Actual evapotranspiration (AET), 215–16, 217f
ADAM, 40
Advanced Microwave Scanning Radiometer-Earth (AMSR-E), 41
Aerodynamic roughness
LUCC and, 103
snow and, 4
AET. See Actual evapotranspiration
Afforestation, 123, 123f, 125
African Monsoon Multidisciplinary Analysis (AMMA), 43
Agriculture, 58
deforestation and, 103
global food security and, 93
GW depletion from, 73
GW for, 93
LUCC and, 123–24
Ahmad, M.-D., 84
Albedo. See Surface albedo
Albert, R., 211
Alcamo, J., 80
Alila, Y., 126
Allan, J. A., 209, 210
ALMIP. See LSM Intercomparison Project
AMMA. See African Monsoon Multidisciplinary Analysis
AMSR-E. See Advanced Microwave Scanning Radiometer-Earth
Andreadis, K. M., 46
Andreassian, V., 104, 122, 128
ANN. See Artificial neural network
AQSII. See Aquifer stress indicator
Aquaculture, 58
AQUASTAT, 58
Aquifer stress indicator (AQSII), 84
Arrigon, A. S., 104
Artificial neural network (ANN), 41
Atmospheric water balance (AWB), 6–7, 7f, 147, 159–60, 160f
AVHRR, 199
Avisser, R., 126
AWB. See Atmospheric water balance
Ball, J. T., 198, 199
Band, L. E., 198
Barabási, A.-L., 211
Bäse, F., 124
BATS. See Biosphere Atmosphere Transfer Scheme
Becker, M. W., 143–44
Bengal Basin, 140–41
Beschta, R. L., 122
Best, M. J., 198
Biemans, H., 172
Bierkens, M. F.P., 77, 87
Biosphere Atmosphere Transfer Scheme (BATS), 8
Blöschl, G. S., 105
Blue water, 91f, 217t, 218f
evapotranspiration and, 11
in VWC, 210–11
VWC and, 222–24, 223f
Blue Water Sustainability Index (BlWSI), 87
Bonell, M., 127
Bosch, J. M., 104
Bowling, L. C., 122, 127
Bras, R., 13
Braud, I. P., 105
Breña-Naranjo, J. A., 139–40, 144
Brown, A. E., 104, 105, 123, 128
Bruijnzeel, L. A., 104, 105
Brutsaert, W., 45
Bucket model, 214
Bulsink, F., 211
Buttle, J. M., 104
Cai, M., 103–4
Canning Basin (Australia), 141–42
Capillary water, 6
Carbon dioxide (CO₂), 8, 13, 18, 46, 193, 194, 199, 200–203, 202f, 203f, 204f
fertilization effect, 80
GHMs and, 198
LUCC and, 104
RCP8.5 and, 204
runoff and, 194, 197
vegetation and, 197–98
Carr, J. A., 211
CASCaDE. See Computational Assessments of Scenarios of Change for the Delta Ecosystem
Catchment Land Surface Model (CLSM), 42
CC. See Clausius-Clapeyron
Center for Space Research (CSR), 140
Central Valley of California, 86, 92, 139
Centre for Space Research (CSR), 151
Centre National d’Etudes Spatiales/Groupe de Recherches de Géodésie Spatiale (CNES/GRGS), 151–52
CESM. See Community Earth System Model
Chambers, D. P., 152
Chang, H., 125
Climate change. See also Intergovernmental Panel on Climate Change

Droughts, 18, 40, 46–47, 141–42
CPC. See Climate Prediction Center
CPC Morphing Technique (CMORPH), 41
CRHM, 122
Crop growth submodel, 214–15
Crop yields
GDHY and, 216–19, 217t, 218f, 218t
H08 and, 219–20
VWC and, 210, 213, 215
CRU. See Climate Research Unit
CSR. See Center for Space Research; Centre for Space Research
Cui, X, 211
Cuo, L., 126, 127
CV. See Coefficient of variation
CWB. See Combined water balance
Dai, A., 20, 25, 32, 46
Dalin, C., 211
Dams, 58, 67, 86, 123, 128
DBH. See Distributed biosphere-hydrological model
DDK filters, 152–53
DDM30, 59
Deardorff, J. W., 8, 197
Deciduous trees, 104
Deep percolation (DP), 126
Deforestation, 104, 127, 194
LUCC and, 122–23, 123f
runoff and, 197
streamflow and, 103
De Graaf, I. E. M., 82–84, 92
De Lannoy, G. J. M., 43
DEMs. See Digital elevation models
Deryng, D., 220
DGVMs. See Dynamic Global Vegetation Models
DHSVM. See Distributed Hydrology Soil Vegetation Model
Digital elevation models (DEMs), 195
Distributed biosphere-hydrological model (DBH), 122, 193, 194, 197, 198–99, 200, 201f
Distributed Hydrology Soil Vegetation Model (DHSVM), 122, 198
Döll, P., 10, 46, 59, 61, 64, 75, 79, 84, 86, 138, 144
Dominant runoff processes (DRP), 126
Doorenbos, J., 213
Dorman, J. L., 199
DP. See Deep percolation
Droughts, 18, 40, 46–47, 141–42
