Contents

Preface IX
Acknowledgments XI

1 RNA Extraction, Separation, and Analysis 1
 1.1 The Need to Be Able to Extract, Manipulate, and Analyze RNA 1
 1.2 Using Chemical Tools to Solve the Problem of Analysis of Biological Processes 3
 1.3 The Principle of Chromatography and Solid-Phase Extraction 4
 1.3.1 Principle of Chromatography 4
 1.3.2 Mobile Phase Gradient Controls Elution 5
 1.3.3 Different Types of Column and Eluent Chemistries 6
 1.4 RNA Chromatography 10
 1.5 Enzymatic Treatment of RNA and Analysis 13
 1.5.1 Polyacrylamide Gel Electrophoresis 14
 1.5.2 RNA Structure Probing with Ribonuclease Enzymes 14
 1.6 Content and Organization of This Book 15
 References 16

2 Biological and Chemical RNA 17
 2.1 Why Classify RNA with Biology and Chemistry? 17
 2.1.1 Chemical Classification of RNA 18
 2.1.2 Biological Classification of RNA 19
 2.2 Prokaryotic Cellular RNA 20
 2.3 Prokaryote Sample Type 23
 2.3.1 Escherichia coli 23
 2.3.2 Other Bacteria 24
 2.4 Eukaryotic Cellular RNA 24
 2.5 Eukaryote Sample Type 27
 2.5.1 Yeast 29
 2.5.2 Other Fungi 30
 2.5.3 Simple Multicellular Organism 30
Contents

2.5.4 Soft Animal 30
2.5.5 Hard Animal 31
2.5.6 Plant 31
2.5.7 Cell Culture 31
2.6 Other Samples 32
2.6.1 Virus 32
2.6.2 Soil and Rock 32
2.7 Synthetic RNA 32
2.7.1 Aptamers 33
2.7.2 SELEX 34
2.7.3 Short Hairpin RNAs 34

References 34

3 RNA Separation: Substrates, Functional Groups, Mechanisms, and Control 37

3.1 Solid-Phase Interaction 37
3.1.1 Adsorption of Sample Compounds and Sample Matrix Compounds 37
3.1.2 Roles of Solid-Phase Substrate and Functional Group 39
3.1.3 Correlation of Interaction Type, Functional Group, and Substrate 40
3.1.4 RNA Structure and Solid Surface Interaction 41
3.2 The Solid-Phase Substrate and Attachment of Functional Groups 43
3.2.1 Polymeric Resin Substrates 44
3.2.2 Porous and Nonporous Polymeric Resins 45
3.2.3 Monolith Polymeric Columns 47
3.2.4 Functionalization of the Polymer 48
3.2.5 Silica–Glass-Based Substrates 50
3.2.6 Functionalization of Silica 51
3.2.7 Agarose and Cellulose Affinity Substrates 53
3.2.8 Dextran and Polyacrylamide Gel Filtration Substrates 53
3.3 Reverse-Phase Ion-Pairing Separation Mechanism 54
3.4 Ion-Exchange Separation Mechanism 57
3.5 Chaotropic Denaturing Interaction Mechanism 61
3.6 Hybridization 62
3.6.1 SELEX 62
3.7 Gel Filtration 63

References 64

4 RNA Extraction and Analysis 67

4.1 Transcription 67
4.1.1 RNA Catalysis 69
4.1.2 RNA–Protein Complex Interactions 69
4.1.3 Pre-mRNA Splicing 71
4.2 Translation 72
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 Primary Structure</td>
<td>136</td>
</tr>
<tr>
<td>7.2.2 Secondary Structure</td>
<td>136</td>
</tr>
<tr>
<td>7.2.3 Tertiary Structure</td>
<td>137</td>
</tr>
<tr>
<td>7.2.4 Quaternary Structure</td>
<td>138</td>
</tr>
<tr>
<td>7.3 Footprinting, Model Building, and Functional Investigations</td>
<td>139</td>
</tr>
<tr>
<td>7.3.1 Chemical Probing and Cleavage</td>
<td>140</td>
</tr>
<tr>
<td>7.3.2 Modification Interference</td>
<td>143</td>
</tr>
<tr>
<td>7.3.3 FRET</td>
<td>144</td>
</tr>
</tbody>
</table>

References 144

Appendix 1

Chromatographic Separation Equations and Principles for RNA Separation 147

Appendix 2

HPLC Instrumentation and Operation 159

Appendix 3

RNA Chromatographic System Cleaning and Passivation Treatment 185

Index 191