
Cholesterol absorption inhibitors (CAIs), 226–227
Cholic acid, progesterone from, 231
Chromatographic purification, proposal of a process for bureaucracy reduction, 329–332
Chromophores and phosphophores, 69–70
Clean Air Act (CAA): provisions of, 89–90
Clean Water Act (CWA), provisions of, 89
Cleavage reactions, polymer synthesis, 354–357
Clogging problems in micromix operation, 192–195
Collaboration, leadership and role of, 7–9
Commitment, leadership skills and role of, 8
Communication:
leadership and role of, 7–9
organizational structure and, 58–60, 63
Competition, patent protection and, 145–155
Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), overview of, 88

Computer technology:
chemical process development, 200–201
maintenance programs and, 201–202
Condition-based maintenance (CBM), principles of, 201–202

Confetti patent, 162

Containment of processes, 186–189

Contraceptives, production of, 235–240

Controlled environment rooms (CERs), requirements in, 186–190

Convergent synthesis, last process steps for APIs, 122–124

Coriolis mass flowmeters, flow measurement, 196–198

Cortisone, early research and improved anti-inflammatories, 230, 240–249

Corynebacteria, cortisone research and improved anti-inflammatories 242–249

Cost-of-goods (COG) projections:
dilevalol hydrochloride case study, 269–272, 275–279
process development and alternative routes, 290–294
electrochemistry and, 220–225, 366–372
patent issues and, 146–150

Cross contamination, 21–22, 217

Crotonylation reaction, albuterol process with lower emissions, 95–96

Crystalline structures effect on active pharmaceutical ingredients, 119–120

Crystallization, basic principles of, 177–181

Cucurbitacins, medicinal properties, 227–228

Current Good Manufacturing Practice (cGMP):
bureaucracy reduction and, 327–332
chemical process development, 113–139
evolution of, 110–113

Cyanooacetamide, 5-aminoimidazole-4-carboxamide (AIC) preparation, 298

Dacarbazine (DTIC), 296
D-amino acid oxidase (DAAO), cephalosporin research and, 12–13, 206–208, 220
DAST reagent, Florfenicol development and, 157

DBTA salt formation:
dilevalol development and, 273–290
n-butanol racemization and recycling, 285

Deacetoxycephalosporin C synthase (DAACS), ring expansion process, 213–214
Deacetoxycephalosporin G (DAOG), ring expansion of penicillin G to, 213

10-Deacetylbaccatin III, raw material for taxol, 342–343

Dehydration reactions, steroid chemistry, 260–264

Dehydrogenation at C-1,2 to enhance anti-inflammatory activity, 242–247

Delegation, as leadership skill, 6, 9

Desogestrel, synthesis of, 237, 239–240

Desoxymethyltestosterone, underground production of, 251

Developing countries, outsourcing drug development to, 335–337

Development organization, structure and function, 56–61

Development reports:
components of, 133–135
pre-approval inspection and, 133
Dialogue, leadership and promotion of, 7–9, 58–60

Diazomethane, 16β-methyl intermediates and, 252–260

Diels-Alder reaction:
electrochemistry and, 368
microwave-assisted chemistry, 360
water promoted, 338

Differential scanning calorimetry (DSC):
assessment of explosion potential, 70–72
process safety and, 67