DRP. See Dominant runoff processes
Drying stress, 5
Drying/wetting trend, 46–47
Dunn, S. M., 124
Dunne runoff, 5
Durack, P. J., 47
Dynamic Global Vegetation Models (DGVMs), 198
Earth system models (ESMs), 13
 for Midwest WM, 169–70, 172, 173–75
EC. See Eddy covariance
ECHAM4, 198
ECMWF. See European Centre for Medium-Range Weather Forecast
Ecosystem, 94, 105, 128
Eddy covariance (EC), 40–41
ELDAS. See European Land Data Assimilation system
El Niño, 26, 32
El Niño-Southern Oscillation (ENSO), 27, 77
ELSE. See Ensemble Land Surface Estimator
Energy balance, 6, 40, 45, 127, 197, 198
Energy budget, 39–40, 46, 72
Ensemble Land Surface Estimator (ELSE), 5f
ENSO. See El Niño-Southern Oscillation
EPIC. See Erosion-Productivity Impact Calculator
ERA-40, 12
ERA-Interim. See European Centre for Medium-Range Weather Forecasts Interim Reanalysis
Ercin, A. E., 211
Erosion-Productivity Impact Calculator (EPIC), 214–15, 220
ESMs. See Earth system models
ET. See Evapotranspiration
ETSUM. See Evapotranspiration during cropping period
European Centre for Medium-Range Weather Forecast (ECMWF), 7, 7f, 8, 12, 148
European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), 147, 148
European Land Data Assimilation system (ELDAS), 43
Evaporation
drying stress and, 5
energy for, 5
in evapotranspiration, 4–5
GW and, 71
Illinois LWB and, 147
from trees, 104
vegetation and, 197
Evapotranspiration (ET), 4–5, 4f, 62
AET, 215–16, 217f
afforestation and, 124
agriculture and, 124
blue water and, 11
climate change and, 77
CO2 and, 194
continental runoff and, 28, 28f
declining solar energy and, 44
global distribution of, 5f
human impact on, 60–61, 61f
infiltration-evapotranspiration tradeoff hypothesis, 127
irrigation and, 79
LUCC and, 125
PET, 29–30, 29f
PRC from, 104
soil wetness and, 6
upward trend of, 39
vegetation and, 194
VWC and, 212, 213, 215–16
water balance and, 45
water budget and, 40–41
Evapotranspiration during cropping period (ETSUM), 212, 215, 216, 220
EXP1, 12, 199, 200–203, 202f, 203f
EXP2, 12, 199, 200–203, 202f, 203f, 204f
EXP3, 12
FACE. See Free-Air CO2, Enrichment
Falkenmark, M., 62
Famiglietti, J. S., 86, 138, 139, 144, 150, 159
FAO. See Food and Agriculture Organization
FAOSTAT. See Food and Agriculture Organization statistics database
Ferguson, I. M., 46
Fischer, G., 79
Floods, 40, 150–51, 172
Flörke, M., 58, 64
Flux-based method, for GW depletion, 80
FLUXNET, 40–41
Food and Agriculture Organization (FAO), 199
Food and Agriculture Organization statistics database (FAOSTAT), 213
Food security, 93–94
Force-restore method, 8
FOREST-BGC, 198
“The Forgotten Earth Science” (Bras), 13
Foster, S., 77, 85
Four-dimensional data assimilation (4DDA), 6
FPAR. See Photosynthetically active radiation
Free-Air CO2, Enrichment (FACE), 197
Freeze, R. A., 195
Fuerst, J., 125, 126
GAME. See GEWEX Asian Monsoon Experiment
GBHM, 195
GCAM. See Global Change Assessment Model
GCM. See Generic circulation model; Global circulation model
GCMs. See Global climate models
GDHY. See Global dataset of historical yields
Generic circulation model (GCM), 199
GEO-3, 200, 200f
GeoForschungsZentrum (GFZ), 140, 151
Geographical information system (GIS), 195
Geophysical Fluid Dynamics Laboratory (GFDL), 177, 178
Geostationary Operational Environmental Satellite (GOES-8), 42
Gerten, D., 46
GEWEX. See Global Energy and Water Cycle Experiments Project
GEWEX Asian Monsoon Experiment (GAME), 8
GF. See Groundwater footprint
GFDL. See Geophysical Fluid Dynamics Laboratory
GFZ. See GeoForschungsZentrum
GHG. See Greenhouse gases
Ghimire, C. P., 123
GHMs. See Global hydrology models
GIA. See Glacial isostatic adjustment
GIAM. See Global Irrigated Area Mapping
Giorgi, F., 45
GIS. See Geographical information system
Glacial isostatic adjustment (GIA), 140
Glaciers, 4, 6, 13, 42, 71, 84, 140
