Contents

Preface vii

1 Introduction 1
1.1 An Overview of the ICT Process 1
1.2 Experimental and Theoretical Studies of the ICT Process 4
1.3 Applications of ICT Molecules 19

References 24

2 Brief History of ICT Molecules 29
2.1 Introduction 29
2.2 Background of Studies on Charge Transfer 32
2.3 A Brief Review of ICT Process in Commonly Studied Organic Molecules 34
2.3.1 ICT in 4-N,N-Dimethylaminobenzonitrile and Related Molecules 34
2.3.2 ICT in Some Commonly Studied Organic Molecules 44
2.4 Structure of the ICT State: Twisted or Not? 52
2.5 Through-Space Charge Transfer 55
2.6 Charge Transfer in Inorganic Complexes 55
2.7 Electron Transfer in Biomolecules 62

References 63

3 New Theoretical and Experimental Techniques for Studying the ICT Process 71
3.1 Introduction 71
3.2 Computational Studies on ICT 73
3.3 Theoretical Treatment of ICT Rates 92
3.4 Experimental Methods for Studying ICT Process 99
3.4.1 Steady-State UV–Visible Absorption and Emission Spectroscopy 99
3.4.2 Time-Resolved Ultrafast Spectroscopic Techniques 101
3.4.3 Raman/Resonance Raman Spectroscopy 106
3.4.4 THz Spectroscopy and ICT Dynamics 109

References 111
4 Medium Effect on ICT Process: Theory and Experiments 115
4.1 Introduction 115
4.2 Some Theories and Models of Solvation 115
4.3 Effect of Solvent Polarity, Viscosity, and Temperature in the ICT Process 121
4.4 Studies of Solvation in Some ICT Molecules 127
4.5 Effect of Hydrogen Bonding on ICT 136
4.6 Resonance-Assisted Hydrogen Bonding (RAHB) 139
4.7 Studies of ICT in Solvent Mixture and Confined Media 140
4.8 Studies of ICT in the Solid State 141
References 144

5 Nonlinear Optical Response of ICT Molecules 149
5.1 Introduction 149
5.2 The NLO Response to Electric Field 150
5.3 Theoretical Calculation of NLO Response of ICT Molecules 152
5.4 Studies of Two-Photon Absorption 166
5.5 Third-Order NLO Response of ICT Molecules 173
5.6 Experimental Studies on Nonlinear Optical Response 176
5.7 Studies of NLO Molecular Switches 186
References 191

6 Recent Technological Applications of ICT Molecules and Prospect of Designing New Molecules 197
6.1 Introduction 197
6.2 Application of ICT-Based Molecules 197
6.2.1 ICT Molecules as Fluorescence Sensors 197
6.2.2 In Organic Light-Emitting Diodes 214
6.2.3 In Aggregation-Induced Emission 219
6.2.4 Solar Energy Conversion 224
6.2.5 ICT-Based Molecules for Sensing Temperature 224
References 229

7 Summary and Outlook 233
7.1 Introduction 233
7.2 Summary of Studies of ICT 233
Further Readings 237

Index 239