Contents

Foreword xxvii
List of Contributors xxxi
About the Editors xli
About the Companion Website xliii

Part I Introduction and Agenda 1

1 Understanding and Improving the Human Condition: A Vision of the Future for Social-Behavioral Modeling 3
Jonathan Pfautz, Paul K. Davis, and Angela O’Mahony
Challenges 5
Challenge One: The Complexity of Human Issues 5
Challenge Two: Fragmentation 6
Empirical Observation 6
Empirical Experiments 7
Generative Simulation 8
Unification 9
Challenge Three: Representations 9
Challenge Four: Applications of Social-Behavioral Modeling 9
About This Book 10
Roadmap for the Book 11
References 13

2 Improving Social-Behavioral Modeling 15
Paul K. Davis and Angela O’Mahony
Aspirations 15
Vignette 1 15
Vignette 2 16
Contents

Classes of Challenge 17
Inherent Challenges 17
 Individual Cognition and Behavior 17
 Social Systems as Complex Adaptive Systems (CAS) 18
 The Dynamic and Storytelling Character of People and Social Systems 19
Wicked Problems 19
Selected Specific Issues and the Need for Changed Practices 20
 Background on Fragmentation of SB Theories 20
 The Nature of Theory 20
 Similarities and Differences 21
 Rebalancing the Portfolio of Models and Methods 24
 Confronting Uncertainty 24
 Combination, Synthesis, and Integration 25
 Families of Multiresolution, Multiperspective Models 26
 Composability 27
 Connecting Theory with Evidence 28
 Rethinking Model Validity 28
 The Five Dimensions of Model Validity 28
 Assessing a Model’s Validity in a Context 31
 Some General Criteria for Validation 32
Strategy for Moving Ahead 32
 Tightening the Theory–Modeling–Experimentation Research Cycle 33
 Improving Theory and Related Modeling 36
Social-Behavioral Laboratories 39
Conclusions 41
Acknowledgments 42
References 42

3 Ethical and Privacy Issues in Social-Behavioral Research 49

Rebecca Balebako, Angela O’Mahony, Paul K. Davis, and Osonde Osoba

Improved Notice and Choice 50
 Diagnosis 50
 Prescriptions 51
Usable and Accurate Access Control 52
 Diagnosis 52
 Prescriptions 53
Anonymization 53
 Diagnosis 53
 Prescriptions 54
Avoiding Harms by Validating Algorithms and Auditing Use 55
5 How Big and How Certain? A New Approach to Defining Levels of Analysis for Modeling Social Science Topics 101
Matthew E. Brashears
Introduction 101
Traditional Conceptions of Levels of Analysis 102
Incompleteness of Levels of Analysis 104
Constancy as the Missing Piece 107
Putting It Together 111
Implications for Modeling 113
Conclusions 116
Acknowledgments 116
References 116

6 Toward Generative Narrative Models of the Course and Resolution of Conflict 121
Steven R. Corman, Scott W. Ruston, and Hanghang Tong
Limitations of Current Conceptualizations of Narrative 122
A Generative Modeling Framework 125
Application to a Simple Narrative 126
Real-World Applications 130
Challenges and Future Research 133
Analysis Challenges 133
Scale Challenges 134
Sensitivity Challenge 135
Conclusion 135
Acknowledgment 137
Locations, Events, Actions, Participants, and Things in the Three Little Pigs 137
Edges in the Three Little Pigs Graph 139
References 142

7 A Neural Network Model of Motivated Decision-Making in Everyday Social Behavior 145
Stephen J. Read and Lynn C. Miller
Introduction 145
Overview 146
Constraint Satisfaction Processing 147
Theoretical Background 147
Motivational Systems 148
Situations 149
Interoceptive or Bodily State 150
Wanting 150
Competition Among Motives 151
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation Changes Dynamically</td>
<td>151</td>
</tr>
<tr>
<td>Neural Network Implementation</td>
<td>151</td>
</tr>
<tr>
<td>General Processing in the Network</td>
<td>153</td>
</tr>
<tr>
<td>Conclusion</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>