GLASS. See Global Land/Atmosphere System Study
GLDAS. See Global Land Data Assimilation System
Gleeson, T., 84
Global Change Assessment Model (GCAM), 170, 172–73, 178t, 181, 187
Global circulation model (GCM), 177
Global climate models (GCMs), 8, 13, 61, 79, 80, 174, 177
Global dataset of historical yields (GDHY), 213, 216–19, 217t, 218f, 218t
Global Energy and Water Cycle Experiments Project (GEWEX), 11–13, 42
Global hydrology models (GHMs), 42, 196f
CO₂ and, 198
GCMs and, 80
GW and, 92
irrigation and, 80
LSP and, 195–97
for LUCC, 122, 127
runoff and, 196–97
vegetation parameterization in, 197–98
for WM in Midwest, 169–88
Global Irrigated Area Mapping (GIAM), 64
Global Land/Atmosphere System Study (GLASS), 12
Global Land Data Assimilation System (GLDAS), 43, 139
Global Map of Irrigation Areas (GMA), 67, 199
Global Precipitation Climatology Centre (GPCC), 40
Global Precipitation Climatology Project (GPCP), 4, 12, 41–42
Global Precipitation Measurement (GPM), 41–42
Global Reservoir and Dam database (GRanD), 64, 175, 176f
Global Reservoir Data Center (GRDC), 9f, 20, 21f, 22f, 40
Global Satellite Mapping of Precipitation (GSMaP), 41
Global Soil Moisture Data Bank (GSMDB), 40
Global Soil Wetness Project (GSWP), 9, 12
Global Satellite Mapping of Precipitation (GSMaP), 41
Global warming, 6, 79, 137. See also Climate change
Global zonal-mean moisture budget, 40
Global zonal-mean surface flux, 47
GIAMIA. See Global Map of Irrigation Areas
GOES-8. See Geostationary Operational Environmental Satellite
Gornitz, V., 62, 85
GPCC. See Global Precipitation Climatology Centre
GPCP. See Global Precipitation Climatology Project
GPM. See Global Precipitation Measurement
GRACE. See Gravity Recovery and Climate Experiment
GRanD. See Global Reservoir and Dam database
Grant, G. E., 122
Gravity Recovery and Climate Experiment (GRACE), 8–9, 9f, 80, 92–93, 140
for GW depletion, 86, 137–44, 143f
TWS and, 42, 43, 84, 86
CWB and, 148, 155
Illinois LWB and, 147–48, 154f, 155, 157–58, 157f, 158f, 160–64, 161f, 162f, 163f, 164f
GRDC. See Global Runoff Data Center
Great Lakes basin, 140, 187
Green-Ampt model, 199
Greenhouse gases (GHG), 18, 30, 40, 79
Green water, 210–11, 217t, 218f, 222–24, 223f
Grey water, 211
GRGS. See Groupe de Recherche de Geodesie Spatiale
Groisman, P. Y., 44–45
Groundwater (GW)
for agriculture, 93
climatic change and, 77–80, 137
depletion of, 18, 72f
in Bengal Basin, 140–41
in Canning Basin, 141–42
in Central Valley of California, 139
from climate change, 142
in Colorado River basin, 139
dams and, 86
droughts and, 141–42
ecosystem and, 94
flux-based method for, 80
future projections for, 86–92, 88f, 89f, 90f, 91f
global and regional estimates of, 76t, 80–84
global water budget and, 71–94
GRACE for, 86, 137–44, 143f
in Great Lakes basin, 140
historical and future trends in, 82f
human water consumption and, 73–77, 73f
nonrenewable abstraction of, 83t
in North China Plain (NCP), 141
in Ogallala Aquifer, 139–30
present rate of, 73f, 75
by region, 142t
satellite-based observations for, 80, 92–93
sea-level rise (SLR) and, 72
SLR and, 84–86, 85f
streamflow and, 75
volume-based method for, 80
for years 1960 and 2010, 81f
GHMs and, 92
global food security and, 93–94
Illinois LWB and, 147, 148–51, 153f
irrigation from, 11, 11f, 58, 62, 72, 73–74, 77–79, 79f
monitoring of, 138
recharge of, 5f, 6, 77–79, 78f, 82
deforestation and, 127
LUCC and, 104, 126
runoff and, 6, 140
soil wetness above, 6
sustainability of, 92–94
TWS and, 80
as world's largest store of water, 72
Groundwater footprint (GF), 84
Groupe de Recherche de Geodesie Spatiale (GRGS), 139
GSMaP. See Global Satellite Mapping of Precipitation
GSMDB. See Global Soil Moisture Data Bank
GSWP. See Global Soil Wetness Project
GSWP2. See Global Soil Wetness Project 2
GSWP3, 12, 13
Gu, G., 44
