Index

Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. *Italicized* page numbers indicate illustrations.

NUMBERS

3D BIM, 15, 50–52
3D printers, 30–31, 116
4D BIM. see model-based scheduling
5D BIM. see model-based estimating

A

accuracy, installation, 234
activity tracking, construction, 234, 235
addenda
BIM. see BIM addenda
definition of, 65
AE (architectural and engineering) models, 52, 55
AGC (Associated General Contractors of America), 64, 65
AIA (American Institute of Architects), 64, 65
Alberti, Leon Battista, 46
analysis
building codes for, 179, 179
building rating systems for, 177–178, 178
cement CO₂ emissions, 179–180
data, 27–29
model-based, 74–75
multiple, 358
Sefaira for, 182–187, 182–188
software for, 175–176
sustainability, 180–181, 181
animation, scheduling, 221–226, 221–226
Apple Watch, 22
AR (augmented reality) simulations, 115, 115
architect-controlled record models, 264
architects
in ConsensusDocs 301, 65
DB delivery method and, 59–60
new responsibilities of, 344
uses of BIM by, 351
architectural and engineering (AE) models, 52, 55
Architecture 2030, 176–177
artifact deliverables
CAD files, 314–315
constant deliverables and, 315–316
hybrid approach to, 316, 317
overview of, 310–311, 311
PDFs, 311–312, 313
As-buils—Problems & Proposed Solutions (Petee), 310
Assemble Systems, intuition and, 286–287, 287–288
Assemble tool, for cost trending, 172–175, 173–175
Associated General Contractors of America (AGC), 64, 65
attention span statistics, 41
augmented intelligence, 359
augmented reality (AR) simulations, 115, 115
Autodesk BIM 360 Field
barcodes/QR codes in, 297–298, 298
commissioning in, 326, 327
equipment database in, 301
features of, 291
mapping equipment to, 291–295, 292–295
mobile application, 297
to status material, 299–301, 300
uploading information into, 295–297, 296
visualizing equipment into, 301–303, 302–303
Autodesk BIM 360 Glue
email invitation, 159
real-time clash alert, 27, 28
sharing models, 291–292, 292
uploading models to, 159–160, 160–163
Autodesk Navisworks
clash detection in, 205–207, 205–208
Comments tool in, 243–246, 244–246
default units in, 219
features of, 198
field information via, 242–243
importing search sets into, 288–290, 288–290
NWD/NWF file formats, 198, 217, 219
Autodesk Navisworks (continued)
opening files in, 219
overview of, 196–198, 197
punch list coordination in, 328, 329
Redline Tags in, 248–249, 248–249
Redlining tool in, 246–247, 247–248
schedule simulation in, 221–226, 221–226
scheduling software and, 217–221, 218–220
search set exercise, 199–205, 200–204
sequencing clash analysis in, 211–213, 212–213
Autodesk Navisworks Manage, 301–303

Autodesk Revit
CO₂ emissions and, 179–180
creating doors in, 284–286, 285–286
for estimations, 164–169, 165–169
export formats, 80–81, 81
fabrication in, 342, 342–343
schedule discrepancies in, 170–171, 171
showing design intent, 61
AutoMark 2.0, 272

B
Ballard, Glen, 125
barcodes, 297–298, 298–299, 299
Batch Link, for digital plan room, 272
behaviors, in successful BIM, 7–8
Bentley Navigator, punch lists in, 327, 328
Big BIM, little bim (Jernigan), 8
Big Data analysis, 27–29