Digoxin, medicinal use of, 228–229

Dihydrohypoxanthine:
hydrolysis to AIC, 311–312
hypoxanthine reduction to, 307–311
Dilevalol hydrochloride:
 cardiovascular therapy applications, 269, 294
 commercial process case study, 268–294
 DBTA salt conversion to, 285–287
 overview, 269–272
 n-butanol racemization and recycling, 285
 NDA process to commercial scale development, 275–290
 ongoing process development and alternative routes, 290–294
 process engineering for, 281–290
 synthesis route research, 271–272
 withdrawal from market, 294
Dimethyl-POPOP, development of, 10
Diosgenin:
 norethindrone production from, 236
 isolation of, 232
 16β-methyl intermediates and, 252–255
Diphenydiazomethane (DDM):
 electrochemical route, 373–374
 polymer supported, 353–356
 ring expansion research and, 210–212
Diphenylmethyl (DPM) group:
 cephalexin development and, 12
 patent issues involving, 154–155
 polymer synthesis, 353–358
 ring expansion research and, 210–212
Dissolution rate, API-hypochloride crystallization and, 179–181
Distillation, Evaporation, 174–177
Documentation SOP’s:
 governing controlled environment rooms, 186
 governing analytical instruments, 138
 governing pilot plants, 60–61
 governing process safety, 84–86
 governing technology transfer, 136
 last process steps for APIs and, 126
Doppler effect, flow measurement, 197
Drug discovery:
 organizational structure matrix, 52–53
 patent protection and, 141–142
Drug Master File (DMF):
 Chemistry, Manufacturing, and Controls (CMC) document requirements, 126, 132–133
IND/NDA applications, 126
Dryer systems:
 basic equipment, 184–190
 micronization consideration, 192–194
Drying times, API-hypochloride crystallization and, 178–181
Dust explosions, safety procedures for, 80–81
Education:
 chemical process development and, 318–325
 sustainable development and, 376–377
 synthesis technologies and, 333–335
Electrochemistry:
 redox reactions using, 366–374
 use in wastewater treatment, 106–107
Electrodialysis, wastewater treatment using, 106–107
Electrospray-mass spectroscopy, microwave-assisted hydrolysis of dihydrohypoxanthine, 365–366
Embrittlement of solids, particle size reduction and, 194–195
Emergency Planning and Community Right-to-Know Act (EPCRA):
 chemicals handling formalization, 97–100
 provisions of, 90
Enantiomer structure, dilevalol hydrochloride research and, 269–270
Environmental issues:
 cephalosporin C development and, 208
 chemicals handling procedures, 96–100
 organic process wastes, 100–103
 overview of, 87–88
 practical operations and, 91–107
 regulatory acts concerning, 88–91
Environmental Protection Agency (EPA):
 interaction with safety agencies, 66
 wastewater treatment initiatives, 106–107
 workplace safety practices and, 84–86
Environmenta scientists, within the chemical development organisation, 57
Enzymes:
in chemical process development, 12–13, 206–208, 220, 290, 292–293, 337–344
microwave-assisted chemistry and, 363–364
Eosinophilia-myalgia syndrome (EMS), 111–112
Ergosterol, conversion to Dydrogesterone, 234
Esterification:
anti-inflammatory research, 243–248
cephalosporins, 12, 118, 145–146, 152, 154, 209–212, 224–225, 348, 361, 369
microwave-assisted chemistry, 361–369
Estrogens, identification of, 229
Estrone, production of, 236
European Inventory of Existing Chemical Substances (EINECS), 91
European List of Notified Chemicals Substances (ELINCS), 91
Evaporation, Distillation, 174–177
Exotherm reactions,
methyl(S)-phenylglycinate hydrochloride (POX-C) reduction, 78–80
Explosions:
centrifugation and, 182
chemical explosion, 69–70
differential scanning calorimetry analysis, 70–72
dust explosion, 80–81
vapor explosion, 81–82
Extraction:
basic equipment, 171–174
extractive esterification, 212, 224–225
Extremely hazardous substances (EHSs), classification of, 97–100
Ezetimibe:
Schering-Plough synthesis for, 226–227
synthesis methodology for, 127
Failure, leadership skills in dealing with, 7
Felbamate, patent lessons, 146–150
Fermentation of penicillin G and cephalosporin C, 204–208
Filtration:
basic equipment for, 181–190
Fischer indole synthesis, microwave-assisted chemistry, 360–361
Flammable solvents, management of, 81–82
Flexibility, leadership and role of, 6–8
Florfenicol development:
patent aspects of, 155–162
process improvements for, 160–162
synthesis methodology for, 128
Flow measurement, instruments for, 196–199
Fluid bed dryers, 186
Flutamide, 117, 379
Fluorination reactions:
anti-inflammatory research and, 243–248
Florfenicol development and, 156–160
reactive system screening tool, 74–75
Food, Drug and Cosmetic Act, 110
Food and Drug Administration (FDA):
API-hypochloride crystallization and, 178–181
approval process for, 314
bureaucracy reduction and, 329–332
chemical process development and, 2–4
dilevalol hydrochloride case study, 280–290
chemistry, manufacturing, and controls document requirements, 131–133
Compliance branch activities, 138–139
dilevalol hydrochloride review, 288–290
regulatory history of, 110–113
Review Branch requirements, 131–133
sustainable chemistry and, 378–380
validation process and, 138–139
workplace safety practices and, 84–86
Forced-air-heated dryers, environmental requirements, 184–185
Friedel-Crafts reaction, polymer-supported synthesis, 353–357
Fugitive emissions, 92
General Agreement on Trades and Tariffs (GATT) treaty, 142