GW. See Groundwater

H08, 10, 59t, 87, 213–14, 219–20
Haddeland, I., 10, 58, 60, 61, 64
HadGEM2‐ES, 199, 204
Hall, M. J., 104
Han, S.‐C., 9
Hanasaki, N., 10, 58, 64, 75, 81, 87, 172, 211, 212, 213, 214
Harlan, R. L., 195
Hassler, S. K., 127
Hawkins, E., 175
HBV, 122
HEC‐HMS, 122, 125
Heinrich, L., 79, 84
Hejazi, M. I., 172–73
Hewlett, J. D., 104
Hibert, A., 104
High Plains Aquifer System. See Ogallala Aquifer
Hillslope scale, 5–6
Hoekstra, A. Y., 210, 211, 213, 220
HOF. See Hortonian overland flow
Hooke, R., 57
Hornberger, G. M., 199
Hortonian overland flow (HOF), 126
Hortonian runoff, 5
HSPF, 122
Hu, Y., 80
Huang, J., 140
Hung, P. Q., 210
Hydraulic conductivity, 5, 103, 199
LUCC and, 126–27
Hydrology‐driven evaporation, 5
Hyper‐resolution modeling, 13

IAM. See Integrated assessment model
IBIS‐THMB, 122
IC. See Irrigation consumption
Icebergs, 6
ICGEM. See International Centre for Global Earth Models
ICOLD. See International Commission on Large Dams
IGBP. See International Geosphere Biosphere Programme
IGRAC. See International Groundwater Resources Assessment Centre
Illinois, LWB and, 147–48, 154f, 155, 157–58, 157f, 158f, 160–64, 161f, 162f, 163f, 164f
Illinois State Water Survey (ISWS), 148
India, 140
Infiltration
agriculture and, 124
deforestation and, 127
LUCC and, 104, 126–27
of permafrost, 6

runoff and, 5
saturation and, 5–6
soil wetness and, 6
Infiltration‐evapotranspiration tradeoff hypothesis, 127
Information Systems and Data Centre (ISDC), 151
In situ measurement
for TWS in Illinois LWB, 155–58, 156f, 157f, 158f
for water budget, 40–41
Institute of Hydrology, 195
Integrated assessment model (IAM), 170
Interdecadal Pacific Oscillation (IPO), 25, 27, 32
Intergovernmental Panel on Climate Change (IPCC), 8, 85, 178
International Centre for Global Earth Models (ICGEM), 151
International Commission on Large Dams, 58, 67
International Geosphere Biosphere Programme (IGBP), 199
International Groundwater Resources Assessment Centre (IGRAC), 75, 77, 81
International Satellite Land Surface Climatology Project (ISLSCP), 12
International Soil Moisture Network (ISMN), 40
International Water Management Institute (IWMI), 64
Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP), 12, 58, 62, 64, 67
IPCC. See Intergovernmental Panel on Climate Change
IPO. See Interdecadal Pacific Oscillation
Irrigation, 62–64, 63t
blue water and, 211–12
DBH and, 199
GHMs and, 80
green water and, 211–12
from GW, 11, 11f, 58, 62, 72, 73–74, 77–79, 79f
improvements in efficiency with, 87
mean annual potential consumption by, 60, 60f, 61f
in NCP, 141
percentage of area equipped for, 59f
reservoirs for, 73
SM and, 140
WM and, 172
Irrigation consumption (IC), 62–63, 63t, 67
Irrigation withdrawal (IW), 62–63, 63t
ISDC. See Information Systems and Data Centre
ISI‐MIP. See Inter‐Sectoral Impact Model Intercomparison Project
Islam, M. S., 211
ISLSCP. See International Satellite Land Surface Climatology Project
ISMN. See International Soil Moisture Network
ISWS. See Illinois State Water Survey
IW. See Irrigation withdrawal
IWMI. See International Water Management Institute
Japan Aerospace Exploration Agency (JAXA), 41
Japanese Meteorological Agency (JMA), 42
Japan Science and Technology Agency (JST), 41
Jarvis, P. G., 197
JAXA. See Japan Aerospace Exploration Agency
JCDAS. See JMA Climate Data Assimilation System
JeDi model, 198
Jet Propulsion Laboratory (JPL), 151
JMA. See Japanese Meteorological Agency
JMA Climate Data Assimilation system (JCDAS), 42
Joint UK Land Environment Simulator (JULES), 198
Jones, J. A., 122
JPL. See Jet Propulsion Laboratory
JST. See Japan Science and Technology Agency
JULES. See Joint UK Land Environment Simulator
Jung, M., 45
Kalman filters, 43
Kalnay, E., 103–4
Kanae, S., 104, 210, 211
Kassam, A. H., 213
Keenan, R. J., 104
Kim, H., 8–9