BIM (building information modeling)
analyzing data in, 27–29
battle for, 258–261, 259, 261
as catalyst, 340
in closeout procedures, 38–39
in CMAR delivery method, 55–56
constructability and, 25–26, 25–27
in construction, 192–193. see also
construction
construction management and, 15
controlling schedules with, 33–34, 34
cost controls, 34–35, 35
cost estimation, 23–24, 23–24
current adoption cycle of, 12
in DBB delivery method, 50–52, 51
design for prefabrication, 29–31, 30
developing intuition in, 284
education and, 350–351
enabling behaviors in, 7–8
equipment tracking with, 38
facilities management and, 39–40, 40
factors effecting use of, 12, 13
future of. see future of BIM
growth trends of, 9
improving world situation, 360–361
increased adoption of, 10, 16
increasing benefits of, 12, 14
as informational database, 15
keys to speaking, 97
knowledge management and, 41, 41–42
leadership buy-in, 42–43
logistics in, 22, 22–23
managing changes, 35–36
managing punch lists, 39, 39
planning for success of, 19
prefabrication and, 342–343, 342–343
primary uses of, 69–75
processes in, 4–5, 356–357
project pursuit and, 16–19, 18
results/savings of, 43, 44
scheduling and, 20–22, 21
successful platform of, 4
team engagement in, 16, 17
technologies in, 5–7
training. see training
unification of model data for, 334–337
value of, 2–4, 8–9
widespread impact of, 354–356

BIM addenda
agency documents, 65–66
comparison of, 64
development of, 63–64
optimum approach to, 65
summary of, 66–67
unique intent of, 67

BIM and Integrated Design (Deutsch), 83, 148

BIM execution plan
communication in, 77–79, 78–79
defining expectations in, 83–85
history of, 75–77, 76
information exchange plan in, 81–83, 82
organizing, 85–88
overview of, 75
software and, 79–81, 80–82
summary of, 89

BIM file maintenance, 329–330
BIM guides, 108

Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 209
INDEX

C

BIM kickoff meeting
bad start to, 137

collecting right people for, 136–137
communication/expectation bias at, 139
creating visions at, 138–139

BIM manager
creating record BIM files, 318
evolving role of, 43
future role of, 351–352
job requirements of, 352–354

BIM-washing, 93, 93, 99

Bluebeam Revu eXtreme. see digital plan room

Bricklaying System (Gilbreth), 128

Brilliant: The Evolution of Artificial Light (Brox), 176

Brooks Act (1972), 47

building codes and sustainability, 179, 179

building information modeling. see BIM
(building information modeling)
building rating systems, 177–178, 178

Building the Empire State (Willis), 126

buildingSMART alliance, 345

CMAR (Construction Manager at Risk) delivery method
advantages/challenges of, 54–55
BIM in, 55–56
process of, 52–54, 53

co-location, for conflict resolution, 27

color coding systems
in construction, 228

comments, field information in, 243–246, 244–246

The Commercial Real Estate Revolution
(Miller, Strombol, Iammarino & Black), 2, 20, 55, 134

commissioning
definition/value of, 325
features of, 326–327, 327
process of, 326

communication
jobsite offices and, 255
at kickoff, 139
between people, 77–79, 78–79
software systems and, 79–81, 80–81

comparison, of BIM-enabled projects, 351–352

composite modeling, 198–199

computer monitor, for conference room, 253

computer-aided design (CAD) files, 314–315, 340

California Commissioning Collaborative, 325

change(s)
cost of, 51, 51
management of, 35–36
resistance to, 258–261

clash detection
exercise in, 205–207, 205–208
limitations of, 4–5

macro to micro focus, 197, 197–198, 208
model coordination and, 196
Navisworks and, 196–198, 197

search set exercise in, 199–205, 200–204

sequencing conflict in, 211–213, 212–213
clearance objects, 26
cost estimation via, 24