Generally Regarded as Safe (GRAS) solvents, particle size reduction case study, 192–195
Gestagens, identification of, 229
Gettysburg address, 326
Glaxo Laboratories:
- antibiotics chemistry at, 11–14
cortisone and improved anti-inflammatories, 234–248
patent protection issues and, 145–146, 154–155
scientists and engineers in, 17–18
7-Glutarylaminobutyrolactone (II),
electrochemical reduction, 222–225
Good Manufacturing Practice (GMP):
evolution of, 110–113
maintenance practices, 201–202
Government inspections, organic process waste disposal and, 102–103
Green chemistry:
- organic process waste disposal and, 101–103
- supercritical fluids and, 346–347
- using water/enzyme systems, 337–344
Grignard reagents:
development of, 9–10
16β-methyl intermediates and, 253–255
Hazard and Operability Study (HAZOP), runaway reactions, reactive system screening tool, 74–76
Hazardous waste management, and environmental laws, 88–91
Headcount, for Safety groups, 57–59
Heat exchange and control of, 169–171
Hecogenin:
- raw material for anti-inflammatory steroids, 234, 258
- plant sources of, 258–260
Heinkel-type centrifuge, 183–184
Heptane, flammability characteristics, 81–82
Homogeneous energy supply,
- microwave-assisted chemistry, 358–359
Horizontal spindle centrifuge, properties of, 183–184
Human resources, organization and function of, 61–62
Hydrocortisone, structural foundation for commercial anti-inflammatories, 242–248
Hydrolysis:
- AIC chemistry, 306–307
dihydrohypoxanthine to AIC, 311–312
Florfenicol development and, 161–162
9α-Hydroxyandrost-4-ene-3,17-dione, raw material for steroids, 255–257
p-Hydroxybenzaldehyde, 368–374
11α-Hydroxylated betamethasone intermediate, dehydration to C-9, 11-dehydrate steroid, 260–264
Hypoxanthine, 5-aminoimidazole-4-carboxamide from, 299–307
dihydrohypoxanthine from, 307–311
Ignition, vapor explosions, 81–82
Impact sensitivity test, Nitro-dur scrubber charcoal, 70–73
Impurities assay:
- active pharmaceutical ingredients, 120–122
- patent process and, 151–152
Incineration:
- organic process waste disposal, 100–103
- process emissions control and albuterol case study, 93–96
Indefinite drug development program, 53–54
Industrial organization, some issues, 49–51
Industrial waste, government classification of, 102–103
INOX-GLATT dryer, particle size and milling issues, 192–195
Intermediate chemicals analysis group, development of, 28, 57, 59
Internal symposia, importance of, 58–61
International Conference on Harmonization (ICH), solvent guidelines from, 124–126
International Organization for Standardization:
- environmental standard (ISO 14000), 91
- quality assurance standards (ISO 9000), 129–130
Investigational New Drug (IND) process:
- API assay, impurities assay, and product stability, 120–122
- bureaucracy reduction and, 327–332
dilevalol hydrochloride case study, 268–294
filing procedures, 126
regulatory guidelines for, 112–113
synthesis methodology and, 130–131
toxicology batch, 114
Ion exchange, extraction process and,
173–174
Ionic liquids, properties and uses, 348–351
Iron contaminants, radex safety calorimeter
test, 76–78
Ishikawa reagent, runaway reactions,
reactive system screening tool test, 74–76
JANAF drop weight test, explosives
analysis, 70–73
Jet pulverizer micronizer, particle size
reduction, 192–195
Karr column, extraction using, 172
Keto aldehyde hydrate (KAH), process
emissions control, 93–96
Kraus-Maffei process containment unit,
187–189, 282–284
Labetalol:
cardiovascular, properties vs. those of
dilevalol, 269–270
dilevalol hydrochloride separation from
labetalol vs. synthesis, 270–272
Labile reagent stability, radex safety
calorimeter evaluation, 76–78
β−Lactams:
future prospects, 226–227
microwave-assisted chemistry and, 363
overview, 203–204
penicillins and cephalosporins, 204–226
classical cephalosporins, 220–226
penem synthesis, 215–220
penicillin G/cephalosporin C
fermentation, 204–208
penicillin sulfoxide-cephalosporin ring
expansion, 208–211
semisynthetic compounds, product
quality, 214–215
Lagoons, wastewater treatment using,
105–107
Last process steps:
active pharmaceutical ingredients,
122–126
technology transfer and, 135–137
Late-stage intermediates, defining the
synthesis methodology,
127–131
Lawesson’s reagent:
cephalosporin development, 225–226
quazepam manufacture, 30
Leadership:
attributes of, 6–9
chemical process development and role
of, 5–9
role in organization of, 62–63
specifications and criteria for, 8–9
Lethal and toxic chemicals, extremely
hazardous substances classification,
96–100
Liquid-liquid extraction, 171–174
Liquid sulfur dioxide, properties and
potential, 347–348
Listening skills, leadership and role of,
7–9
Loratidine, 117, 379
Lovastatin, 342
Lumisterol, steroid raw material, 234
Magnetic flowmeters, flow measurement,
196–197
Maintenance procedures, pilot plants,
201–202
Management, internal symposia and role of,
58–60
Management:
disciplines managed by chemical process
development, 1–4
agreement an organisational structure,
14–15, 57–58
Manufacturing:
chemical process bridge to, 55–56
internal symposia and content of,
57–61
Marker degradation process, 232–233, 236,
258, 373
Marketing organization, place in drug
discovery, 53
Masked methyl isocyanates, temozolomide
preparation, 312
Mass spectrometry:
analytical involvement in AIC project,
298
AIC chemistry, 300–307, 310–312
SUBJECT INDEX