8 Dealing with Culture as Inherited Information 163

Luke J. Matthews

- Galton’s Problem as a Core Feature of Cultural Theory 163
- How to Correct for Treelike Inheritance of Traits Across Groups 167
 - Early Attempts to Correct Galton’s Problem 167
 - More Recent Attempts to Correct Galton’s Problem 169
 - Example Applications 173
- Dealing with Nonindependence in Less Treelike Network Structures 173
 - Determining Which Network Is Most Important for a Cultural Trait 174
 - Correcting for Network Nonindependence When Testing Trait–Trait Correlations 176
 - Example Applications 176
- Future Directions for Formal Modeling of Culture 178
 - Improved Network Autoregression Implementations 178
 - A Global Data Set of Expected Nonindependence to Solve Galton’s Problem 179
 - Better Collection of Behavioral Trait Variation Across Populations 180
- **Acknowledgments** 181
- **References** 181

9 Social Media, Global Connections, and Information Environments: Building Complex Understandings of Multi-Actor Interactions 187

Gene Cowherd and Daniel Lende

- A New Setting of Hyperconnectivity 187
- The Information Environment 188
- Social Media in the Information Environment 189
- Integrative Approaches to Understanding Human Behavior 190
 - Muddy the Waters 192
 - Missing It 192
 - Wag the Dog 192
- The Ethnographic Examples 192
 - Muddying the Waters: The Case of Cassandra 193
 - Missing It: The Case of S Sgt Michaels 196
 - Wag the Dog: The Case of Fedor the Troll 198
10 Using Neuroimaging to Predict Behavior: An Overview with a Focus on the Moderating Role of Sociocultural Context 205
Steven H. Tompson, Emily B. Falk, Danielle S. Bassett, and Jean M. Vettel

Introduction 205
The Brain-as-Predictor Approach 206
Predicting Individual Behaviors 208
Interpreting Associations Between Brain Activation and Behavior 210
Predicting Aggregate Out-of-Sample Group Outcomes 211
Predicting Social Interactions and Peer Influence 214
Sociocultural Context 215
Future Directions 219
Conclusion 221
References 222

11 Social Models from Non-Human Systems 231
Theodore P. Pavlic
Emergent Patterns in Groups of Behaviorally Flexible Individuals 232
From Bird Motivations to Human Applications 234
Game-Theoretic Model of Frequency-Dependent Tactic Choice 234
Mathematical Model as Behavioral Microscope on Carefully Prepared Birds 235
Transferable Insights from Behavioral Games to Human Groups 237
Model Systems for Understanding Group Competition 239
Social Spiders as Model Systems for Understanding Personality in Groups 240
Ants as Model Systems for Understanding the Costs and Benefits of Specialization 242
Personality and Specialization: From Nonhuman to Human Groups 244
Information Dynamics in Tightly Integrated Groups 246
Linear and Nonlinear Recruitment Dynamics 247
Herd Behavior and Information Cascades in Ants 249
From Ants to Human Decision Support Systems 251
Additional Examples: Rationality and Memory 252
Conclusions 254
Acknowledgments 255
References 255
12 Moving Social-Behavioral Modeling Forward: Insights from Social Scientists 263
Matthew Brashears, Melvin Konner, Christian Madsbjerg, Laura McNamara, and Katharine Sieck
Why Do People Do What They Do? 264
Everything Old Is New Again 264
Behavior Is Social, Not Just Complex 267
What is at Stake? 270
Sensemaking 272
Final Thoughts 275
References 276

Part III Informing Models with Theory and Data 279

13 Integrating Computational Modeling and Experiments: Toward a More Unified Theory of Social Influence 281
Michael Gabbay
Introduction 281
Social Influence Research 283
Opinion Network Modeling 284
Integrated Empirical and Computational Investigation of Group Polarization 286
Group Polarization Theory 286
Frame-Induced Polarization Theory 288
Accept-Shift-Constrict Model of Opinion Dynamics 293
Experiment and Results 295
Integrated Approach 299
Conclusion 305
Acknowledgments 307
References 308

