Index

AAC see alternate-arm converter
ABB (Asea Brown Boveri), 64, 85, 99, 114, 121, 264, 328
ac see alternating current
ac bus voltage, 136
 adjusting, 203
 faults, 323–325
 feedforward of, 186, 187
 power-synchronization control, 206
see also alternating current (ac)
ac/dc conversion, 8, 23, 28, 34, 36, 58
see also alternating current (ac); direct current (dc)
MMC-HVDC fault characteristics, 322–325
 symmetric, 31
VSC-HVDC fault characteristics, 319–322
see also alternating current (ac)
active filtering, 185
active neutral point clamped (ANPC) converter, 19–20
active-power-control operation, 204–205
active resistance, 163
aerosols, 77
air-core reactors, 96–97, 329
AIS busbars, 293
ALA model see arm-level averaged (ALA) model
$\alpha\beta$ frame, 185, 188–189
$\alpha\beta$ transformation, 181
AlN see aluminium nitride
AlSiC see aluminium silicon carbide
alternate-arm converter (AAC), 51–57
alternating current (ac), 7
 breakers, 136, 321, 331, 333, 357
 power lines, 4, 5
 switchyards, 293
see also ac bus voltage; ac/dc conversion;
 ac networks; high-voltage alternating current (HVAC)
alternative phase opposition disposition (APOD), 250, 252
aluminium corrosion, 84
aluminium nitride (AlN), 75
aluminium oxide, 75
aluminium silicon carbide (AlSiC), 74, 79
aluminium/silver platelets, 79–80
amplitude modulation ratio, 233
ANPC converter see active neutral point clamped (ANPC) converter
anti-windup, 160–161
 vector output control, 187
APOD see alternating phase opposition disposition
APS see auxiliary power supply
arc-back, 61
ARCP see auxiliary resonant-commutated pole
arm-balancing control, 161–174, 269–270
armed-level averaged (ALA) model, 273, 275–276
with blocking capability (ALA-BLK), 276–278
arm-energy control, 166–168
arm inductance117–118
see also arm inductors
arm inductors, 96–97
see also arm inductance
arms, 135
ASEA, 61
ATB see average tolerance band
auxiliary circuitry, 80, 84
auxiliary power supply (APS), 121–125
auxiliary resonant-commutated pole (ARCP), 111–112
avalanche breakdown, 65, 81
averaged dynamic model, 137–148
average tolerance band (ATB), 264–265
averaging principle, 138–140
back-up power, 293
band-pass filter (BPF), 150, 157, 170, 172, 174
ripple computation, 172–174
ripple estimation, 170–171
basebands239
harmonics, 241
battery charging, 61
battery rooms, 294
BCA see Bilateral Connection Agreement
Becke, H. C. W., 63
Bessel function, 240
beveling, 77
bipolar degradation, 85, 91
bipolar devices, 85, 90–91
bipolar junction transistors (BJTs), 63, 88–89
SiC, 89
BJTs see bipolar junction transistors
blackouts, 201, 204
black start, 201
capability, 64
operation, 204, 205
blanking time, 10, 18
blocking, 23, 85, 276–278
p–n junctions for, 65–67
bond–wire,
heel crack, 76
lift-off, 76
BPF see band-pass filter
downbreakdown voltage, 65, 67
bypass, 23
capacitive snubbers, 111
capacitor commutated converter (CCC), 337
capacitor voltages,
averaging principle, 140
selection of the mean sum, 137–138
carrier-based modulation,
application to MMCs, 245–249
methods, 236–243
multilevel, 243–252
two-level, 236–237
carrier harmonics, 238, 241, 247
carrier lifetimes, 69–70, 72
cascaded full-bridge converters, 45, 48, 49, 51, 362, 363
cascaded multilevel converters, 23–28
cascaded two-level converters, 99
catenary networks, 30
CCC see capacitor commutated converter
CCU see central control unit
cells, 23, 135
see also submodules
cell tolerance band (CTB), 264
CENELEC, 309
central control unit (CCU), 121
ceramic substrates, 75–76
chain links, 23
charge carrier injection, 68, 72
charge plasma, 68–69
CIGRE, 306–309, 311
technical brochures and guidelines, 308
circuit breakers,
ac, 136, 321, 327, 331, 333, 357
Index