Kim, Y., 122
Koirala, S., 30
Konar, M., 211
Konikow, L. F., 86
Konzmann, M., 80
Krishnaswamy, J. M., 127
Kumagai, T., 104, 126
Kusche, J., 152–53
Labat, D., 18, 45–46
Laboratoire d’études en géophysique et océanographie spatiales (LEGOS), 141
LAI. See Leaf area index
Lakshmi, V., 195
Lancckriet, S., 124
Land feedbacks in an integrated framework (LFMIP), 13
Land Surface, Snow, and Soil-moisture Model
Intercomparison Project (LS3MIP), 12–13
Land surface hydrology submodel, 214
Land surface models (LSMs), 8, 10, 42–43. See also
Soil-vegetation-atmosphere transfer
Land surface parameterization (LSP), 195–97
Land use/cover changes (LUCC), 77
afforestation and, 123, 123f, 125
agriculture and, 123–24
atmosphere and, 125–26
collective impacts from, 125
dams and, 123, 128
deforestation and, 122–23, 123f
dynamic processes with, 128
ecosystem and, 105, 128
feedbacks and, 125–26
GHMs for, 122, 127
internal processes and, 126
in river basins, 103–28
river basins and
approaches to, 105, 122
variables for, 105
soil hydraulics and, 126–27
spatial heterogeneity and, 126
streamflow and, 106t–121t, 123f
urbanization and, 124–25
water balance and, 103, 122
Land water balance (LWB), 147–64, 153f
atmospheric reanalyses data for, 150–51, 151f, 151t
AWB and, 147, 159–60, 160f
CWB and, 148, 155, 160, 161f
equation for, 154–55
GRACE TWS and, 147–48, 151, 154f, 155, 157–58, 157f, 158f, 160–64, 161f, 162f, 163f, 164f
hydroclimatic data from, 148–50, 149f, 150t
results for, 158–64, 159f
La Niña, 26, 32
Lateral subsurface flow (SSF), 126
Leaf area index (LAI), 103, 104, 199, 215, 220
Leblanc, M., 142
LEGOS. See Laboratoire d’études en géophysique et océanographie spatiales
Lehner, B., 59, 175
Lettenmaier, D. P., 43, 58, 85
LFMIP. See Land feedbacks in an integrated framework
Li, K. Y., 122, 123
Lima, L. S., 125–26
Lin, Y., 122
Lindh, G., 62
Liu, J., 220
Liu, Y., 126
Livestock watering, 58, 72
Lloyd-Hughes, B., 46
Long, D., 144
Lorup, J. K., 122
Loucks, D. P., 77, 85
LPJmL, 59t, 60, 75
LS3MIP. See Land Surface, Snow, and Soil-moisture Model
Intercomparison Project
LSM Intercomparison Project (ALMIP), 43
LSMs. See Land surface models
LSP. See Land surface parameterization
LUCC. See Land use/cover changes
Lugato, E., 45
LWB. See Land water balance
Ma, J., 211
Mackay, D. S., 198
Mackay, R., 124
Macro-PDM, 75
Macroscale hydrological modeling, 8–9, 9f
climate change and, 9–11
global water balance and, 3–13
intercomparisons and, 58–62, 59t
international collaboration and, 11–13
prospects for, 13
vegetation and, 194–98
Mahe, G., 124
Making Earth System Data Records for Use in Research Environments (MEaSUREs), 9
Manabe, S., 197
Mao, D., 124, 126
Markov Chain Monte Carlo (MCMC), 220
MATSIRO. See Minimal Advanced Treatments of Surface Interaction and RunOff
Maurer, E. P., 43
Maxwell, R. M., 46
MCMC. See Markov Chain Monte Carlo
MEaSUREs. See Making Earth System Data Records for Use in Research Environments
Megahan, W. F., 122
Mekonnen, M. M., 211, 213
Met Office Surface Exchange Scheme (MOSES), 198
Middle East, 141
Midwest, water resource management in, 169–88, 171f, 173f, 177f, 180f
ESMs for, 169–70, 172, 173–75
GCAM for, 172–73, 181, 187
predicted changes in, 181–87, 182f, 183t, 184f, 185t, 186f
MIKE-SHE, 122
Miller, J. R., 211
Milliman, J. D., 46
Milly, P. C. D., 58, 85
Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO), 10, 75
MIPs. See Model intercomparison projects
Mississippi River, 175, 176, 177f, 179, 180f, 181, 181t, 183–84, 183t, 184f, 185t, 187–88
Missouri River, 175, 176, 177f, 179, 180f, 181t, 183–84, 183t, 184f, 185t, 188
MME. See Multimodel ensemble
Model for Scale Adaptive River Transport (MOSART), 170, 172, 173, 178
Model intercomparison projects (MIPs), 9
Moderate Resolution Imaging Spectroradiometer (MODIS), 41, 43, 64, 199
MODFLOW, 80, 92