14 Combining Data-Driven and Theory-Driven Models for Causality Analysis in Sociocultural Systems 311
Amy Sliva, Scott Neal Reilly, David Blumstein, and Glenn Pierce
Introduction 311
Understanding Causality 312
Ensembles of Causal Models 317
Case Studies: Integrating Data-Driven and Theory-Driven Ensembles 321
Letting the Data Speak: Additive Noise Ensembles 321
Choosing Data-Driven Approaches Using Theory 322
Parameterizing Theory-Driven Models Using Data 324
Theory and Data Dialogue 329
Conclusions 332
References 333

15 Theory-Interpretable, Data-Driven Agent-Based Modeling 337
William Rand
The Beauty and Challenge of Big Data 337
A Proposed Unifying Principle for Big Data and Social Science 340
Data-Driven Agent-Based Modeling 342
Parameter Optimization 343
News Consumption 345
Urgent Diffusion 348
Rule Induction 349
Commuting Patterns 350
Social Media Activity 351
Conclusion and the Vision 353
Acknowledgments 354
References 355

16 Bringing the Real World into the Experimental Lab: Technology-Enabling Transformative Designs 359
Lynn C. Miller, Liyuan Wang, David C. Jeong, and Traci K. Gillig
Understanding, Predicting, and Changing Behavior 359
Social Domains of Interest 360
Preventing Disease 360
Harm Mitigation in Crises 361
Terrorism Reduction and Lone Actors 362
The SOLVE Approach 365
Overview of SOLVE 365
Shame Reduction as a Key Intervention 366
Intelligent Agents in Games 367
Generalizing Approach: Understanding and Changing Behavior Across Domains 367
Experimental Designs for Real-World Simulations 368
Standard Systematic Designs and Representative Designs: A Primer 368
Systematic Representative Virtual Game Designs 369
What Is a Default Control Condition? 370
What Are Hooks and Experimental Alternatives? 370
Creating Representative Designs for Virtual Games 371
Measuring Occurrence of the Behavior of Interest (BoI) in Time 371
Beyond the When of BoI: Identifying Challenges and Preconditions 372
Creating a Sampling Frame of Challenges 372
Coding/Structuring Sequences as in Everyday Life 372
Naturally Covarying Factors/Cues in Situations 374
Options Available in the Game 374
Determining When and How Things Go Differently to Produce Riskier or Safer Choices 374
More Detail Regarding Precipitating Cues 375
Evaluations of the Effectiveness in Creating Representative Designs 375
Default Control and Experimental Condition Alternatives 375
Applications in Three Domains of Interest 375
Conclusions 376
References 380

17 Online Games for Studying Human Behavior 387
Kiran Lakkaraju, Laura Epifanovskaya, Mallory Stites, Josh Letchford, Jason Reinhardt, and Jon Whetzel
Introduction 387
Online Games and Massively Multiplayer Online Games for Research 388
Where Is the Benefit? 390
War Games and Data Gathering for Nuclear Deterrence Policy 390
MMOG Data to Test International Relations Theory 393
Analysis and Results 397
Analysis 1: All Guilds, Full-Time Period 397
Analysis 2: Large Guilds, Full-Time Period 398
Large Guilds, Interwar Period 398
Caveats 400
Operationalizing MMOG Data 400
Games as Experiments: The Future of Research 403
Simplification 404
Option Abundance 404
Event Shaping 404
Final Discussion 405
Acknowledgments 405
References 405

18 Using Sociocultural Data from Online Gaming and Game Communities 407
Sean Guarino, Leonard Eusebi, Bethany Bracken, and Michael Jenkins
Introduction 407
Characterizing Social Behavior in Gaming 409
Game-Based Data Sources 412
In-Game Data Sources 412
Meta-Game Data Sources 415
Asynchronous Community Data Sources 418
Synchronous Community Data Sources (Streaming Sources) 420
Case Studies of SBE Research in Game Environments 422
Case Study 1: Extracting Player Behavior from League of Legends Data 422
Case Study 2: Extracting Popularity Patterns from Hearthstone Community Data 426
Case Study 3: Investigating Linguistic Indicators of Subcultures in Twitch 432
Conclusions and Future Recommendations 437
Acknowledgments 438
References 438