dc, 40, 43, 362–367
mechanical, 104, 126
circuit decoupling, 34
circuit simulators, 273
circulating currents, 34
control, 163
clampling diodes, 17
closed-loop system,
power-synchronization control, 205–206
selection of bandwidth, 154
closed-loop voltage control, 162, 166–168
coefficient of thermal expansion (CTE), 74–75, 77
communication network, 209–212
fault-tolerant, 211–212
ring configuration, 209
star configuration, 209
commutation failure, 337
commutation time, 337
compensation angle, 150
component rating, MMC with half-bridge submodules, 40–43
conductivity modulation, 68
lag, 73
Connection and Use of System Code (CUSC), 285
control architectures, 207–212
arm-level, 209
centralized, 207
communication network, 209–212
decentralized, 207–209
leg-level, 209
submodule-level, 209
controllable voltage sources, submodule strings as, 32
control system, 133–134
converter reactors,
dry-type air-core, 96–97, 329
failure, 329
converter tower, 100
converter transformers,
failure, 329
protection, 333
Cooper Hewitt, Peter, 61
coordinate transformations, 181
copper, 77
cosmic ray, 81, 82, 90, 92, 115
cross-linked polyethylene, 288
Cross-Sound Cable, 20
CSCs see current source converters
CTB see cell tolerance band
CTB method, 266–267
CTBoptimized method, 267
CTE see coefficient of thermal expansion
current, 136–137
arm 136–137
circulating, 136–137
dynamic relations for, 137
injection, 125
rating, 41
see also current–voltage control
current-controlled devices, 63
current source converters (CSCs), 7–8, 57
current–voltage control, 351
see also current
CUSC see Connection and Use of System Code

DBC surfaces see direct-bonded copper (DBC) surfaces
DBS see dynamic braking system
dc see direct current
dc bus, 136
differential protection, 332
dynamics, 146–148
overcurrent protection, 332
overvoltage protection, 331–332
undervoltage protection, 331–332
voltage control, 198–200
voltage unbalance protection, 332
see also direct current
dc circuit breakers, 362–367
with MOVs in parallel with the dc line, 366–367
with MOVs in series with the dc line, 364–366
see also direct current
dc faults,
AAC converters, 51–52
full-bridge MMC, 47
MTDC networks, 355–362
Index

