Contents

Preface

1. Introduction

1.1 Wireless World Picture

1.2 About Technologies

1.2.1 Heterogeneous 2G Systems

1.2.2 ‘MAP’ and ‘IS-41’ Systems

1.2.3 The MAP Technologies

1.2.4 The IS-41 Technologies

1.3 Standards and Organizations

1.3.1 The Role of ITU

1.3.2 3G Cross-Country Standardization Bodies

1.3.3 The Structure of 3GPP

1.3.4 The NGN Evolution

1.3.5 The NGMN Initiative

1.4 Spectrum

1.5 The Evolution of UMTS

1.5.1 1st Evolution Driver: The Move towards Data Applications

1.5.2 2nd Evolution Driver: Enhanced Radio Interface Capabilities

1.5.3 What Will Change Within the Network?

1.5.4 What is Described in this Book?

1.6 Links and Documents

2. Evolved UMTS Overview

2.1 The Access Network Requirements

2.1.1 Radio Interface Throughput

2.1.2 Data Transmission Latency

2.1.3 Terminal State Transition

2.1.4 Mobility

2.1.5 Spectrum Flexibility

2.1.6 Co-existence and Inter-Working with Existing UMTS
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Evolved UMTS Concepts</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1</td>
<td>A Packet-Only Architecture</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2</td>
<td>A Shared Radio Interface</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Other Access Technologies</td>
<td>35</td>
</tr>
<tr>
<td>2.3</td>
<td>Overall Evolved UMTS Architecture</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1</td>
<td>E-UTRAN: The Evolved Access Network</td>
<td>37</td>
</tr>
<tr>
<td>2.3.2</td>
<td>EPC: The Evolved Packet Core Network</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>The HSS</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>The IMS Subsystem</td>
<td>50</td>
</tr>
<tr>
<td>2.4.1</td>
<td>The Session Control Function</td>
<td>50</td>
</tr>
<tr>
<td>2.4.2</td>
<td>The Media Gateway Nodes</td>
<td>52</td>
</tr>
<tr>
<td>2.5</td>
<td>Policy Control and Charging</td>
<td>53</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Policy Control in UMTS</td>
<td>53</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Evolved UMTS Policy Control</td>
<td>57</td>
</tr>
<tr>
<td>2.5.3</td>
<td>The Charging Architecture</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>The Terminal</td>
<td>61</td>
</tr>
<tr>
<td>2.6.1</td>
<td>The User Device Architecture</td>
<td>61</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Terminal Capabilities</td>
<td>63</td>
</tr>
<tr>
<td>2.6.3</td>
<td>The Subscriber Module</td>
<td>63</td>
</tr>
<tr>
<td>2.7</td>
<td>The Evolved UMTS Interfaces</td>
<td>68</td>
</tr>
<tr>
<td>2.8</td>
<td>Major Disruptions with 3G UTRAN-FDD Networks</td>
<td>68</td>
</tr>
<tr>
<td>2.8.1</td>
<td>About Soft Handover</td>
<td>68</td>
</tr>
<tr>
<td>2.8.2</td>
<td>About Compressed Mode</td>
<td>71</td>
</tr>
<tr>
<td>2.8.3</td>
<td>About Dedicated Channels</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Physical Layer of E-UTRAN</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Basic Concepts of Evolved 3G Radio Interface</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>OFDM (Orthogonal Frequency Division Multiplex)</td>
<td>76</td>
</tr>
<tr>
<td>3.2.1</td>
<td>OFDMA Multiple Access</td>
<td>80</td>
</tr>
<tr>
<td>3.2.2</td>
<td>MC-CDMA Multiple Access</td>
<td>82</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Common Points between OFDM, CDMA, MC-CDMA, etc.</td>
<td>82</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Frequency Stability Considerations for OFDM Systems</td>
<td>84</td>
</tr>
<tr>
<td>3.2.5</td>
<td>System Load in OFDMA Systems</td>
<td>84</td>
</tr>
<tr>
<td>3.2.6</td>
<td>SC-FDMA: The PAPR (Peak-Average-Power-Ratio) Problem</td>
<td>85</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Dimensioning an OFDM System</td>
<td>89</td>
</tr>
<tr>
<td>3.3</td>
<td>MIMO (Multiple Input Multiple Output)</td>
<td>91</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Traditional Beamforming</td>
<td>91</td>
</tr>
<tr>
<td>3.3.2</td>
<td>MIMO Channel and Capacity</td>
<td>92</td>
</tr>
<tr>
<td>3.3.3</td>
<td>A Simplified View of MIMO 2.2</td>
<td>96</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The Harmonious Coupling between OFDM and MIMO</td>
<td>97</td>
</tr>
<tr>
<td>3.3.5</td>
<td>MIMO: A Classification Attempt</td>
<td>98</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Some Classical Open Loop MIMO Schemes</td>
<td>99</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Notions of Cyclic Delay Diversity (CDD)</td>
<td>102</td>
</tr>
<tr>
<td>3.3.8</td>
<td>MIMO Schemes and Link Adaptation</td>
<td>103</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Improving MIMO with Some Feedback</td>
<td>104</td>
</tr>
</tbody>
</table>
3.3.10 MU-MIMO, Virtual MIMO and Transmit Diversity
3.3.11 Towards a Generalized Downlink Scheme
3.4 Architecture of the Base Station
3.4.1 The Block Scheme of the Base Station
3.4.2 The Analogue-to-Digital Conversion
3.4.3 Power Amplification (PA) Basics
3.4.4 Cellular Antennas Basics
3.5 The E-UTRAN Physical Layer Standard
3.6 FDD and TDD Arrangement for E-UTRAN
3.6.1 A Word about Interferences in TDD Mode
3.6.2 Some Basic Physical Parameters
3.6.3 TDD and Existing UTRAN Compatibility
3.6.4 Combined FDD-TDD Mode
3.7 Downlink Scheme: OFDMA (FDD/TDD)
3.7.1 Downlink Physical Channels and Signals
3.7.2 Physical Signal Transmitter Architecture
3.7.3 Downlink Data Multiplexing
3.7.4 Scrambling
3.7.5 Modulation Scheme
3.7.6 Downlink Scheduling Information and Uplink Grant
3.7.7 Channel Coding
3.7.8 OFDM Signal Generation
3.7.9 Downlink MIMO
3.7.10 Channels Layer Mapping, Precoding and Mapping to Resource Elements
3.7.11 E-MBMS Concepts
3.7.12 Downlink Link Adaptation
3.7.13 HARQ
3.7.14 Downlink Packet Scheduling
3.7.15 Cell Search and Acquisition
3.7.16 Methods of Limiting the Inter-Cell Interference
3.7.17 Downlink Physical Layer Measurements
3.8 Uplink Scheme: SC-FDMA (FDD/TDD)
3.8.1 Uplink Physical Channel and Signals
3.8.2 SC-FDMA
3.8.3 Uplink Subframe Structure
3.8.4 Resource Grid
3.8.5 PUSCH Physical Characteristics
3.8.6 PUCCH Physical Characteristics
3.8.7 Uplink Multiplexing Including Reference Signals
3.8.8 Reference Signals
3.8.9 Multiplexing of L1/L2 Control Signalling
3.8.10 Channel Coding and Physical Channel Mapping
3.8.11 SC-FDMA Signal Generation
3.8.12 The Random Access Channel
3.8.13 Uplink-Downlink Frame Timing
3.8.14 Scheduling 168
3.8.15 Link Adaptation 168
3.8.16 Uplink HARQ 169