MODIS. See Moderate Resolution Imaging Spectroradiometer
MODSIM, 172
Monfreda, C., 220
MOSART. See Model for Scale Adaptive River Transport
MOSES. See Met Office Surface Exchange Scheme
MPI-HM, 59t, 60, 61
Multimodel ensemble (MME), 9, 12
Muma, M., 124
Munier, S., 142
Murray-Darling River basin, 142
Musket, R. R., 138
Naef, F., 126
NAM, 122
National Aeronautics and Space Administration (NASA), 41
National Center for Atmospheric Research (NCAR), 20, 141
National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), 12, 42
Nazemi, A., 170, 174
NCAR. See National Center for Atmospheric Research
NCEP/NCAR. See National Centers for Environmental Prediction/National Center for Atmospheric Research
NCP. See North China Plain
Neill, C., 124
Neitsch, S. L., 215
Net primary production (NPP), 213
NICE, 122
Nie, W., 122
Niehoff, D., 126
Nijssen, B., 42
NLDAS. See North American Land Assimilation System
NNBW. See Nonrenewable and nonlocal blue water
Nonrenewable and nonlocal blue water (NNBW), 211
North American Land Assimilation System (NLDAS), 43, 171, 178
North China Plain (NCP), 80, 92, 141
NPP. See Net primary production
Nubian Sandstone Aquifer System, 72
Oceans, 3, 5–6, 5f. See also Sea-level rise
Ogallala Aquifer (High Plains Aquifer), 80–81, 92, 138, 139–40
Ogden, F. L., 126–27
Ohio River, 175–76, 177f, 180f, 181t, 183–84, 183t, 184f, 185t, 187
Oki, T., 8, 210, 211
Olang, L. O., 125, 126
Orlowsky, B., 211
Orr, S., 211
Palmer Drought Severity Index (PDSI), 20–21, 23f, 24f, 46
Pan, M., 43
Parlange, M. B., 45
P‐E, 7, 47
Peixóto, J., 6
Peña-Arancibia, J. L., 122
Penman-Monteith, 29, 29f, 42, 196
Permafrost, 6, 13, 25, 138
PERSIANN. See Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
PET. See Potential evapotranspiration
Peterson, A. T., 44
Pfafstetter, O., 199
PFD. See Princeton forcing data
Photosynthesis models, 198
Photosynthetically active radiation (fPAR), 199
Piao, S., 197
PILPS. See Project for Intercomparison of Land-Surface Parameterization Schemes
Pitman, A. J., 197
Poff, N. L., 105, 123, 124, 125
Pokhrel, Y., 64, 75, 81
Pomeroy, J. W., 123
Postel, S. L., 64
Potential evapotranspiration (PET), 29–30, 29f
VWC and, 215–16, 217f
Poveda, G., 126
PRC. See Precipitation
Precipitation (PRC), 4f. See also Rainfall
changes in, 40
climate change and, 77
continental runoff and, 26, 28–29, 28f
from evapotranspiration, 104
Illinois LWB and, 147
long-term global distribution of, 5f
multidecadal variations in, 18
snow as, 4
soil wetness and, 6
VWC and, 215–16, 217f
water budget and, 44–45
as water flux from atmosphere, 4

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), 41

PREC-L, 40
Prestley-Taylor, 42
Princeton forcing data (PFD), 213
PRMS, 122
Probst, J. L., 18
Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS), 11–12
PRYSBI-I, 220

Rainfall
deforestation and, 104, 127, 194
GW from, 71
runoff from, 5
Ramankutty, N., 220
RCM. See Regional climate model
RCP4.5, 30, 30f, 32–33
RCP8.5, 30, 31f, 32–33, 204
Regional climate model (RCM), 126
Reichle, R. H., 43
Ren, L., 44
Reservoirs, 58
for irrigation, 73
land surface water storage and, 64–67, 65f
location of, 65f
seasonal variation in, 66f
streamflow and, 62
SWE and, 64–67, 66f
Richard’s equation, 5–6

Rivers and river basins. See also specific rivers
location of, 65f
LUCC and, 103–28
approaches to, 105, 122
variables for, 105
runoff from, 5–6, 5f
streamflow from, 17–33
Roa-Garcia, M. C., 126–27
Rodell, M., 43, 86, 138, 139, 140
Romanovsky, V. E., 138
Rost, S., 64, 75, 81
R/P. See Runoff ratio
Runoff. See also Continental runoff
CLM and, 197
CO₂ and, 194, 197
data on, 20
DBH and, 200, 201f
deforestation and, 197
GHMs and, 196–97
GW and, 6, 140
long-term trends in, 26f
multidecadal variations in, 18
into oceans, 5–6, 5f
soil wetness and, 6
vegetation and, 193–94
Runoff ratio (R/P), 30