dc faults (continued)
 short-circuit, 39–40, 325–327
 see also direct current
dc grids,
 control strategies, 349–355
 load flow control, 348–349
 meshed, 347
 multi-terminal, 2
 see also direct current
dc-link voltage, 33
 see also direct current
DCU see distributed control unit
DDSRF see decoupled double synchronous reference frame
DDSRF-PNSE, 219–221, 223, 226, 231
dead-band droop control, 352–354
DECC see Department of Energy and Climate Change
decoupled double synchronous reference frame (DDSRF), 219
delta connections, 46–47, 177, 243, 322
delta operator, 151
Department of Energy and Climate Change (DECC), 285
de-saturation method, 74
DFIIt see direct form II transposed
diesel generators, 293
differential line protection, 359
digital signal processors (DSPs), 148, 151
diode clamped converters, 17–20, 57
diodes, surge current capability, 43
direct current (dc), 7
 breakers, 40, 43, 362–367
 capacitors, 9
 motors, 61, 62
 overhead lines, 38
 pole reactors, 290–291
 rails, 34
 supergrids, 370
 switchyards, 293
undervoltage protection, 358
 see also dc bus; dc circuit breakers;
 dc-link voltage; high-voltage direct current (HVDC)
direct-bonded copper (DBC) surfaces, 74–76
direct form II transposed (DFIIt), 151, 152
direct modulation, 163
direct torque control (DTC), 252, 263
direct voltage control, 162–166
director switches, 51, 55
discrete time realization,
 of resonant filter, 151
 phase-locked loop, 197
distance relay protection, 359
distributed control unit (DCU), 121
doping,
 power semiconductors, 65, 67–68
 unipolar devices, 85–87
double second-order generalized integrator (DSOGI), 219
DPS see dynamic performance study
dq decoupling, 187
dq frame, 181, 184, 185, 188–189
dq transformation,
 of multiple frequencies, 181
 of time delay, 182
 of time derivative, 182
drift, unipolar devices, 86–87
droop control,
 dead-band, 352–354
 direct voltage, 351–352
DSOGI see double second-order generalized integrator
DSOGI-PNSE, 221–223, 227–228, 231
DSPs see digital signal processors
DTC see direct torque control
dynamic avalanche, 81, 83
dynamic braking system (DBS), 297
dynamic performance study (DPS), 301
dynamic voltage control, 350–351
EAF see electric arc furnace
electric arc furnace (EAF), 43, 45
electromagnetic compatibility (EMC), 293
electromagnetic interference (EMI), 32, 83, 293, 339
electromagnetic transient (EMT) simulation, 312, 348
electromotive force (EMF), 33, 35, 38
electroplating, 61
EMC see electromagnetic compatibility
emergency overnight accommodation
(EOA), 295
EMF see electromotive force
EMI see electromagnetic interference
emissions, efforts to curb, 1
EMT simulation see electromagnetic
transient (EMT) simulation
energy,
consumption, 1
efficiency measures, 1, 2
losses in power transmission and
distribution, 1, 2
storage capacity in MMC with
half-bridge submodules, 36–38
ENTSO-E see European Network of
Transmission System Operators for
Electricity
EOA see emergency overnight
accommodation
equivalent series inductance (ESL), 94
equivalent series resistance (ESR), 94
ESL see equivalent series inductance
ESR see equivalent series resistance
EtherCAT, 209–212
Ethernet, 209
European Network of Transmission System
Operators for Electricity (ENTSO-E),
113, 305
factory acceptance tests (FATs), 309,
311–313
FACTS see flexible alternating current
transmission systems
failures in time (FIT), 80, 83, 84
metallized polypropylene film
capacitors, 96
FATs see factory acceptance tests
fault-current limiters (FCLs), 363, 367–369
solid-state, 368
superconducting, 369
fault currents,
influence of grounding strategies,
369–370
reactors limiting, 367
see also fault-current limiters (FCLs)
fault ride-through (FRT), 286, 319–320
feasibility studies, 299
ferroresonance, 302–303
field-programmable gate arrays (FPGAs),
148
filamentation, 81, 83
firefighting systems, 294
FIT see failures in time
flexible alternating current transmission
systems (FACTS), 2, 4–5, 15, 45, 347
guides for implementation, 307
flexible positive/negative sequence control
(FPNSC), 223, 225
flicker, 43
flyback capacitors, 124
flying capacitor converters, 20–22
forward current conduction, 85
forward recovery, 73
Fourier coefficient, 238, 239, 240, 244, 245
Fourier integral, 238, 240
Fourier series expansion, 237–242
double, 238, 241
FPGAs see field-programmable gate arrays
FPNSC see flexible positive/negative
sequence control
France, 296
frequency domain-based detection, 361
frequency ratio, 234
FRT see fault ride-through
FTL see fault-current limiter
full-bridge MMC, 47–51
fundamental frequency, 26
fuse segmentation, 95
gaseous contamination, 84
gate-drive units, 83, 84, 88
gate-driving conditions, 80, 83
gate-turn-off (GTO) thyristors, 45, 63, 84
packaging, 73
GCs see grid codes
General Electric, 62
generalized integrators, 150–152
generator build, 285
GIS busbars, 293
gold, diffusion of, 69
Gotland, 62, 64
Graetz bridges, 337
grid codes (GCs), 214, 228
grids,
alternating current (ac), 5
high-voltage alternating current (HVAC), 286
high-voltage direct current (HVDC), 5, 40, 43
reactive power compensation, 43–46
requirements, 214–215
see also dc grids; grid codes (GCs); supergrids
grounding strategies, 369–370
GTO thyristors see gate-turn-off (GTO) thyristors