19 An Artificial Intelligence/Machine Learning Perspective on Social Simulation: New Data and New Challenges 443
Osonde Osoba and Paul K. Davis
Objectives and Background 443
Relevant Advances 443
Overview 443
Advances in Data Infrastructure 445
New Sources 445
Evaluating the Data Ecosystem 447
Trends 448
Advances in AI/ML 449
Deep Learning 449
Natural Language Processing (NLP) 450
Adversarial Training for Unsupervised Learning 451
Reinforcement Learning 452
Emulating Human Biases and Bounded Rationality 453
Trends 453
Data and Theory for Behavioral Modeling and Simulation 454
Prefacing Comments on Fundamentals 454
For Want of Good Theory… 455
The Scope of Theory and Laws for Behavioral Models 456
The Scope of Data for Behavioral Models 459
Bridging the Theory–Data Gap 460
Initial Observations 460
Example 1: Modeling Belief Transmission: Memes and Related Issues at the Micro Level 461
Example 2: Static Factor-Tree Modeling of Public Support for Terrorism 465
Evaluating the PSOT Models 470
Conclusion and Highlights 470
Acknowledgments 472
References 472

20 Social Media Signal Processing 477
Prasanna Giridhar and Tarek Abdelzaher
Social Media as a Signal Modality 477
Interdisciplinary Foundations: Sensors, Information, and Optimal Estimation 479
Event Detection and Demultiplexing on the Social Channel 481
Filtering Misinformation 484
Human Bias, Opinions, and Polarization 487
Modeling Signal Propagation 487
Opinion Separation and Polarization Detection 489
Online Tools 490
Conclusions 492
Acknowledgment 492
References 492

21 Evaluation and Validation Approaches for Simulation of Social Behavior: Challenges and Opportunities 495
Emily Saldanha, Leslie M. Blaha, Arun V. Sathanur, Nathan Hodas, Svitlana Volkova, and Mark Greaves
Overview 495
Broad Observations 495
Online Communication in Particular: A Valuable Venue for Validation 497
Simulation Validation 498
Simulation Evaluation: Current Practices 499
Measurements, Metrics, and Their Limitations 500
Lack of Common Standards 501
Selection of Appropriate Measurements and Metrics 502
Correlations, Causation, and Transfer Entropy 503
Initial Conditions and Model Assumptions 504
Uncertainty 505
Generalizability 506
Interpretation 506
Proposed Evaluation Approach 507
Considering the Goal of the Simulation 507
Data 508
Modeling Assumptions and Specifications 510
Measurements 511
Metrics 512
Distributional 512
Rankings 512
One to One 512
Evaluation Procedures 513
Interpretation 514
Conclusions 515
References 515

Part IV Innovations in Modeling 521

22 The Agent-Based Model Canvas: A Modeling Lingua Franca for Computational Social Science 523
Ivan Garibay, Chathika Gunaratne, Niloofar Yousefi, and Steve Scheinert
Introduction 523
The Stakeholders 524
Need for a Lingua Franca 525
The Agent-Based Model Canvas 526
The Language Gap 527
The Modelers 527
Social Scientific Languages in CSS 528
Data Analysis Languages 529
A Comparison of Existing Languages 530
The Agent-Based Model Canvas 530
From Theory to Hypothesis: Human-Aided Data-Driven Hypothesis Building 532
From Hypothesis to Model: Data-Driven Calibration and Model Discovery 533
Two Application Examples 535
Schelling’s Segregation Model 535
Artificial Anasazi 537
Conclusion 540
References 541

23 Representing Socio-Behavioral Understanding with Models 545
Andreas Tolk and Christopher G. Glazner
Introduction 545
Philosophical Foundations 546
Modeling in Support of Scientific Work 546
Epistemological Constraints for Computational Science 548
Multi-, Inter-, and Transdisciplinary Research 551
Simulation and Modeling Approaches for Computational Social Scientists 555
Simulation OF Social Systems 556
Simulation of Social Systems from the Top Down 557
Simulation of Social Systems from the Bottom Up 558
Simulation FOR Social Systems 561
The Way Forward 562
Acknowledgment 563
Disclaimer 563
References 564