Rushton, K. R., 199
Russell, G. L., 211
Sahagian, D., 58, 85
Sahin, V., 104
Salemi, L. F., 126
Sanderson, E. W., 57
Satellite-based observations. See also Gravity Recovery and Climate Experiment
for GW depletion, 80, 92–93
of water budget, 41–42
Saturation overland flow (SOF), 126
Saunders, M. A., 46
Scanlon, B. R., 86, 140
Schnorbus, M., 126
SCLM. See Subbasin-based Community Land Model
Sea-level rise (SLR), 6, 72, 84–86, 85f
Sea surface temperature (SST), 26
Sellers, P. J., 197, 199
Shah, T., 77
Shamsudduha, M., 86, 140–41
SHE, 195
Sheffield, J., 42, 46
SHETRAN, 122
Shibasaki, R., 220
Shiklomanov, A. I., 20, 64
SiB. See Simple Biosphere Model
Siebert, S., 64
SIMHYD, 122, 127
Simple Biosphere Model (SiB), 8
Siriwardena, L., 122, 127
SLR. See Sea-level rise
SM. See Soil moisture
SMAP. See Soil Moisture Active Passive
SMOS. See Soil Moisture and Ocean Salinity
SNODAS. See Snow Data Assimilation System
Snow, 4
Snow Data Assimilation System (SNODAS), 139
Snowmelt, 5, 18
Snow water equivalent (SWE), 39, 41, 64–67, 66f
SOF. See Saturation overland flow
Soil and Water Assessment Tool (SWAT), 122, 123, 127, 214–15, 220
Soil and Water Integrated Model (SWIM), 214–15
Soil moisture (SM, soil wetness)
continental runoff and, 18
drying/wetting trend and, 46
global distribution of, 5f
above GW, 6
Illinois LWB and, 147, 148–51, 153f
irrigation and, 140
temperature of, 43
vegetation and, 193–94, 198
water budget and, 40
Soil Moisture Active Passive (SMAP), 41
Soil Moisture and Ocean Salinity (SMOS), 41
Soil-vegetation-atmosphere transfer (SVAT), 197
Spatial heterogeneity, LUCC and, 126
Special Report for Emission Scenarios (SRES), 177
SPI. See Standardized precipitation index
SRES. See Special Report for Emission Scenarios
SSF. See Lateral subsurface flow
SST. See Sea surface temperature
Starr, V. P., 6
Stednick, J. D., 104
Strassberg, G., 138
Streamflow, 17–33, 62
changes in the 21st century, 30–32, 31f
data on, 20
deforestation and, 103
future changes in, 27–32
gauge stations for, 22f
GW depletion and, 75
historical changes in, 25f
historical changes in, 20–27
multidecadal variations in, 18
from rivers, 17–18
human impact on, 61, 61f
Illinois LWB and, 147, 153f
LUCC and, 106–121t, 123f
from rainfall, 127
reservoirs and, 62
Strogatz, S. H., 211
Subbasin-based Community Land Model (SCLM), 170–71, 172
GCAM and, 173
Midwest WM and, 178, 187
Sud, Y. C., 8
Sun, G., 123
Surface albedo, 5f
of snow, 4
soil wetness and, 6
vegetation and, 5, 197
Sutton, R., 175
Suweis, S., 211
SVAT. See Soil-vegetation-atmosphere transfer
SWAT. See Soil and Water Assessment Tool
SWE. See Snow water equivalent
Swenson, S., 138, 152
SWIM. See Soil and Water Integrated Model
Tan, G. X., 220
Tang, Q., 46, 141, 144, 199
Tapley, B. D., 8
Tardy, Y., 18
TBAs. See Transboundary aquifers
TC. See Total consumption
Thermohaline circulation, 4
Thomas, R. B., 122
Throughfall, of PRC, 4
Tigris-Euphrates, 92
Tiwari, V. M., 140
TMI. See TRMM Microwave Image
TMPA. See TRMM Multisatellite Precipitation Analysis
Tomlinson, L. M., 199
TOPMODEL, 195, 198
Total consumption (TC), 62–63, 63t
Total Runoff Integrating Pathway (TRIP), 8, 9, 75
Total water storage (TWS), 8–9, 41
GRACE and, 42, 43, 84, 86
GW and, 80
in Illinois LWB, 147–48, 154f, 155, 157–58, 157f, 158f,
160–64, 161f, 162f, 163f, 164f
Total withdrawal (TW), 62, 63t
Transboundary aquifers (TBAs), 84
Transpiration, 4–5, 193
Trenberth, K. E., 7, 20
Trimble, S. W., 123
TRIP. See Total Runoff Integrating Pathway
TRMM. See Tropical Rainfall Measuring Mission
TRMM Microwave Image (TMI), 41
TRMM Multisatellite Precipitation Analysis (TMPA), 41
Tropical Rainfall Measuring Mission (TRMM), 41
Troposphere, 44
TW. See Total withdrawal
20th Century Reanalysis (20CR), 12
Twine, T. E., 124
TWS. See Total water storage
UHP-HRU, 127