half-bridge MMC, 28–43, 58
component rating, 40–43
decoupling of ac and dc sides, 32–34
energy storage capacity, 36–38
limits of operation, 38–40
steady-state operation, 34–38, 41
submodule strings, 36–38
topology and basic function, 28–32
harmonic analysis, 302
harmonics, 177–178, 302
heat test runs, 316
high altitudes, 82
higher level control, 192–207
dc-bus-voltage control, 198–200
open-loop control, 197–198
power-synchronization control, 200–207
see also phase-locked loop
high input voltage, 123–125
high power dissipation, 81
high-speed devices, 73
high-voltage alternating current (HVAC), collector grids, 286
power lines, 5
see also alternating current (ac)
high-voltage direct current (HVDC), grids, 5, 40, 43
power lines, 5
transmission systems, 5, 18
see also direct current (dc); HVDC transmission
HMI see human–machine interface
holes, power semiconductors, 65
human–machine interface (HMI), 293, 313
humidity, 84, 90, 92
HVAC see high-voltage alternating current
H/V/AC system (heating, ventilation and air-conditioning), 294
HVDC see high voltage direct current
HVDC transmission, 45
back-to-back interconnections, 51
cascaded converters, 58
converters for, 38
IGBT-based, 64
main input data, 112
mercury arc valve, 61–62
point-to-point, 114, 126, 305, 306, 318,
339–340, 345–346, 348–349,
351, 354–355, 357
reliability, 91
standards and commissioning procedures, 305–316
thyristor-based, 62, 64, 110
VSC-based, 64
hybrid voltage control, 162, 172–174

IEA see International Energy Agency
IEC see International Electrotechnical Commission
IGBTs see insulated-gate bipolar transistors
IGCTs see integrated gate commutated thyristors
Infineon, 85
injection reference strategy, 223–226
input-series output-parallel (ISOP) topology, 124
inrush current limiter resistors, 297–298
insertion, 23
indices, 139–141
instantaneous active power, 176–177
instantaneous power, 182–185
in a voltage-aligned dq frame, 184
insulated gate bipolar transistors (IEGTs), 72
insulated gate rectifier, 63
see also insulated-gate bipolar transistors (IGBTs)

insulated-gate bipolar transistors (IGBTs),
15, 63–64, 71–72, 84
and auxiliary power, 121
and redundant submodules, 121
in half-bridge submodules, 99–102
MMC-HVDC converters, 292–293
SiC, 90–91

integrated gate commutated thyristors (IGCTs), 15, 71–72, 84
and auxiliary power, 121
Si, 89, 90–91