Mass spectrometry: (cont.)
- hypoxanthine reduction to dihydrohypoxanthine, 308–311

Material Safety Data Sheets (MSDS):
- contents of, 85
- extremely hazardous substances classification, 97–100
- introduction to Safety/Health, 66
- workplace safety practices and, 84–86

Matrix organization, drug discovery and development, 51–53

Media, pharmaceutical industry coverage by, 50–51

Medical organization in drug discovery and development, 52–53

Mercury cathodes, replacement in electrochemical cells, 222–224, 372

Mestranol/norethinodrel compound, 233–235

Metabolite development, API structure for, 116–118, 379

Metastable intermediates, chemical explosion, 69–70

Method stage, chemical process development and, 3–4, 165–167

16β-Methyl intermediates and, saponins to, 252–260

Methyl formate process to Felbamate intermediate, patent issues and, 146–150

Methylhydrazine, temozolomide preparation, 313

Methyl isobutyl ketone (MIBK), DBTA salt to dilevalol hydrochloride, 285–289

Methyl (6S, 7R, 8R) 6-[(1-trichloroethoxycarbonyloxyethyl)penicillanate, 216–217

Methyl salicylate, raw material for albuterol synthesis, 93–96

Methyl(S)-phenylglycinate hydrochloride (POX-C), reduction, use of RC-1 for heat of reaction study, 78–80

Methyl tropane reduction, for Felbamate intermediate, patent issues surrounding, 146–150

Metolaclor manufacture, 339–340
- supercritical fluids and, 346–347

Metter RC-1 calorimeter, 68–69

Microbial contamination counts, quality control assays, 120

Micronization:
- overcoming clogging problems during, 192–194
- particle size reduction, 190–195
- progesterone, 235
- unit designs, 191, 192

Microorganism, organic process waste disposal and, 103–106

Microwave-assisted chemistry, trends and technologies, 358–366

Milling process, particle size reduction, 190–195

Mitazolomide, 296

Mitsubishi Rayon acrylamide process, 340–341

Molecular foundations and designing round process patents:
- amoxicillin, 152–153
- cephalosporin, 154–155