University of New Hampshire/Global Runoff Data Center (UNH/GRDC), 200, 201f
Unsaturated zone (vadose zone), 6
Uppala, S. M., 7
Urbanization, 103, 124–25
US Geological Survey (USGS), 148, 178t
Vadose zone (unsaturated zone), 6
Van Dijk, A. I. J. M., 84, 104
Van Huijgevoort, M. H. J., 46–47
Variable Infiltration Capacity (VIC), 10, 59t, 60, 64, 67, 122,
177–78
Vegetation
climate change and, 193–205
CO₂ and, 197–98
energy balance and, 197
ET and, 194
evaporation and, 197
LUCC and, 105
macroscale hydrological modeling and, 194–98
runoff and, 193–94
SM and, 193–94, 198
Vegetation (cont’d)
 stomatal resistance of, 197, 198, 199
 surface albedo and, 5, 197
 surface temperature and, 8
Vegetation parameterization, in GHMs, 197–98
VIC. See Variable Infiltration Capacity
Virtual water content (VWC), 214t, 220t, 221f
 blue water and, 210–11, 222–24, 223f
calculation of, 212–13
evapotranspiration and, 215–16
GHMs for, 209–26
green water and, 210–11, 222–24, 223f
objective of, 213
PET and, 215–16, 217f
PRC and, 215–16, 217f
quantification of, 210
spatial variation of, 221–22, 222f, 223, 224f, 224t
WM for, 211
Visible/infrared (VIS/IR), 41
Voisin, N., 170, 172, 173, 174, 176, 178, 183
Volume‐based method, for GW depletion, 80
Vörösmarty, C. J., 58, 75, 81
Voss, K. A., 141
VWC. See Virtual water content
Wada, Y. D., 64, 75–77, 79, 81, 82, 84, 85, 86, 87
Wahr, J., 138, 152
Walter, M. T., 45
WAM. See West African monsoon
Wang, A., 46
WARM. See Water and Atmospheric Resources Monitoring Program
WaSiM, 122, 127
WASMOD-M, 75
WATCH. See Water and Global Change
Water and Atmospheric Resources Monitoring Program (WARM), 148
Water and Global Change (WATCH), 12, 43, 59, 61
Water balance, 7f, 10t. See also Land water balance
AWB, 6–7, 7f, 147, 159–60, 160f
continental runoff and, 45–46
CWB, 148, 155, 160, 161f
drying/wetting trend and, 46–47
in early era, 6–8
ET and, 45
LUCC and, 103, 122
macroscale hydrological modeling and, 3–13
Water Balance Model (WBM), 196
Water budget
 assessments and retrospective of, 44–47
development of long-term retrospective data set for, 40–43
GRACE for, 92–93
GW depletion and, 71–94
LSMs for, 42–43
PRC and, 44–45
satellite-based observations for, 41–42, 92–93
in situ measurement for, 40–41
sustainability of, 92–94
Water Evaluation and Planning System (WEAP), 172
Water fluxes, 3, 4f
climatic change and, 60
energy budget and, 39–40
human interventions and, 60
PRC as, 4
Water footprint (WF), 210
WaterGAP, 10, 59t, 60, 61, 75, 196
WaterMIP. See Water Model Intercomparison Project
Water Model Intercomparison Project (WaterMIP), 9, 12, 58, 59, 62, 64, 67
Water resource management (WM), in Midwest, 169–88, 171f, 173f, 177f, 180f
ESMs for, 169–70, 172, 173–75
GCAM for, 172–73, 181, 187
predicted changes in, 181–87, 182f, 183t, 184f, 185t, 186f
Watts, D.J., 211
WBM. See Water Balance Model
WCLDAS. See West China Land Data Assimilation System
WCRP. See World Climate Research Programme
WEAP. See Water Evaluation and Planning System
Weather Research and Forecasting (WRF), 171
Weedon, G. P., 59
Wei, X., 122
Wentz, F. J. L., 44
Werth, D., 126
West African monsoon (WAM), 43
West China Land Data Assimilation System (WCLDAS), 43
WF. See Water footprint
WGNE. See Working Group on Numerical Experimentation
Wheater, H. S., 170, 174
White, W. R., 64
Wigmosta, M. S., 198
Wilcox, B. P., 124
Wisser, D., 75, 81
WM. See Water resource management
Wood, E. F., 46
Working Group on Numerical Experimentation (WGNE), 11
World Climate Research Programme (WCRP), 11–12, 42
World Register of Dams, 58
WRF. See Weather Research and Forecasting
WRI EarthTrends, 77
Yamamoto, T., 213
Yang, C., 211
Yang, H., 211
Yeh, P. J.-F., 138, 150, 159
Yoshikawa, S., 81, 87
Zegre, N. A., 127
Zhang, X., 43
Zhou, F., 126
Zhou, G., 123
Zhou, T., 64
Zhu, C., 43
Ziegler, A. D., 127
Zimmerman, B., 126
Zolina, O., 45