inter-harmonics, 302

International Electrotechnical Commission (IEC), 308–309, 311

International Energy Agency (IEA), 1

ISOP see input-series output-parallel (ISOP) topology

Jacobi–Anger expansion, 240, 241

JFET see junction field-effect transistor

junction field-effect transistor (JFET), 88, 89, 90

junction termination, 84, 91

Kelvin emitter, 74

latch-up, 81, 83

LCCs see line-commutated converters

LCC-HVDC see line-commutated converter HVDC

leg-level averaged (LLA) model, 273, 274–275

level-shifted carriers, 250–252

line-commutated converter HVDC (LCC-HVDC), 305, 336–338

comparison with VSC-HVDC, 338–339

line-commutated converters (LCCs), 336–337

line-to-line voltage, 46, 126, 138, 177, 235–236, 242–243, 252

LLA model see leg-level averaged (LLA) model

load disturbance, 157

low-saturation devices, 73

low-voltage ride-through (LVRT), 214, 319

LVRT see low-voltage ride-through main circuit, 60–127

parameters, 112–118

main input data, 112–114

maximum output voltage, 144–145

mercury arc valve, 61–62

metallized polypropylene film capacitors, 93–96

metal-oxide-semiconductor field-effect transistors (MOSFETs), 10, 63

avalanche breakdown, 65

Si, 88

SiC, 89–91

super-junction, 125

metal oxide varistor (MOV), 364

metal surface treatment, 61

MMC-HVDC,

commissioning process, 309–311

factory and site acceptance tests, 309–314, 316

hierarchy of codes and standards, 309

onsite energizing tests, 314–316

pre-commissioning, 311–312

standards and commissioning procedures, 305–316

see also MMC-HVDC technology; offshore MMC-HVDC converters

MMC-HVDC technology, 5, 204, 339–342

back-to-back scheme configuration, 342

bipolar scheme configuration, 341–342

component failures, 327–329

control and protection, 319–334

converter, 287–294

dc pole-to-ground short-circuit faults, 325–327

fault characteristics, 322–325

monopolar asymmetric scheme configuration, 340

protection systems, 329–333

symmetric monopole scheme configuration, 340–341

see also MMC-HVDC projects; offshore MMC-HVDC converters
MMCs see modular multilevel converters
modeling, 133, 175, 212, 272–281,
modular multilevel converters (MMCs)2, 5,
7–8
benefits of, 15–17
fundamentals, 134–137
see also full-bridge MMC; half bridge
MMC; MMC-HVDC projects;
MMC-HVDC technology
modulation index, 12–13, 35, 38
AAC, 54
defined, 233
infinite, 48
semi-full bridge submodules, 109
molybdenum, 77, 79
MOSFETs see metal-oxide-semiconductor
field-effect transistors
motor drives, 22, 38, 63, 73, 235
MOV see metal oxide varistor
MSI-LVRT, 226, 228
MTDC network see multi-terminal direct
current (MTDC) transmission
network
MTDC test circuit, 307–308
multilevel converters, 15–16
early, 17–22
multiple frequencies, 180–181
dq transformation, 181
multiple phase-shifted carrier (PSC)
simulation, 281
multi-terminal direct current (MTDC)
transmission network, 306, 336,
340, 345
dc circuit breaker technologies, 362–367
dc fault detection and protection,
355–362
dc grid control strategies, 349–350
dc load flow control, 348–349
meshed, 347–348
parallel-connected, 346
power balancing, 350–351
series-connected, 346

nearest-level control (NLC)252–256, 258
negative-sequence component, 176
negative-sequence injection low-voltage
dc circuit breaker technologies, 355–362
ride-through (NSI-LVRT), 215, 218,
226, 231
negative-sequence reactive current, 215, 224
neutral point clamped (NPC) converter, 8,
17–19
reactive power compensation in grids,
43–44
nickel-plated copper, 77
NLC see nearest-level control
North Sea Countries Offshore Grid
Initiative (NSCOGI), 343–344
notch filter, 216–219
NPC converter see neutral point clamped
(NPC) converter
NSCOGI see North Sea Countries Offshore
Grid Initiative
NSI-LVRT see negative-sequence injection
low-voltage ride-through
n-type semiconductors, 65
offshore dc grids, 344–345
offshore HVDC converter transformers,
289–290
offshore HVDC equipment, 283–284
offshore HVDC platforms,
accommodation, 295
ac and dc switchyards, 293
types of 294–295
offshore HVDC projects, 284
MMC-HVDC converter, 287–294
regulatory frameworks, 284–287
see also MMC-HVDC projects;
MMC-HVDC technology
offshore MMC-HVDC converters,
ac and dc switchyards, 293
auxiliary systems, 293–294
components, 287–294
control and protection systems, 293
converter valve hall, 292–293
dc pole reactors, 290–291
emergency power, 293
firefighting systems, 294
H/V/AC system, 294
HVDC converter transformers,
289–290
integration of a wind-power plant, 298–303
phase reactors, 290–291
seawater cooling systems, 294
uninterruptible power supplies, 294
see also MMC-HVDC projects; MMC-HVDC technology
offshore wind farms, 2, 3, 201, 204
MMC-HVDC schemes for, 283–303
offsite commissioning tests, 312–313
OFTO build, 285
OFTOs see offshore transmission owners
onshore dc choppers, 296
onshore dynamic brakers, 296
onshore HVDC converters, 295–298
onsite energizing tests, 314–316
onsite testing, 313–314
open-loop control, 162, 168–172
active- and reactive-, 197–198
optimized submodule tolerance band (CTBoptimized)267
output-current control, 148–161
see also output-current controller
output-current controller, 157–161, 163
power-synchronization control, 206–207
see also output-current control
overcurrent protection, 357–358
over-heating, 81