Molecular foundations of the steroid industry, 227–229

Mometasone Furoate and raw material selection, 256–257

Monsanto process, electrochemical dimerisation of acrylonitrile, 368

Morphinans, biosynthesis inhibition, 385–387

National Academy of Sciences, 321

National Institute of Safety and Health (NIOSH), mission, 65

National Research and Development Council (NRDC), licensing process, 209–210

National Research Council (NRC), cortisone program of, 240

New Drug Applications (NDA):
- API-hypochloride crystallization and, 178–181
- bureaucracy reduction and, 327–332
- Chemistry, Manufacturing, and Controls (CMC) document requirements, 131–133
- dilevalol hydrochloride case study, 268–294
- FDA review and compliance, 288–290
- filing documentation, 126
- quality control, impurities and stability, 121–122
- regulatory guidelines for, 112–113
synthesis methodology and, 130–131
validation process, 133, 137–139
Nitric acid oxidation, recycling benzhydrol
waste, 211–214
Nitro-dur scrubber charcoal, differential
scanning calorimetry analysis,
70–72
Nitronates, accelerating rate calorimetry
analysis, 72–74
p-Nitrophenyl chloroformate,
temozolomide preparation, 313
Norethindrone, Syntex process for, 235–236
Norgestrel, synthesis of, 237–240
Notification of New Substances (NONS),
extremely hazardous substances
classification, 97–100
Nutrex unit, components of, 188–190

Occupational Safety and Health
Administration (OSHA):
carcinogenic chemicals list, 97
mission and activities, 65–66
process emissions protection, 93
workplace safety practices, 82–86
Olefin byproducts, steroid chemistry,
260–264
Operating structure, organization of, 58–61
Operational procedures, standard operating
procedures, 60–61
Oral contraceptives, early research on,
231–234
Orally absorbed antibiotics, ring expansion
and, 209
Organic chemical synthesis trends:
electrochemistry, 367–341
microwave-assisted chemistry and,
358–366
outsourcing, 335–337
other “solvents,” 344–351
use of polymer supports, 351–358
water and enzymes and, 337–344

Organic Process Research and
Development (journal), 164
Organic process wastes, management of,
100–103
Organization:
in chemical development, 56–61
development through, 61–62
leadership role in, 6–9
mission and structure, 53–56
promotions in, 34–35
structure and function, 49–51, 59
therapeutic teams, 51–53
Orifice/Venturi meters, flow measurement
with, 196–197
Oseltamivir (Tamiflu), preparation of,
341–343
Outsourcing:
current trends in, 314, 335–337
last process steps for APIs and, 123–126
Oxaziridine stability, radex safety
calorimeter test, 76–77
Oxygen sensors, centrifuge explosion and,
182
Ozonolysis:
cephalosporin synthesis and, 221–225
clean albuterol synthesis, 94–96
Papaverine, biosynthesis of, 385–386
Particle size:
active pharmaceutical ingredients,
119–120
milling, micronization, and precipitation
processes, 190–195
progesterone, 235
Patents:
application content and process, 142–143
chemical process development and,
56–58
defense procedures for protection of,
150–152
history and exclusivity, 141–142
motivations for seeking, 143–144
odd patents, 162–164
timeliness of, 145–150
trade secrets vs., 155
worth of, 144–145
Penicillins, development of, 204–226
classical cephalosporins, 222–226
penicillin synthesis, 215–220
penicillin G/cephalosporin C
fermentation, 204–208
penicillin sulfoxide-cephalosporin ring
expansion, 208–211
semisynthetic compounds, product
quality, 214–215
Penems’
synthesis of, 215–220
Penicillins:
therapeutic teams, 51–53
SUBJECT INDEX