4 Evolved UMTS Architecture 171

4.1 Overall Architecture 171
 4.1.1 Evolved UMTS Node Features 172
 4.1.2 E-UTRAN Network Interfaces 176
 4.1.3 S1 Interface 177
 4.1.4 S1 Flexibility 181
 4.1.5 X2 Interface 183

4.2 User and Control Planes 184
 4.2.1 User Plane Architecture 184
 4.2.2 Control Plane Architecture 188

4.3 Radio Interface Protocols 189
 4.3.1 The E-UTRAN Radio Layered Architecture 189
 4.3.2 The Radio Channels 190
 4.3.3 PHY 194
 4.3.4 MAC 196
 4.3.5 RLC 197
 4.3.6 RRC 198
 4.3.7 PDCP 200
 4.3.8 NAS Protocols 206

4.4 IMS Protocols 209
 4.4.1 The IMS Protocol Stack 210
 4.4.2 SIP 210
 4.4.3 SDP 220
 4.4.4 RTP 223
 4.4.5 A SIP/SDP IMS Example 227

5 Life in EPS Networks 229

5.1 Network Attachment 229
 5.1.1 Broadcast of System Information 230
 5.1.2 Cell Selection 231
 5.1.3 The Initial Access 232
 5.1.4 Registration 236
 5.1.5 De-registration 240

5.2 Communication Sessions 241
 5.2.1 Terminal States 241
 5.2.2 Quality of Service in Evolved UMTS 245
 5.2.3 Security Overview 249
 5.2.4 User Security in EPS 253
 5.2.5 User Security in IMS 260
 5.2.6 Session Setup 261
 5.2.7 Data Transmission 265
5.3 Mobility in IDLE Mode
 5.3.1 Cell Reselection Principles
 5.3.2 Terminal Location Management
 5.3.3 Tracking Area Update
5.4 Mobility in ACTIVE Mode
 5.4.1 Intra-E-UTRAN Mobility with X2 Support
 5.4.2 Intra-E-UTRAN Mobility without X2 Support
 5.4.3 Intra-E-UTRAN Mobility with EPC Node Relocation
 5.4.4 Mobility between 2G/3G Packet and E-UTRAN

6 The Services
 6.1 The Role of OMA
 6.2 Push-to-talk Over Cellular
 6.2.1 Service Architecture
 6.2.2 PoC Protocol Suite
 6.2.3 An Example of PoC Session Setup
 6.2.4 Charging Aspects
 6.3 Presence
 6.3.1 Service Architecture
 6.3.2 An Example of a Presence Session
 6.3.3 Charging Aspects
 6.4 Broadcast and Multicast
 6.4.1 Some Definitions
 6.4.2 Typical Applications
 6.4.3 Service Architecture
 6.4.4 MBMS Security
 6.4.5 The MBMS Service Steps
 6.4.6 The E-UTRAN Aspects of MBMS
 6.4.7 Charging Aspects
 6.5 Voice and Multimedia Telephony
 6.5.1 About Circuit and Packet Voice Support
 6.5.2 Service Architecture
 6.5.3 About Information Coding
 6.5.4 About Supplementary Services
 6.5.5 Multimedia Services in EPS Systems

Glossary

Index