PA see polyamide
paper design, 116
partial element equivalent circuit (PEEC) modeling, 116
PBT see polybutylene terephthalate
PCC see point of common coupling
PCC-voltage recovery, 224
PD see phase disposition
PEEC modeling see partial element equivalent circuit (PEEC)
PET see polyethylene terephthalate
PFCs see power flow controllers
P gain, 153–154
phase disposition (PD), 250, 252
phase legs, two-level convertors, 10–12
phase-locked loop (PLL), 133, 189, 192–194
closed-loop system, 195–196
discrete-time integrator realization, 197
filter, 196, 198
linearized model, 194–196
parameter selection, 195–196
static phase-tracking error, 196–197
with notch filter, 216–219
phase opposition disposition (POD), 250, 252
phase reactors, 290–291
phase-shifted carrier (PSC) modulation, 243
capacitor voltage balancing, 249–250
phase-shifted carriers (PSCs), 243–250
see also phase-shifted carrier (PSC) modulation
phase voltages, 175, 191–192
PI controller see proportional–integral (PI) controller
PID controller see proportional–integral–derivative (PID) controller
PLECS, 279
p–n junctions,
power semiconductor devices, 65–67
reverse biased, 66–67
PNSE see positive/negative-sequence extraction
PNSRG see positive/negative sequence reference generator
POD see phase opposition disposition
point of common coupling (PCC), 136, 157, 200, 214
pollutants, 84
polyamide (PA), 74
polybutylene terephthalate (PBT), 74
polyethylene terephthalate (PET), 74
polyphase systems, 242–243
polyphenylene sulfide (PPS), 74
polyphthalamide (PPA), 74
positive/negative-sequence extraction (PNSE), 219–223
positive/negative sequence reference generator (PNSRG), 226, 227
positive-sequence component, 175, 176
positive-sequence injection low-voltage ride-through (PSI-LVRT), 214, 215, 225–226, 231
positive sequence reactive power, 224
power-collecting operation, 204
power conductor devices, 72–73
power cycling, 76, 92
power flow controllers (PFCs), 347
power modules, 73
isolated industrial 73–77
press-pack, 77–80
power semiconductor devices, 61–92
carrier injection, 67–72
choice of 114
conduction properties, 64–65, 67–72
historical overview, 61–64
packaging, 73–80
p–n junctions, 65–67
power systems, frequency, 4
reliability, 80–84
silicon carbide, 61, 84–92
power-synchronization control, 200–204
ac-bus voltage reference, 206
active-power-control operation, 204–205
black-start operation, 204, 205
closed-loop system, 205–206
realization via output-current controller, 206–207
power systems, integrating renewable energy sources into, 3–5
PPA see polyphthalamide
PPS see polypphenylene sulfide
PR controller see proportional–resonant (PR) controller
predictive sorting, 259–263
press-pack power modules, 77–80
proportional–integral (PI) controller, 149, 151
parameter selection, 153–157
tracking of sinusoidal reference, 149–150, 152–153
vector current control, 186
protection coordination philosophy, 330
PSC modulation see phase-shifted carrier (PSC) modulation
PSC simulation see multiple phase-shifted carrier (PSC) simulation
PSCs see phase-shifted carriers
PSI-LVRT see positive-sequence injection low-voltage ride-through
p-type semiconductors, 65
pulse frequency, 148, 234
pulse-width modulation (PWM), 12, 13, 14, 17, 126, 148
basic concepts, 233–234
performance of modulation methods, 234–235
PWM see pulse-width modulation
railway power supply, 30
railway traction converters, 17, 73, 234
random number generation, 280
reactive power, 145
compensation in grids, 43–46
tuning, 113
reactors,
air-core, 96–97, 329
dc pole, 290–291
fault current limiting, 367
phase, 290–291
see also converter reactors
real-time simulation (RTS), 312–313
redundant submodules, 118–121
reference-vector saturation, 188
reference voltage, 12, 28, 120, 233, 243
regulatory frameworks,
Germany, 286
offshore HVDC projects, 284–287
United Kingdom, 285–286
reliability,
HVDC transmission, 91
metallized polypropylene film capacitors, 95–96
power semiconductor devices, 80–84
SiC power devices, 91
submodule capacitors, 95–96
renewable energy sources (RES), 1, 2
integration into the grid, 2–5
renewable power, 1
RES see renewable energy sources
resonant bandwidth, 155
resonant filters, 150–152
reverse recovery, 72, 116
R gain, 155–159
rhodium, 77
ripple computation, 172–174
ripple estimation,
using band-pass filtering, 170–171
using explicit formulas, 169–170
RTS see real-time simulation