cost of, 31–32
details leveraged in, 153–158, 154–157
overview of, 149–150, 150

plans leveraged in, 150–153, 151–153

constructible models, in DB delivery, 60–62
construction
activity tracking in, 234, 235
better field information for, 238–239
BIM in, 192–193
changes in, 95
color coding systems in, 228
design and, 139–140, 140
fabrication and, 208–211, 210
feedback loops in, 226–227
field information in, 243–246, 244–246
future trends in, 340–341, 341
installation management in, 228–229
installation verification in, 232–233, 233
managing field issues in, 235–236
model coordination and, 194
safety in, 236–238, 237–238
schedules for, 213–217, 214–215
sequence simulation for, 221–222, 221–222
site coordination and, 194, 194–196
time predictability in, 281
virtual walk-throughs and, 346–349
construction management
BIM and, 15
BIM manager role in, 43
changes and, 35–36
coordination activities in, 31
equipment tracking in, 37–38
future role of, 351–352
history of BIM in, 9–11, 10, 11, 13–14
knowledge management in, 40–42, 41
leadership buy-in of BIM, 42–43
managing facilities, 39–40, 40
materials and, 37
project pursuit in, 16–19, 18
resolving punch lists, 39
scheduling in, 20–22, 21
utilizing mobile devices in, 32, 32–33
value of technology in, 2–4, 9
Construction Manager at Risk method. see CMAR (Construction Manager at Risk) delivery method
construction-ready models, 343–345
contact sheets, 79
contractors
BIM adoption by, 10–11, 10–11, 351
responsibilities of, 344
contracts. see also BIM addenda
design, 319–320
in planning, 19–20
controlled environment, for prefabrication, 29
coordination
in construction, 31
model-based, 69–71, 70–71
site, 194, 194–196
Core Collaboration Team, 79, 83
core deliverables, in marketing BIM, 105–107, 107
Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry (Gallaher, O’Connor, Dettbarn & Gilday), 331
costs
analyzing qualitative, 74–75
BIM-derived estimates of, 23–24, 23–24
controlling, 34–35, 35
due to facilities operations, 308, 308–310
due to mobile-enabled construction, 33
model-based estimates of. see model-based estimating
due to project changes, 51, 51
sharing history of, 171–172, 172
CPM (Critical Path Method) scheduling ineffectiveness of, 33
model-based scheduling and, 282–283
predictability in, 281–282
cross-platform integration, 7
customer-centric service
importance of, 117–118
in marketing BIM, 104–105, 106
customized solution development, 6–7
Cyberwalk omnidirectional treadmill, 346–347
D
data analysis, in BIM, 27–29. see also analysis
daylighting analysis, 184, 186
DB (Design-Build) delivery method
advantages/challenges of, 60
BIM in, 60–62, 61
E-BIMWD addendum for, 65–66
process/features of, 56, 56–60, 59
DBB (Design-Bid-Build) delivery method
advantages/challenges of, 50
BIM in, 50–52, 51
process/features of, 47–50, 48
for record BIM files, 320
DBIA (Design-Build Institute of America), 64, 65–66
DD (Design Development) phase
incremental information for, 140–142, 141–142
timing of information in, 143–145, 144
default settings
custom settings vs., 206
in Navisworks, 219, 222, 222
Defining BIM—What Do Owners Really Want? (Reed), 119
delivery methods
comparison of, 58
Construction Manager at Risk, 52–56
definition of, 46
Design-Bid-Build, 47–52, 48, 51
Design-Build, 56, 56–61, 59, 61
development of, 46–47
expected change in use of, 57, 95
Integrated Project Delivery, 62, 62–63
for record BIM files, 320
team selection and, 96
dependencies, DSM Matrix and, 145–148, 146–148
design
contracts, 319–320
estimating during, 171–175, 172–175
future developments in, 358–359
prioritizing information for, 145–148, 146–148
scheduling, 139–145, 140–142, 144
time predictability in, 281
Design Development phase. see DD (Design Development) phase
Design Development Quality Management Phase Checklist (AIA), 141
Design Management Guide for the Design-Build Environment (Pankow Foundation), 149
Design Structure Matrix. see DSM (Design Structure Matrix)
Design-Bid-Build delivery method. see DBB (Design-Bid-Build) delivery method
Design-Build delivery method. see DB (Design-Build) delivery method
Design-Build Institute of America E-BIMWD, 64, 65–66
Detailed Analysis Plan, 83
details in constructability review, 153–158, 154–157
developing tool, BIM as, 99–101
digital documents, in construction, 32
digital plan room
extracting files in, 274–275, 275
hyperlinking documents in, 275–276, 276
hyperlinking RFIs in, 277–278, 277–278
page labels for, 272–274, 273–274
slip-sheeting in, 278–279, 279–280
tool belt for, 272
direct replacement strategy in selecting technologies, 7
document control
2D information and, 270–272, 271
digital plan room for. see digital plan room
document coordination, 69–71
documents, artifact deliverables as, 310–311, 311
doors, creating
Assemble Systems and, 286–287, 287–288
importing search sets for, 288–290
intuition in, 284–286, 285–286
material status for, 299–301, 300
summary of process, 304, 304
uploading information/barcodes for, 295–298, 296–298
visualizing equipment status for, 301–303, 301–303
Draft Day (movie), 94–95
drones, for safer construction, 237–238
DSM (Design Structure Matrix)
dependency sequence and, 147–148
elements/mapping in, 146
utilizing, 145–148
Dubler, Craig, 84, 139, 259