24 Toward Self-Aware Models as Cognitive Adaptive Instruments for Social and Behavioral Modeling 569
Levent Yilmaz
Introduction 569
Perspective and Challenges 571
Models as Dynamic Data and Theory-Driven Mediating Instruments 571
Challenges 572
Model Abstractions 573
Cognitive Assistance in Modeling 573
A Generic Architecture for Models as Cognitive Autonomous Agents 575
The Mediation Process 578
Search Model Space 579
Search Experiment Space 580
Evaluate Evidence 580
Coherence-Driven Cognitive Model of Mediation 581
Conclusions 584
References 585

25 Causal Modeling with Feedback Fuzzy Cognitive Maps 587
Osonde Osoba and Bart Kosko
Introduction 587
Overview of Fuzzy Cognitive Maps for Causal Modeling 588
Fuzz 589
Comparison with Other Methods 589
Inference with FCMs 591
Combining Causal Knowledge: Averaging Edge Matrices 592
Learning FCM Causal Edges 594
FCM Example: Public Support for Insurgency and Terrorism 597
US–China Relations: An FCM of Allison’s Thucydides Trap 603
26 Simulation Analytics for Social and Behavioral Modeling 617
Samarth Swarup, Achla Marathe, Madhav V. Marathe, and Christopher L. Barrett
Introduction 617
What Are Behaviors? 619
Simulation Analytics for Social and Behavioral Modeling 624
Identifying Causal Connections Between Behaviors and Outcomes 625
Conclusion 628
Acknowledgments 630
References 630

27 Using Agent-Based Models to Understand Health-Related Social Norms 633
Gita Sukthankar and Rahmatollah Beheshti
Introduction 633
Related Work 634
Lightweight Normative Architecture (LNA) 634
Cognitive Social Learners (CSL) Architecture 635
Belief, Desire, and Intention 635
Game-Theoretic Interaction 636
Norm Recognition Using RL 637
Norms 637
Smoking Model 639
Personal 639
Social 640
Environmental 640
Agent-Based Model 641
LNA Setup 642
CSL Setup 644
Data 645
Experiments 646
Results 647
Discussion 652
Conclusion 652
Acknowledgments 652
References 652
28 Lessons from a Project on Agent-Based Modeling 655
Mirsad Hadzikadic and Joseph Whitmeyer
Introduction 655
ACSES 656
 The Social Theories 657
 The Adaptation Theories 661
 Summary 661
Verification and Validation 661
 Verification 663
 Validation 664
Self-Organization and Emergence 665
 Definition 665
 Practice 666
Trust 668
Summary 669
References 670

29 Modeling Social and Spatial Behavior in Built Environments: Current Methods and Future Directions 673
Davide Schaumann and Mubbasir Kapadia
Introduction 673
Simulating Human Behavior – A Review 675
 System Dynamics 675
 Process-Driven Models 676
 Flow-Based Models 677
 Particle-Based Models 677
 Multi-Agent Systems 677
Modeling Social and Spatial Behavior with MAS 678
Modeling Spaces 678
 Graph-Based Approaches 679
 Navigation Meshes 680
 Grid-Based Approaches 680
 Semantics and Affordances 680
Modeling Actors 680
 Profiles 681
 Perceptual and Cognitive Abilities 681
Modeling Activities 681
 Navigation 682
 Precomputed Roadmaps 682
 Reactive Planning Approaches 682
 Predictive Planning Approaches 682
Decision-Making 682
Behavior Authoring 683
 Centralized Scheduling Systems 683
 Event-Centric Approaches 684
 Event Management Systems 684
Discussion and Future Directions 685
 Creating Heterogeneous Agents 685
 Improving Agents’ Multi-Modal Perception and Cognition 685
 Using Human Behavior Simulation as a Decision-Support System
 in Architectural Design 686
Acknowledgments 687
References 687