safe operating area (SOA), 80–82
safe switching operating area (SSOA), 332
salty environments, 84
SATs see site acceptance tests
SCADA see supervisory control and data acquisition
scaling constant, 184
SCFM see short-circuit failure mode
Schoop, Max, 93
schoopage, 93
Schottky diodes, 85
SCR see short-circuit ratio
seawater cooling systems, 294
second-order generalized integrator (SOGI), 151, 152
self-clamping, 65
self-healing, 95–96
semiconducting crystals, 65
semiconductor power, 41, 42
semiconductors,
 n-type, 65
 p-type, 65
 see also power semiconductor devices
Shockley, William, 62
short-circuit analysis, 301
short-circuit currents, 39–40, 43
short-circuit failure mode (SCFM), 328
short-circuit ratio (SCR), 157, 337
low, 200
Si₃N₄, 75
SiC see silicon carbide
sideband harmonics, 238, 241, 247
Siemens, 28, 114, 99–100
silicon, in power semiconductors, 65, 67
silicon carbide (SiC), 61, 84–92
 bipolar devices, 90–91
BJTs, 89
IGBTs, 90
JFET, 88, 89
MOSFETs, 89–91
see also silicon carbide power devices
silicon carbide power devices, 84–92
cost competitiveness, 92
reliability, 91–92
see also silicon carbide
simulation models, 272–281
single-phase ac terminals, 30
single-phase networks, 30
sinusoidal reference, 232
 tracking using PI controller, 149–150
 tracking using PR controller, 152–153
site acceptance tests (SATs), 309, 311, 313–314, 316
SLA model see submodule-level averaged (SLA) model
snubber capacitors, 111
SOA see safe operating area
soft-switching, 111
SOGI see second-order generalized integrator
SOGI-QSG, 221–222
soldering delamination, 76
solid-state fault-current limiters (SS-FCLs), 368–369
Soviet Union, 62
space charge layer65–68, 82, 85
space vectors, 149, 178–179
 coordinate transformations, 181
dq transformation of multiple frequencies, 181
dq transformation of time delay, 182
dq transformation of time derivative, 182
 multiple frequencies, 180–181
 transformation matrices, 180
space-vector scaling constant, 184
Spain, 296
spiders, 97
SS-FCLs see solid-state fault-current limiters
SSOA see safe switching operating area
start-up procedures, 126
STATCOMs see static synchronous compensators
static phase-tracking error, 196–197
static synchronous compensators
(STATCOMs), 4–5
with cascaded full-bridges, 43–47, 58
static var compensators (SVCs), 4, 337
steady-state load flow analysis, 299
steady-state operation,
half-bridge MMC, 34–38, 41
two-level voltage source converters, 12–15
step-up transformers, 43–44
stray capacitances, 31
stray inductance, 116
submodule capacitance, 117
see also submodule capacitors
submodule capacitors, 92–93
as power source, 121–123
design and fabrication, 93–95
effective dc-bus dynamics 147–148
failure, 328
reliability, 95–96
self-healing, 95–96
submodule-capacitor-voltage control, 269–270
submodule configurations, 98–99
clamped double, 98, 105–106
clamped single, 98, 99, 104–105
double, 99, 108–109
five-level cross-connected, 98, 107
full-bridge, 98, 114, 116, 122
half-bridge, 98–104, 114, 116
semi-full-bridge, 99, 109–110
soft-switching, 99, 110–112
three-level cross-connected, 98, 107–108
unipolar-voltage full-bridge, 98–99, 106–107
submodule energy balancing methods, 256–270
submodule-level averaged (SLA) model, 273, 278–280
submodule-level switched (SLS) model, 273, 280–281
submodules, 8
auxiliary power supplies, 121–125
blocked, 135
bypassed, 135
cascaded multilevel converters, 23–28
choice of the number, 115–117
full-bridge, 23–25, 28
half-bridge, 23–26, 58
inserted, 135
protection systems, 332–333
redundant and faulty, 118–121
semiconductors, 327–328
standard topology, 135
submodule sorting, 256–259
submodule strings, 25–28
as controllable voltage sources, 32
MMC with half-bridge submodules, 28, 36–38
sum-capacitor-voltage ripples, 141–143, 145, 146, 259
and zero-sequence injection, 192
superconducting FCLs, 369
supergrids, 2, 3, 370
super junction technology, 90
supervisory control and data acquisition (SCADA), 314
SVCs see static var compensators
Sweden, 61–62, 64
sweet spot, 54–56
switching frequency, 234
switchyards, 293
symmetrical references, phase-voltage, 191–192
Symphony, 22
synchronous coordinates, 181
synchronverter, 202
tapped-inductor buck (TIB) converter, 125
TC see thermal conductivity
TenneT, 283
THD see total harmonic distortion
thermal conductivity (TC), 74–75
thermal power plants, 1
third-harmonic injection, 235
zero-sequence injection, 190–192
three-phase systems, 175–184
balanced, 175
imbalanced, 175–176
reference third-harmonic injection, 235–236