Penicillins: (cont.)
penicillin G development, 204–206, 208–214
6-APA quality problem, 214
Penicillin sulfoxides, ring transformation to cephalosporins:
patent case, 154–155
process for, 208–214
People, vital importance of, 5–47
Perry’s Chemical Engineers Handbook, 165–166
Pharmaceutical Development scientists, API collaboration with, 117–118, 177–181, 190–194
Pharmaceutical industry:
future trends in, 381–387
organizational structure in, 50–51
sustainable innovation, 327–332, 377–380
Pharmaceutical Research and Manufacturers Association (PhRMA):
organizational structure, 50–51
quality control and regulatory issues, 140
1-Phenyl-1,3-propanediol (PPD), felbamate patent issues and, 146–150
Phosphorus compounds, steroid chemistry and, 261–264
Phosphorus trichloride cleavage process, patent protection for, 145–146
Pilot plants:
controlled environment rooms, 186–190
maintenance of, 201–202
multipurpose reactor package, 169–170
Piston pumps, 195–196
Plant-based chemistry:
future trends in, 105, 341–342, 381–387
steroids and, 256–260
Plant equipment and maintenance, technology transfer and, 136–137
Plant failure analysis, runaway reactions, reactive system screening tool, 74–76
Plosophore and chromophore, 69–70
p-Nitrobenzyl (PNB) protecting group:
cephalexin development and, 11–12
patent issues involving, 154–155
ring expansion research and, 209–211
Polychlorinated biphenyls (PCBs), Toxic Substances Control Act provisions concerning, 90
Polymers:
microwave-assisted chemistry and, 362–366
reagents, 357–358
synthesis methods and, 351–358
Positive displacement pumps, basic principles, 195–196
Post-emissions calculations, air pollution from process emissions, 92–93
Practical operations, environmental issues in, 91–107
Pre-approval inspection (PAI):
development report, technology, transfer, and validation, 133
dilevalol hydrochloride case study, 109, 289
new drug development and, 112–113, 133–139
Precipitation, particle size reduction, 190–195
Predictive maintenance, 201
Prednisolone, and improved antiinflammatories, 242–249
Prednisone, and improved antiinflammatories, 242–249
Pregnanediol issues, 231
Pressure issues, microwave-assisted chemistry, 358–359
Preventive maintenance, 201–202
Process changes, technology transfer and, 136–137
Process development phase:
chemical process development and, 3–4, 165–167
computer technology and, 200–201
Process emissions:
to the air, 92
organic process waste, 100
wastewater, 103
Process engineering, dilevalol hydrochloride case study, 282–289
Process hydration, opportunities, 102, 343–344
Process patents:
designing around patients, 152–155
process protection, 150–152
Process productivity, improving electrochemistry, 372

Process safety:
calorimetric equipment for, 67–69
chemical structure with explosion risk, 69–70
chemical process development and, 2–4
overview of, 65–86
systems for, 57–61
workplace safety practices, 82–86

Process wastes, early management of, 92

Pro-drug development, active pharmaceutical ingredients and, 116–117

Product stability assessment, active pharmaceutical ingredients, 116–117

Progesterone:
natural sources, 229–235
oral contraceptives based upon, 235–240
Progestogens, sources of, 233–237

Promotion system, chemical process development and, 34–35

Pteris vitata, wastewater treatment using, 105

Publicly owned treatment works (POTW):
Clean Water Act provisions, 89
process emissions and, 92
wastewater treatment, 103

Pumping techniques and pump capabilities, 195–196

Purchasing chemicals and restrictions on, 97–99

Quality control (QC):
active pharmaceutical ingredients, 57, 59
API assay, impurities assay, and product stability, 120–122
API quality specification and last process steps, 115–116
API structure for, 116–118
chemical process development system for, 113–114
crystal form and particle size, 119–120
Development report and, 133–135
dilevalol hydrochloride case study, 275, 279–280
electrochemical route to cephalosporins, 220, 225, 372

last process step guidelines, 122–126
semisynthetic penicillins and cephalosporins, 214–215
synthesis methodology research and, 129–132

Radar detectors, reactor volume measurement, 199

Radex safety calorimeter:
iron contaminants, labile reagent stability, 76–78
process safety and, 68

R-amino ketone enzyme reduction, dilevalol hydrochloride case study, 293–294

Reaction calorimeter (RC1):
optimisation of methyl(S)-phenylglycinate reduction, 78–80
process safety and, 68–69