E
E-BIMWD documents (DBIA), 64, 65–66
education, future of BIM and, 349–351
EERE (Office of Energy Efficiency & Renewable Energy), 180
efficiency in scheduling, 215
Empire State Building
builders of, 125
collaboration and, 126
innovations and, 126–129, 127–128
planning/prefabrication of, 129–132, 130–131
Empire State Building: The Making of a Landmark (Tauranac), 125
enabling behaviors, in successful BIM, 7–8
energy analysis. see also sustainability
Sefaira for, 182–187, 182–188
field personnel, BIM training for, 261–262, 263
field-controlled record models, 264–265
file extraction by label, 274–275, 275
file links
 generating, 296, 296
 for video embedding, 250–251, 250–252
file naming conventions, 87–88
five-dimensional BIM. see model-based estimating
flat-panel television, for conference room, 253
flow-line schedule, 282, 283
folder structure, 86–87
Ford, Henry, 124, 128, 132
four-dimensional BIM. see model-based scheduling
Friedman, Thomas L., 258
Fuller, George A., 126
future of BIM
 BIM teamwork and, 354–356, 355
 construction manager role in, 351–354
 education and, 349–351
 industry trends and, 340–341, 341
 interoperability in, 345
 new process in, 356–357
 opportunities in, 97, 357–358, 357–359
 past predictions and, 340
 prefabrication and, 342–343, 342–343
 relationships in, 359–360
 roles/responsibilities in, 343–345
 virtual walk-throughs and, 346–349, 346–349
 future owner challenges, 322, 323

g
G201/G202 documents, 66
Garrett bar scheduling method, 21, 34
Gates, Bill, 240
GBXML (Green Building XML Schema), communication via, 80
glazing, energy analysis of, 182–184, 183–184
Gleason, Duane, 171
Glue application. see Autodesk BIM 360 Glue
GMP (guaranteed maximum price), CMAR delivery and, 53
Goals and Use/Objectives chart, 76, 76
Golden, Kate, 63
Gourley, Sean, 359
Green BIM (Krygie & Nies), 181
guides, for BIM planning, 19
hard bid jobs, integrated projects vs., 96
hardhat barcoding, 37–38
Hardin, Sy, 67
Hoffer, Eric, 7
How Buildings Learn: What Happens After They’re Built (Brand), 359
Howell, Greg, 125
hyperlinked documents, 275–276, 276
hyperlinked RFIs, 277–278, 277–278

iMRI (intraoperative magnetic resonance imaging) installation, 265–270
incremental dilemma, 143–145
increments, design
DD checklist for, 142
information for, 140–142
schedule, 141
timing of information for, 143–145, 144
in-field videos, 236
information
amount/compilation of, 331–332
chaos, 144
Comments for, 243–246, 244–246
delivery of needed, 336–337
early exchange of, 17
future processing of, 359–360
increased sharing of, 15
potential methods for, 242, 243
for record BIM files, 320–321
Redline Tags for, 248–249, 248–249
Redlining tool for, 246–247, 247–248
required for DD, 140–142, 141–142
risk of too much, 15
timing of, 143–145, 144
traditional relaying of, 239–240
information analytics, 27–29
information backbone, 335, 335
information exchange plan
adoption of, 332
in BIM execution plan, 81–83, 82
informational database, BIM as, 15
information-centric innovations, 94
innovation
at AEC Hackathon, 100, 100
BIM as tool for, 99–101
challenge of, 101
creating change, 5