thyristors, 39
 bypass, 99, 104, 114, 117
 for HVDC transmission, 62, 64, 110
 gate-turn-off (GTO), 45, 63
 high-voltage, 69
 invention of, 62
 press-pack, 77–78
TIB converter see tapped-inductor buck
 (TIB) converter,
time delays, 148, 182
time derivative, 182
tolerance band methods, 263–269
 evaluation, 267–269
total harmonic distortion (THD), 234, 254
transformation matrices, 180
transformations, of the output current, 188–190
transient stability analysis, 301
transmission system operators (TSOs), 283, 285
 Germany, 286, 287
traveling wave-based detection, 360–361
traveling wave theory, 360
TSOs see transmission system operators
Tustin method, 151
ultrasonic welding, 76
unclamped inductive switching, 65
unipolar devices, 85–90
uninterruptible power supplies (UPSs), 294
UPSs see uninterruptible power supplies
valves,
 half-bridge submodules, 102
 protection systems, 332–333
 variable speed drives, 150
vectorial saturation, 188
vectorized simulation models, 279–280
vector output-current control, 184–185
 component-based, 226–228
 PI controller, 186, 199
 PR controller, 186
 reference-vector saturation, 188
 shortcomings of 215–219
transformations, 188–190
 zero-sequence injection, 190–192
virtual resistance, 163
voltage control, 162
 centralized, 354–355
 closed-loop, 162, 166–168
 decentralized, 354–355
 direct, 162–166
 droop, 351–352
 dynamic, 350–351
 hybrid, 162, 172–174
 margin, 352
 open-loop, 162, 168–172
voltage-controlled devices, 63
voltage derivative protection, 359–360
voltage–power control, 351–352
voltage source converters (VSCs), 7–8
 modulation, 235
 multilevel, 17
 reactive power compensation in grids, 43–44
 two-level, 8, 9–15
see also VSC-HVDC transmission technology
voltage tolerance band (CTB), 266–267
voltage transformers (VTs), 303
VSC-HVDC transmission technology, 2, 4,
 5, 64, 284, 338–339
 comparison with LCC-HVDC technology, 338–339
 fault characteristics, 319–322
 grid control strategies, 349
 grounding strategies, 369–370
 hierarchy of codes and standards, 310
 reliability, 80
 restoring ac network after a blackout, 201
 technical requirements, 308
VSCs see voltage source converters
VTs see voltage transformers
wavelet based fault detection, 361–362
wavelet transformation (WT) theory, 361–362
weak grid, 200, 205
weighted total harmonic distortion (WTHD), 235
wind power, 3, 7
 see also wind-power plants (WPPs); wind turbines
wind-power plants (WPPs), 284
 HVDC export link, 298–303
 offshore, 2, 3, 201, 204, 344–345
 see also offshore HVDC projects; wind turbines
wind turbines, 17
 see also wind power; wind-power plants (WPPs)
WPPs see wind-power plants

WTHD see weighted total harmonic distortion
wye connections, 46–47, 54, 177

XLPE see cross-bound polyethylene
XLPE cables, 112, 337, 339

zero-sequence component, 176
zero-sequence current, 47, 54
zero-sequence voltage, 47
zero-voltage switching (ZVS), 125
ZVS see zero-voltage switching