Reaction temperature enhancement using microwave-assisted chemistry, 359–366

Reaction vessels, chemical engineering perspective on scale-up, 167–169

Reactive system screening tool (RSST):
process safety and, 68
runaway reactions analysis, 74–76

Reactor jackets, pilot plant reactors, 170–171
Reactor volume measurement, 198–199

Reagents:
electricity, 367–374
enzymes, 337–344
polymer-supported, 357–358

Receiving company (RC), outsourcing, 335–337

Recipe stage, chemical process development and, 3–4, 113, 166–167

Recrystallization, Florfenicol development and, 160–161

Registration, Evaluation and Authorization of Chemicals (REACH) program, 97–100

Regulatory Affairs department, supplementary reinforcement of, 57–58
Regulatory issues:
- bureaucracy reduction and, 326–332
 overview of, 109–113
- sustainable chemistry, 377–380
Research and development matrix
organization, characteristics of, 51–53, 62–63
Research organizational structure,
therapeutic team composition, 51–53
Residue-on-ignition (ROI) content, quality control assays, 120–122
Resins, extraction process and, 173–174
Resource availability, utilization vs., 52–53
Resource Conservation and Recovery Act (RCRA):
- description of, 88–89
- extremely hazardous substances classification, 97–100
Reticuline in morphinon biosynthesis, 385–387
Reverse osmosis (RO), basic principles, 177
Rhizopus arrhizus:
- progesterone hydroxylation, 240–241
Ring expansion:
- penicillin sulfoxides to cephalosporins, 208–211
- polymer synthesis, 353–357
Risk Management Program (RMP), development of, 66
R-1-methyl-3-phenylpropylamine, dilevalol hydrochloride and process for, 277–279
Rotameters, flow measurement with, 196
Rotary pumps, basic principles, 195–196
RR-amine process:
- dilevalol hydrochloride research, 273–276
R,R-Amine preparation, 273
Runaway reactions:
- methyl(S)-phenylglycinate hydrochloride (POX-C) reduction, 78–80
 preparation of Ishikawa reagent, 74–76
Safe Drinking Water Act (SDWA), provisions of, 90
Safety and Environmental Departments:
environmental regulations and the oversight of compliance, 87–108
- safety in chemical process development organisation, 57–61
- workplace safety practices, 82–86
Safety award programs, workplace safety and, 86
Salt formation:
- of active pharmaceutical ingredients, 117–118
- API-hypochloride crystallization and, 179–181
dilevalol DBTA salt development, 280–287
Saponins, 16β-methyl intermediates from, 252–260
Sarsasapogenin:
- intermediates research and, 255–260
- isolation of, 232, 257–260
Scale-up:
- basic principles of, 167–169
- electrochemistry and, 370–372
Schering penem Sch 29482, 218
Schering penem Sch 34343, 216–220
Schering-Plough Company:
- awards for, 32–34
- Ceftibuten development and, 220–227, 369–373
- consultants with, 31–32
- Florfenicol development and, 155–162
- scientists and engineers at, 20–31
Science education, future needs in, 322–325
Scientists and engineers, chemical process development and role of, 5, 15–47
Scrubber charcoal, safety procedures for, 70–72
Scrubbing systems, process emissions control, 92–93, 183–185
Shionogi synthesis process, Ceftibuten, 220–226
Sodium dispersion chemistry:
- development of, 10–11, 190–191
- particle size, 190–191
Solvents:
- capture equipment for, 92–93, 183–185
- current research trends, 344–351
distillation and evaporation, 174–177
- extraction process and, 172–174
ionic liquids, 348–351
last process steps for APIs and ranking of, 124–126
liquid sulfur dioxide, 347–348
microwave-assisted chemistry, 358–366
organic process waste disposal and recycling of, 100–101
recovery data for, 176–177
supercritical fluids, 345–347
Spherical dryers, 186
Spray dryers, 186
Standard Operating Procedures (SOPs): controlled environment rooms, and, 186 chemicals handling process and, 99–100 maintenance practices, 201–202 organizational structure and, 60–61, 63 technology transfer, 136–137 workplace safety practices and, 84–86 Steroids:
anti-inflammatories, 240–249
betamethasone intermediate-betamethasone alcohol conversion, 260–264 contraceptive synthesis development, 235–240
cucurbitacin molecular structure, 227–228
early history, 227–235
future research possibilities, 265
last process steps in manufacturing of, 122
molecular structure, 249–252
saponin-16β-methyl intermediates, 252–260
steroids with diverse biological activity, 249–251
structural chemistry, 227–235
Stigmasterol, raw-material, 231
Stirrer designs, sodium dispersion, 190–191
Sulfoxide, electrochemical reduction of a cephalosporins, 224–226
Supercritical fluids as solvents, 345–347
Superfund Amendment and Reauthorization Act (SARA), outline of, 88
Sustainable chemistry:
development of, 375–380
enzyme and fermentation processes, 101–103
Syntex oral contraceptive process, 235–238
Synthesis methodology:
electrochemical radar reactions, 366-375
microwave-assisted chemistry, 358–366
polymer-supported synthesis and reagents, 351–358
research and development considerations, 127–131
trends and technologies for, 333–334
water and enzyme chemistry and, 337–344
Tank systems, wastewater treatment using, 105
Target molecule, stages of process development, 166
Technology transfer:
and development report of, 133
chemical development and, 56
internal symposia discussion of, 57–61
pre-approval inspection and, 133
SOP for, 135–137
Temozolomide:
5-aminoimidazole-4-carboxamide (AIC) chemistry, 298–312
dihydrohypoxanthanine hydrolysis, 311–312
preparation from hypoxanthine, 299
hypoxanthine reduction to dihydrohypoxanthine, 307–311
original manufacturing process, 296–297
new preparation chemistry for, 312–313
Tetrahydrogestrinone, 249
Therapeutic teams, chemical development and, 51–53
Thiamphenicol route to Florfenicol intermediate, 156–160
Thin-film evaporation equipment, 176
Thin-layer chromatography, in improved process to albuterol, 94–96
Third party manufacturers:
Chemistry, Manufacturing, and Controls (CMC) document requirements, 131–132
initial process exploration with, 156–160
last process steps for APIs and, 123–126
patent agreements with, 155–156
qualifying a third party, 129–131
risks in outsourcing, 314, 335–337
SUBJECT INDEX