30 Multi-Scale Resolution of Human Social Systems: A Synergistic Paradigm
 for Simulating Minds and Society 697
Mark G. Orr
Introduction 697
 The Reciprocal Constraints Paradigm 699
 Applying the Reciprocal Constraints Paradigm 701
 Single-Scale Approaches 701
 Multi-scale Approaches 703
Discussion 706
Acknowledgments 708
References 708

31 Multi-formalism Modeling of Complex Social-Behavioral Systems 711
Marco Gribaudo, Mauro Iacono, and Alexander H. Levis
Prologue 711
Introduction 713
 Social Entity or Granularity 716
 Time 716
 Scope of Problem 717
On Multi-formalism 718
Issues in Multi-formalism Modeling and Use 719
 The Physical Layer and the Syntactic Layer 719
 The Semantic Layer 721
 The Workflow Layer 729
Issues in Multi-formalism Modeling and Simulation 734
 The Representation Problem: Information Consistency,
 Representability, and Sharing 734
 The Simulation Level: Process Representation and
 Enactment 735
The Results Level: Local and Global Results Representation, Traceability, Handling, and Reuse of Intermediate Results 735
Conclusions 736
Epilogue 736
References 737

32 Social-Behavioral Simulation: Key Challenges 741
Kathleen M. Carley
Introduction 741
Key Communication Challenges 742
Key Scientific Challenges 743
Toward a New Science of Validation 748
Conclusion 749
References 750

33 Panel Discussion: Moving Social-Behavioral Modeling Forward 753
Simulation and Emergence 754
Andreas Tolk: Epistemological, Not Ontological Emergence 755
Kathleen M. Carley: Emergence Does Not Happen Magically in Simulations or the Real World 756
Joshua M. Epstein: Of Course, Emergent Phenomena Are Baked into Computer Models 757
Levent Yilmaz: Emergent Behavior May Have a Higher-Level Ontology 758
Samarth Swarup: The Promise of Clever Agents for True Emergence in Simulations 759
Luke J. Matthews: Examples of True Emergence in Current Agent-Based Models 760
Raffaele Vardavas: Importance of Nonlinearity for Emergence 761
Bill Rand: The Difficulty in Simulating Emergence 761
Paul K. Davis: Reproducing Emergence Through Simulation Is a Valuable Hard Problem to Tackle 762
Scott Neal Reilly: Simulations Can Explore How Emergent Behavior Might Occur 762
Ted Pavlic: Simulations Can Serve as Existential Witnesses for Emergent Phenomena 763
Relating Models Across Levels 765
Matthew E. Brashears: Interpretation Is Crucial in Cross-Level Modeling 766
Erica Briscoe and Scott Appling: Multi-Scale Modeling Can Exploit Both Data- and Theory-Driven Insights 768
Scott Neal Reilly: A Combination of Theory-Driven and Data-Driven Inquiry Is Best 769
Corey Lofdahl: Decomposition Is Sometimes Necessary But Creates Issues 769
Ted Pavlic: Detailed Models Are Only Sometimes Desirable 770
William B. Rouse: Top-Down or Bottom-Up Modeling Serve Different Purposes 771
Paul K. Davis: Aggregation and Disaggregation Functions Need To Be Contextual 772
Raffaele Vardavas: Bottom-Up Modeling Need Not Be All or Nothing 772
Kent Myers: Meso-Modeling Is a Good Fit for Addressing Concrete Human Problems 773
Levent Yilmaz: Improved Development of Hybrid Models Is Possible 774
Kathleen M. Carley: Distinguishing Challenges of Multilevel and Hybrid Simulation 775
Going Beyond Rational Actors 776
Joshua M. Epstein: Inverse Generative Social Science – What Machine Learning Can Do for Agent-Based Modeling 779
Raffaele Vardavas: Evidence-Based Models Need to be General Enough to be Realistic Under Alternative Specifications 780
Kathleen M. Carley: Agent-Based Dynamic Network Models Produce More Realistic Agents 781
Levent Yilmaz: Realistic Models Must Include Cognitive Biases and Limitations 781
Scott Neal Reilly: High Degree Realism Entails Costs That May Not Be Outweighed by Their Benefits 782
Ted Pavlic: With Additional Realism Comes Additional Liability 782
References 784