Empire State Building and, 126–129, 127–128
growing need for, 352
importance of, 18–19
The Innovation Paradox (Phillips), 260
installation
accuracy in, 234
coordination, 69–71
management, 228–229
installation verification
in construction, 210
laser scanning for, 265–270
methods for, 232–233, 233
instance properties, 166–167, 167
Integrated Practice in Architecture (Elvin), 2, 254
Integrated Project Delivery method. see IPD
(Integrated Project Delivery) method
integrated projects
BIM for fabrication as, 210
George A. Fuller Company and, 126
hard bid jobs vs., 96
integrated teams
in BIM construction management, 2–3
in DB delivery method, 61–62
importance of, 95–96
interoperability
future role of, 345
of model data, 334–337
of technologies, 10, 12
interrelationships, data, 359–360
intraoperative magnetic resonance imaging
(iMRI) installation, 265–270
intuition in BIM
Assemble Systems and, 286–287, 287–288
creating doors and. see doors, creating
development of, 284
mapping equipment and, 291–295, 292–295
in visualizing equipment status, 301–303,
301–303
inventory management, 37
IPD (Integrated Project Delivery) method
advantages/challenges of, 62–63
BIM in, 63
process/features of, 62, 62

Jackson, Barbara J., 46–47
JIT (just-in-time) approach to material manage-

INDEX
job trailer
 as communication hub, 255
 conference room in, 252–254, 253
 plans/specifications hub in, 254
 as server, 254–255
 setting up, 255–256
Jordani, David, 322
JVs (joint ventures), 8

K
kaizen, in creating change, 5
kickoff meeting. see Bim kickoff meeting
knowledge gap, bridging, 261, 261
knowledge management platforms, 40–42, 41

L
labels, page
 creating, 272–274, 273–274
 extracting files by, 274–275, 275
large computer monitor, for conference room, 253
Larson, Dwight, 63
laser scanning
 BIM overlay and, 35
 installation verification with, 232–233, 233, 265–270
 phased for quality control, 319
lateral brace frame, 70
LBS (location-based scheduling)
 features of, 282, 283
 lean practices and, 229–231
 model-based scheduling and, 282–283
LCI (Lean Construction Institute), 125
Leading Change (Kotter), 138
lean practices
 Empire State Building and. see Empire State Building
 features of, 124, 124–125
 LBSs and, 229–231
LED/LCD flat-panel screen, for conference room, 253
LEED (Leadership in Energy and Environmental Design), 178, 178
Leroy Lettering tool, 134–135, 135
life-cycle building costs, 73, 73
life-cycle information for doors, 76
line-of-balance schedule view, 21
Links tool, 250–251, 250–252
location-based scheduling, see LBS
 (location-based scheduling)
LOD (level of development)
 analysis and, 74–75
 in BIM addenda, 64, 64
 coordination and, 69–70
 cost estimation and, 72
 dangers of undefined, 70–71
 definition of, 68
 facilities management and, 73–74, 321
 level descriptions, 68–69, 70
 matrix, 71
 scheduling, 72, 148–149, 149
logistics
 BIM and, 22–23
 for facilities management, 330–332
The Long Term Costs of Owning and Using Buildings (Evans, Haryott, Haste & Jones), 308
Looking at Type: The Fundamentals (Martin), 284
Luckey, Palmer, 347