Threshold limit values (TLVs), process emissions protection, 66–67, 93
Tigogenin, plant sources of, 258–260
Time-weighted averages (TWAs), process emissions protection, 66–67, 93
Toxicology batch, 114–115
Toxic Substances Control Act (TSCA):
 extremely hazardous substances classification, 97–100
 provisions of, 90–91
Trade secrets, patents vs., 155
2,2,2-Trichloroethyl (TCE) group:
 process patent case study involving, 154–155
 ring expansion and, 209–214
Trifluoroacetic acid (TFA), solvent for indole hydrogenation, 308–311
Trimethylsilyl (TMS) group, ring expansion research and, 212
Trust, leadership and role of, 6
Tryptophan, eosinophilia-myalgia syndrome and, 111–112
Turbine pumps and flow measurement, 196
Ultrasonic flowmeters, flow measurement with, 197
Ultrasonic level measurement, principles of, 198–199
Vacuum distillation, basic principles, 174–176
Vacuum drying systems, properties of, 185
Validation:
 components of, 137–139
 pre-approval inspection and, 133
Vapor explosions, safety procedures for avoidance, 81–82
Venturi feed mechanism in micronizer, clogging problems, 192–195
Vinblastine analogues, 343
Visionaries:
 characteristics of, 9–15
 chemical process development and role of, 5, 9–15
Volatile organic compounds (VOCs):
 in process emissions, 92–93
 wastewater treatment and, 103
Washing filter cakes efficiently, 181–183, 186
Waste management requirements, 199–200
Wastewater treatment, guidelines and issues, 103–107
Water, solvent in chemical process development, 337–344
Water-for-injection (WFI) system, quality control in chemical process and, 113
Water/solvent content importance of in an API micronization study, 192–194
Workplace environment:
 importance of people, 5–6
 safety practices in, 82–86
 Yucca brevifolia, steroids from, 258
 Yucca filifera, steroids from, 259
Zambon, Florfenicol development and, 156–162