Part V Models for Decision-Makers 789

34 Human-Centered Design of Model-Based Decision Support for Policy and Investment Decisions 791
William B. Rouse
Introduction 791
Modeler as User 792
Modeler as Advisor 792
Modeler as Facilitator 793
Modeler as Integrator 797
Modeler as Explorer 799
Validating Models 800
Modeling Lessons Learned 801
Observations on Problem-Solving 804
Starting Assumptions 804
Framing Problems 804
Implementing Solutions 805
Conclusions 806
References 807

35 A Complex Systems Approach for Understanding the Effect of Policy and Management Interventions on Health System Performance 809
Jason Thompson, Rod McClure, and Andrea de Silva
Introduction 809
Understanding Health System Performance 811
Method 813
Patients 813
Rehabilitation Coordinators 814
Physical and Mental Health Treatment Services 814
Plaintiff Solicitors 815
Model Narrative 815
Seeking Treatment Service Approval from the Health System 815
Seeking Healthcare Services 815
Exiting the Health System 816
Policy Scenario Simulation 817
Results 817
Discussion 824
Conclusions 826
References 827

36 Modeling Information and Gray Zone Operations 833
Corey Lofdahl
Introduction 833
The Technological Transformation of War: Counterintuitive Consequences 835
China 835
Russia 836
Modeling Information Operations: Representing Complexity 838
Modeling Gray Zone Operations: Extending Analytic Capability 842
Conclusion 845
References 847

37 Homo Narratus (The Storytelling Species): The Challenge (and Importance) of Modeling Narrative in Human Understanding 849
Christopher Paul
The Challenge 849
What Are Narratives? 850
What Is Important About Narratives? 851
People Use Narratives to Make Sense of the World 851
Compelling Narratives Have Consistency, Familiarity, and Proof 853
Narratives Already Exist and Cannot Always Be Changed or Replaced 853
What Can Commands Try to Accomplish with Narratives in Support of Operations? 856
Moving Forward in Fighting Against, with, and Through Narrative in Support of Operations 857
Three Kinds of Narrative 857
Developing a Command’s Mission Narrative 859
Developing a Command’s External Narrative 859
Developing and Promoting Desired Narratives Among Relevant Audiences 860
Conclusion: Seek Modeling and Simulation Improvements That Will Enable Training and Experience with Narrative 861
References 862

38 Aligning Behavior with Desired Outcomes: Lessons for Government Policy from the Marketing World 865
Katharine Sieck
Technique 1: Identify the Human Problem 867
Technique 2: Rethinking Quantitative Data 869
Technique 3: Rethinking Qualitative Research 876
Summary 882
References 882

39 Future Social Science That Matters for Statecraft 885
Kent C. Myers
Perspective 885
Recent Observations 885
Interactions with the Intelligence Community 887
Phronetic Social Science 888
Cognitive Domain 891
Reflexive Processes 893
Conclusion 895
References 896

40 Lessons on Decision Aiding for Social-Behavioral Modeling 899
Paul K. Davis
Strategic Planning Is Not About Simply Predicting and Acting 899
Characteristics Needed for Good Decision Aiding 901
 Systems Thinking for a Strategic View 902
 Concepts 902
 Examples 903
 Going Broad and Deep 904
 How Much Detail Is Needed? 904
 A Dilemma? 905
 Resolution of Dilemma 905
Confronting Uncertainty and Disagreement 906
 Normal and Deep Uncertainty 907
 Exploring Uncertainty in Scenario Space 907
 Exploration Guided by the XLRM Framework 909
 The Nuts and Bolts of Coping with Dimensional Explosion 910
Finding Strategy to Cope with Uncertainty 911
 Planning for Adaptiveness with a Portfolio of Capabilities 911
 Finding Adaptive Strategies by Minimizing Regret 917
 Planning Adaptive Pathways 918
Implications for Social-Behavioral Modeling 918
Acknowledgments 921
References 923

Index 927