M
MacLeamy curve, 51, 51, 141
manufacturing industry, 36, 358
marketing BIM
 client alignment in, 104–105, 106, 117–118
 core deliverables in, 105–107, 107
 demonstrating value, 98–99
 evolution of, 92–94, 93
 guidelines/tips for, 118–120
 innovative proposals in, 118
 key factors in, 97–98
 showing results, 102, 103
 stage of adoption and, 99–101, 100–101
 summary of, 121
 team selection in, 94–96
material management
 overview of, 37
 process of, 228–229, 231–232
 Vico Office for, 232
MATs (multiple analysis test beds), future implemention, 358–359
Max Planck Institute, 346–347
Mazria, Ed, 176
McConahey, Erin, 360
media richness theory, 78
memorandum of understanding (MOU), 20
metrics, justifying ROI, 102, 103
Microsoft Word, 79–80, 80
Miller Act (1935), 47
mobile-enabled construction
benefits of, 32, 32–33
controlling schedules with, 33–34
model coordination review, 25
model links, managing field issues, 236
model maintenance, 333–334
model origin, 86
model storage, 86
model-based analysis, 74–75
model-based coordination, 69–71, 70–71
model-based estimating
discrepancies in, 170–171, 171
evolution of, 164
overview of, 72
process of, 164–169, 165–169
model-based facilities management, 73, 73–74
model-based scheduling
overview of, 21–23, 72
simulations, 116, 116–117, 118
value of, 281, 281–283, 283
modeling
advanced training, 263–265
basic training, 263
composite, 198–199
models
evolution of, 341
fabrication of, 208–209
record, 263–265
uploading to Glue, 159–160, 159–163
Moore, Rex, 229–231
MOU (memorandum of understanding), 20
multiple analysis test beds (MATs), future implementation, 358–359
Musk, Elon, 35

N
Navisworks. see Autodesk Navisworks
Navisworks Manage, 301–303, 301–303
The New Quotable Einstein (Calaprice), 310
NIBS (National Institute of Building Sciences), 336
Notes on the Construction of the Empire State, 126–128
NRCA (National Roofing Contractors Association), 153
The NRCA Roofing Manual: Membrane Roof Systems, 153, 158

O
object-based parametric modeling technologies, 9–10, 51, 341
OCR (optical character recognition), 272
Oculus Rift AR headset, 115, 347–349
Office of Energy Efficiency & Renewable Energy (EERE), 180
omnidirectional treadmills, 346–348, 346–349
Onuma System, 24, 24
open source programming, 335
opportunities, for BIM, 357–358, 357–359
organizational behaviors, in successful BIM, 8
origin, model, 86
overlays
installation verification with, 232–233, 233
phased for quality control, 319
owners
benefits of BIM, 317–318, 323–325
BIM performance and, 260
challenges for future, 322, 323
record BIM files for, 318–320, 319
The Owner’s Dilemma: Driving Success and Innovation in the Design and Construction Industry (Bryson), 117–118

