CONTENTS

| Foreword | xii |
| Preface | xiii |

1 Introduction to Electrical Engineering Simulation

1.1 Fundamentals of State-Space-Based Modeling
1.2 Example of Modeling an Electrical Network
1.3 Transfer Function
1.3.1 State Space to Transfer Function Conversion
1.4 Modeling and Simulation of Energy Systems and Power Electronics
1.5 Suggested Problems
Further Reading

2 Analysis of Electrical Circuits with Mesh and Nodal Analysis

2.1 Introduction
2.2 Solution of Matrix Equations
2.3 Laboratory Project: Mesh and Nodal Analysis of Electrical Circuits with Superposition Theorem
2.4 Suggested Problems
References
Further Reading

3 Modeling and Analysis of Electrical Circuits with Block Diagrams

3.1 Introduction
3.2 Laboratory Project: Transient Response Study and Laplace Transform-Based Analysis Block Diagram Simulation
CONTENTS

3.3 Comparison with Phasor-Based Steady-State Analysis 52
3.4 Finding the Equivalent Thévenin 54
3.5 Suggested Problems 56
Further Reading 58

<table>
<thead>
<tr>
<th>4</th>
<th>Power Electronics: Electrical Circuit-Oriented Simulation</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Case Study: Half-Wave Rectifier</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Laboratory Project: Electrical Circuit Simulation Using PSIM and Simscape Power Systems MATLAB Analysis</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Suggested Problems</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Designing Power Electronic Control Systems</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>5.1.1 Control System Design</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.1.2 Proportional–Integral Closed-Loop Control</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Laboratory Project: Design of a DC/DC Boost Converter Control</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Ideal Boost Converter</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Small Signal Model and Deriving the Transfer Function of Boost Converter</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.2.3 Control Block Diagram and Transfer Function</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>Design of a Type III Compensated Error Amplifier</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>5.3.1 K Method</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Poles and Zeros Placement in the Type III Amplifier</td>
<td>96</td>
</tr>
<tr>
<td>5.4</td>
<td>Controller Design</td>
<td>97</td>
</tr>
<tr>
<td>5.5</td>
<td>PSIM Simulation Studies for the DC/DC Boost Converter</td>
<td>99</td>
</tr>
<tr>
<td>5.6</td>
<td>Boost Converter: Average Model</td>
<td>99</td>
</tr>
<tr>
<td>5.7</td>
<td>Full Circuit for the DC/DC Boost Converter</td>
<td>103</td>
</tr>
<tr>
<td>5.8</td>
<td>Laboratory Project: Design of a Discrete Control in MATLAB Corunning with a DC Motor Model in Simulink</td>
<td>107</td>
</tr>
<tr>
<td>5.9</td>
<td>Suggested Problems</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Instrumentation and Control Interfaces for Energy Systems and Power Electronics</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>6.1.1 Sensors and Transducers for Power Systems Data Acquisition</td>
<td>118</td>
</tr>
<tr>
<td>6.2</td>
<td>Passive Electrical Sensors</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Resistive Sensors</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>6.2.2 Capacitive Sensors</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>6.2.3 Inductive Sensors</td>
<td>123</td>
</tr>
</tbody>
</table>
6.3 Electronic Interface for Computational Data in Power Systems and Instrumentation 125
 6.3.1 Operational Amplifiers 125
6.4 Analog Amplifiers for Data Acquisition and Power System Driving 125
 6.4.1 Level Detector or Comparator 126
 6.4.2 Standard Differential Amplifier for Instrumentation and Control 127
 6.4.3 Optically Isolated Amplifier 128
 6.4.4 The V–I Converter of a Single Input and Floating Load 130
 6.4.5 Schmitt Trigger Comparator 131
 6.4.6 Voltage-Controlled Oscillator (VCO) 131
 6.4.7 Phase Shifting 131
 6.4.8 Precision Diode, Precision Rectifier, and the Absolute Value Amplifier 134
 6.4.9 High-Gain Amplifier with Low-Value Resistors 136
 6.4.10 Class B Feedback Push–Pull Amplifiers 137
 6.4.11 Triangular Waveform Generator 137
 6.4.12 Sinusoidal Pulse Width Modulation (PWM) 138
6.5 Laboratory Project: Design a PWM Controller with Error Amplifier 140
6.6 Suggested Problems 140
References 145

7 Modeling Electrical Machines 147
 7.1 Introduction to Modeling Electrical Machines 147
 7.2 Equivalent Circuit of a Linear Induction Machine Connected to the Network 148
 7.3 PSIM Block of a Linear IM Connected to the Distribution Network 150
 7.4 PSIM Saturated IM Model Connected to the Distribution Network 152
 7.5 Doubly Fed Induction Machine Connected to the Distribution Network 154
 7.6 DC Motor Powering the Shaft of a Self-Excited Induction Generator 156
 7.7 Modeling a Permanent Magnet Synchronous Machine (PMSM) 158
 7.8 Modeling a Saturated Transformer 158
 7.9 Laboratory Project: Transient Response of a Single-Phase Nonideal Transformer for Three Types of Power Supply—Sinusoidal, Square Wave, and SPWM 158
 7.10 Suggested Problems 169
References 175
Further Reading 175

8 Stand-Alone and Grid-Connected Inverters 177
 8.1 Introduction 177
 8.2 Constant Current Control 181
 8.3 Constant P–Q Control 182
 8.4 Constant P–V Control 183
11.4.2 Adding DSP Peripheral Blocks 266
11.4.3 Defining SCI Blocks for Real-Time Monitoring and Debugging 271
11.5 PIL Simulation with PSIM 272
11.6 Conclusion 275
References 278
Further Reading 278

12 Digital Processing Techniques applied to Power Electronics 279

Danilo Iglesias Brandão and Fernando Pinhabel Marafão

12.1 Introduction 279
12.2 Basic Digital Processing Techniques 280
 12.2.1 Instantaneous and Discrete Signal Calculations 280
 12.2.2 Derivative and Integral Value Calculation 280
 12.2.3 Moving Average Filter 282
 12.2.4 Laboratory Project: Active Current Calculation 286
12.3 Fundamental Component Identification 287
 12.3.1 IIR Filter 288
 12.3.2 FIR Filter 290
 12.3.3 Laboratory Project: THD Calculation 291
12.4 Fortescue’s Sequence Components Identification 293
 12.4.1 Sequence Component Identification Using IIR Filter 296
 12.4.2 Sequence Component Identification Using DCT Filter 297
 12.4.3 Laboratory Project: Calculation of Negative- and Zero-Sequence Factors 298
12.5 Natural Reference Frame PLLs 300
 12.5.1 Single-Phase PLL 301
 12.5.2 Three-Phase PLL 302
 12.5.3 Laboratory Project: Single-Phase PLL Implementation 303
 12.5.4 Laboratory Project: Fundamental Wave Detector Based on PLL 306
12.6 MPPT Techniques 307
 12.6.1 Perturb and Observe 310
 12.6.2 Incremental Conductance 310
 12.6.3 Beta Technique 312
 12.6.4 Laboratory Project: Implementing the IC Technique 312
12.7 Islanding Detection 314
 12.7.1 Laboratory Project: Passive Islanding Detection Based on IEEE Std. 1547 315
12.8 Suggested Problems 317
References 319

Index 321