P
page labels
creating, 272–274, 273–274
extracting files by, 274–275, 275
parametric modeling, 11, 51, 341
Parkinson, Robyn Thaxton, 65–66
PDF (Portable Document Format) files
as artifact deliverables, 311–312, 313
smart, 116
Penn State BIM Project Execution Planning Guide, 75–77, 84
people, communication between, 77–79
phone calls, 79
photogrammetry, 237–238, 320
pile on method in selecting technologies, 5–6, 10
plan views, 150–153, 151–153
plans
job trailer for specifications and, 254
site logistics and, 188, 188–190, 194, 194–195
using contracts in, 19–20
preconstruction
analysis and. see analysis
BIM kickoff for, 136–139
constructability and. see constructability
review
DSM and, 145–148, 146–148
estimates and. see estimating
lean practices and, 124, 124–125
meetings, 136
new technology and, 132–134, 133
scheduling design in, 139–145, 140–142, 144
scheduling LOD in, 148–149, 149
site logistic plans in, 188, 188–190
use of BIM in, 134–136, 135
predictability, in construction, 281, 281–282
prefabrication
with BIM, 29–31, 342–343, 342–343
for Empire State Building, 129–132, 130–131
leveraging models for, 357, 357
“The Stack” project, 30
preinstallation meetings, 137
The Principles of Scientific Management
(Taylor), 282, 305
process first strategy in selecting technologies, 6–7
processes
future, 356–357
in successful BIM, 4–5, 5
professionals, value of, 360
Profitable Partnering for Lean Construction
(Cain), 31
project closeout
artifact/constant deliverables in, 329
commissioning in, 325–327, 326–327
overview of, 39–40
punch lists in, 327–329, 328–329
project construction feasibility, 149–150
project management schedules, 20–22
project pursuit
augmented reality simulations, 115, 115
images, in RFP response, 110, 111–112
virtual reality simulations, 113–114
project schedule, team selection and, 96
project visualization, 16, 18
proven tool, BIM as, 99–101
Pull Plan software, 34, 234, 235
punch lists
BIM and, 327–329, 329
managing, 39
model callout, 39
purpose of, 327
in technology comparison, 103
Q
QR codes
BIM 360 Field and, 297–298, 298
comparison of, 299
potential of, 341
R
radio-frequency identification tags. see RFID
tags
Raskob, John, 125
rating systems, building, 177–178, 178
Real Time Analysis, 182, 183
record BIM files
creating, 318
features of, 318
integrating, 320–321
part of design contract, 319–320
record models
architect-controlled, 264
creating, 263–264
field-controlled, 264–265
third party-controlled, 265
Redline Tags, 248–249, 248–249
Redlining tool, 246–247, 247–248
relationships, future, 359–360
remodeling facilities, future, 359–360
The Republic of Technology: Reflections on Our Future Community (Boorstin), 15
request for proposal response. see RFP (request for proposal) response
requests for information. see RFIs (requests for information)
resource-loaded schedule view, 21
responsibilities
 contractor/architect, 344
 subcontractors, 344–345
results, of implementing BIM, 102, 103
return on investment (ROI), 102, 107
Revit. see Autodesk Revit
Rex Moore’s production system, 229–231
RFID (radio-frequency identification) tags
 comparison of, 299
 in construction, 195, 324
 in facilities management, 324
RFIs (requests for information)
 DBB method and, 49–50
 document control of, 270–272, 271
 hyperlinking, 277–278, 277–278
 limitations of, 239–240
 technology comparison, 102, 103
RFP (request for proposal) response
 BIM-derived images in, 110, 111–112
 other marketing tools in, 116
 showing BIM capabilities in, 108–110, 109
 simulations in, 112–113, 114
 tailor-fit proposals in, 116, 116–117
 virtual/augmented reality simulations in, 113–115, 115
RIBA (Royal Institute of British Architects), 345
risk-reducing strategies, 101, 101
ROI (return on investment), 102, 103

S
safety
 hardhat barcoding for, 37–38
 improving with BIM, 22–23, 236–238, 237–238
Santa Maria Novella, 46, 46
schedule(s)
 BIM and, 20–22, 21
 clash detection with, 211–213, 212–213
 collaborative, 34
 controlling with BIM/mobile tools, 33–34, 34
 creating, 172–175, 172–175
 exporting to text file, 171–172, 172
 simulations. see simulations
 team selection and, 96
 scheduling. see also model-based scheduling
 animation, 221–226, 221–226
 construction, 213–217, 214–215
 design, 139–145, 140–142, 144
 LOD, 148–149, 149
search sets
 creating/attaching, 223–224, 223–224
 creating/saving, 286–287, 287–288
 importing, 288–290, 288–290
 intuitive uses of, 290
 Navisworks exercise with, 199–205, 200–204
 security cameras, 195–196
 Sefaira, for sustainability analysis, 182–187, 182–188
selection bias, 83
The Selection of Communication Media as an Executive Skill (Lengel & Daft), 77–79
selection sets, 199
sequenced clash detection, 211–213, 212–213
sequencing simulations
 in construction scheduling, 216–217
 Navisworks creating, 221–226, 221–226
server, job trailer as, 254–255
The 7 Habits of Highly Effective People (Covey), 138
Shreve, Lamb & Harmon, 126
Simpson, Scott, 7
simulations
 clash detection with, 211–213, 212–213
 in RFP response, 112–113, 114
 sequencing, 216–217, 221–226, 221–226
 virtual/augmented reality, 113–115, 115
site coordination, 194, 194–196
site logistics
 BIM and, 22, 22–23
 plans, 188, 188–190, 194, 194–195
Skyscrapers and the Men Who Build Them (Starrett), 129, 135
slip-sheeting, digital, 278–279, 279–280
smart PDFs, 116
SmartMarket reports, 33
 BIM use, 150
 lean practices, 124–125
 Project Delivery Systems, 56
Smith, Al, 125
software systems
 communication via, 79–81, 80–81
 construction scheduling, 217–221, 218–220
 information via, 336
 integration/consolidation, 345
 learning about, 350
 new BIM process and, 356–358
The Spirit of Kaizen: Creating Lasting Excellence One Small Step at a Time
(Maurer), 5
The Stack project, 30
Starrett Brothers & Eken
 collaboration of, 126
 Empire State Building and, 125
 innovations of, 126–129
 planning/prefabrication of, 129–132
Sterner, Carl, 188
Steward, Don, 145
storage, model, 8
 BIM performance and, 260
 CAD fabrication model by, 61
 new responsibilities of, 344–345
sustainability
 analysis of, 180–181, 181
 building codes and, 179, 179
 building rating systems and, 177–178, 178
Sefaira analysis of, 182–187
 swap out method in selecting technologies, 6

T
 tablet devices, in construction, 32, 32
 takeoff, model-based estimating as, 72
Taylor, Frederick Winslow, 281–282
 team engagement, 16, 17
 team integration
 in BIM construction management, 2–3
 in DB delivery method, 61–62
 importance of, 95–96
 team selection
 future importance of, 351, 354–356
 for marketing BIM, 94–96
 technical expertise, 96
 technology(ies)
 adopting new, 132–134, 133
 client’s requirements, 96
 in construction management, 2–4
 contractors adopting, 10–11, 10–12, 13
 innovators, 352
 selecting proper, 17–18
 in successful BIM, 5–7
 wearable, 22
 templates, in BIM planning, 19
 third party-controlled record models, 265
 three-dimensional BIM, 15, 50–52
 three-dimensional printers, 30–31, 116
 three-dimensional tools, 15
 three-legged stool of BIM, 4
 time predictability in construction, 281
 To Sell Is Human (Pink), 117
 Today and Tomorrow (Ford), 124, 128, 132
 tool belt, for digital plan room, 272
 tools, for BIM planning, 19–20
 touch-screen LED TV, in conference room, 253
 The Toyota Way (Liker), 133–134
 TPS (Toyota Production System), 133–134
 training
 advanced, 263–264
 basic, 263
 facility managers, 332–333
 field personnel, 261–262, 263
 uses of BIM, 265
 trending, cost, 172–175, 173–175
 Triumph of the Lean Production System (Krafcik), 124
 trust, DB delivery method and, 58–59, 59
 2010 Buildings Energy Data Book (Dept. of Energy), 176, 177
 The 2030 Challenge, 176–177
 type properties, in Revit schedules, 165–167, 166–167

U
 Umstot, David, 104–105, 108
 USGBC (United States Green Building Council), 178, 178

V
 value, demonstrable, 98–99
 VDC (virtual design and construction) BIM, 209–210, 210
 VDE (virtual desktop environment) solutions, 341
 video embedding, links for, 250–251, 250–252
 Virtual Builders certification, 360–361, 361
virtual construction manager. see BIM manager

Virtual Design and Construction: New Opportunities for Leadership (Bedrick), 319

virtual modeling, 68–69

virtual walk-throughs, 346–349, 346–349

Virtuix Omni’s omnidirectional treadmill, 348, 348–349

visions, creating, 138–139

VR (virtual reality) simulations, 113–115, 115

W

waterproofing details in design, 153–158, 154–157

WBS (work breakdown structure), 230

The World Is Flat: A Brief History of the Twenty-first Century (Friedman), 159

worry-free owners, in DB delivery method, 57–58