Contents

List of Contributors xv
Preface xix

Part A  Introduction and Status 1

1  Introduction, Definitions and Legislation 3
Demetrios G. Sotirchos, Georgios P. Danezis and Constantinos A. Georgiou
1.1  Introduction 3
1.2  Definitions 4
1.2.1  Food Origin 4
1.2.2  Label 4
1.2.3  Adulteration and Fraud 4
1.3  Geographical Indications 5
1.3.1  PDO, PGI, and TSG 6
1.3.2  Wines 8
1.4  Organics 11
1.5  Conclusion 14
    References 14
    Legislation Acts 16

2  Food Authentication by Numbers 19
Georgios P. Danezis and Constantinos A. Georgiou
2.1  Introduction 19
2.2  Research Trends 19
2.3  Analytical Techniques 20
2.4  Countries 22
2.5  Journals 24
    References 24

Part B  Consumer Attitudes Towards Authentic Food and Market Analysis 25

3  The Concept of Authenticity and its Relevance to Consumers: Country and Place Branding in the Context of Food Authenticity 27
Athanasios Krystallis
3.1  Introduction: The Challenge of Authenticity 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 The Origin of Authenticity and its Marketing Relevance</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 The Philosophy of Authenticity</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Countries as Brands: The Country-of-Origin (COO) Effect on Product Choices</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1 Do Places get the Reputation they Deserve?</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2 Countries as Brands</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3 Impact of Country Names on Attitudes Towards Products</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Place Branding: Geographic Indication Labels and their Effect on Food Choice</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1 Mediterranean Diet: A Typical Place Marketing Paradigm</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2 Regulatory Initiatives of Place Branding: Designation of Origin Labelled (DOL) Food and the PDO/PGI/TSG Schemes</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3 The Industry's Response: Is Place Branding a Panacea?</td>
<td>62</td>
</tr>
<tr>
<td>3.4 Conclusion: Towards a Definition of Authenticity in a Business Context</td>
<td>75</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>77</td>
</tr>
<tr>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>

### Part C Geographical, Botanical, and Species Origin, Method of Production and Food Frauds Detection

4 Elemental Fingerprinting

*Georgios P. Danezis, Constantinos A. Papachristidis and Constantinos A. Georgiou*

4.1 Introduction 85
4.2 Elemental Techniques 86
4.2.1 ICP-MS 86
4.2.1.1 Operation Principle: Main Features 86
4.2.1.2 Mass Analyzers 87
4.2.1.3 Interferences 90
4.2.1.4 ICP-MS versus Other Techniques 92
4.2.2 ICP-AES and Other Techniques 94
4.3 Sample Preparation: Pretreatment 95
4.3.1 Digestion 95
4.3.2 Direct Solid Sampling Analysis 97
4.3.3 Sampling Problems and Remedies 97
4.3.3.1 Wines and Beverages 97
4.3.3.2 Food Waste Water 98
4.3.3.3 Vegetables and Mushrooms 98
4.3.3.4 Fruits 98
4.3.3.5 Cereals 98
4.3.3.6 Fats and Oils 98
4.3.3.7 Meat 99
4.3.3.8 Seafood 99
4.3.3.9 Dairy Products 99
4.3.3.10 Honey 99
4.4 Applications 99
4.4.1 Elemental Fingerprinting Rational and Trends 99
4.4.2 Elemental Fingerprinting Authenticates Various Food Products 101
4.4.2.1 Wines 103
4.4.2.2 Beverages 103
4.4.2.3 Fruits and Vegetables 103
4.4.2.4 Oils 104
4.4.2.5 Cereals – Pulses 105
4.4.2.6 Dairy Products 105
4.4.2.7 Meat 106
4.4.2.8 Fish and Fish Products 106
4.4.2.9 Honey 107
4.4.2.10 Coffee and Tea 107
4.4.2.11 Spices – Food Ingredients 108
4.4.2.12 Organic Foods 108
4.4.3 Chemometrics 109
4.5 Conclusions and Outlook 111
References 111

5 Isotopic Fingerprinting 117

5.1 Light Isotopes 118
Dana Alina Magdas and Gabriela Cristea
5.1.1 Introduction 118
5.1.2 Application of Stable Isotope Ratios in Food Control 119
5.1.2.1 Fruit Juices 119
5.1.2.2 Wines and Sparkling Wines 121
5.1.2.3 Mineral Waters 122
5.1.2.4 Vanilla 124
5.1.2.5 Spices 125
5.1.2.6 Fish 125
5.1.2.7 Beef 126
References 127

5.2 Heavy Isotopes 131
Andrea Marchetti, Caterina Durante and Lucia Bertacchini
5.2.1 Introduction 131
5.2.2 Quality vs. Geographical Traceability 132
5.2.3 The Isotopic Approach to Food Traceability 134
5.2.3.1 Traceability Models Based on the Use of $^{87}\text{Sr}/^{86}\text{Sr}$ 136
5.2.3.2 Mass Bias 137
5.2.3.3 Correction of the Mass-Dependent Bias 138
5.2.4 Bioavailability 141
5.2.4.1 Applications 142
5.2.4.2 Case Study: Extra Virgin Olive Oils 147
5.2.4.2.1 Sampling and Sample Treatment 148
5.2.4.2.2 Soil Sampling and Treatment 149
5.2.4.2.3 Branch and Olive Treatment 150
5.2.4.2.4 Analytical Determination: Strontium Isotope Ratio 150
5.2.4.2.5 Instrumentation 151
5.2.4.2.6 Accuracy and Precision Evaluation 152
5.2.4.2.7 $^{87}\text{Sr}/^{86}\text{Sr}$ for Soil, Branch and Olive Samples 152
5.2.4.3 Case Study: Lambruschi PDO 155
5.2.4.3.1 Sampling and Sample Treatment 156
5.2.4.3.2 Lambrusco Winemaking Sampling 157
5.2.4.3.3 Soil, Branch and Juice Sampling 159
5.2.4.3.4 Soil, Branch and Juice Pretreatments 160
5.2.4.3.5 $^{87}\text{Sr}/^{86}\text{Sr}$ in Lambrusco Winemaking 160
5.2.4.3.6 $^{87}\text{Sr}/^{86}\text{Sr}$ from Soils to Lambrusco Wines 161

References 165
Legislation 176

6 Nuclear Magnetic Resonance – Metabolomics 177
Donatella Capitani, Anatoly P. Sobolev and Luisa Mannina

6.1 Introduction 177
6.2 Olive Oils 179
6.3 NMR for Investigating Fruit Metabolomics 182
6.3.1 NMR Metabolomics Applied to Kiwifruits 183
6.3.2 NMR Metabolomics Applied to Blueberries 188
6.4 NMR Metabolomics of Transgenic Vegetable Food 190

References 193

7 Chromatography 199

7.1 Introduction to Chromatography – Techniques 200
Joana Santos and M. Beatriz P. P. Oliveira

7.1.1 Introduction 200
7.1.2 Chromatography 202
7.1.2.1 HPLC and Hyphenated Techniques 203
7.1.2.1.1 Liquid Chromatography–Mass Spectrometry 210
7.1.2.2 GC and Hyphenated Techniques 215
7.1.2.2.1 Gas Chromatography–Mass Spectrometry 223

Acknowledgements 224
References 225

7.2 Chromatography – Applications 233
Ana I. Ruiz-Matute, M. Luz Sanz, F. Javier Moreno and Marta Corzo-Martínez

7.2.1 Introduction 233
7.2.2 Carbohydrates 233
7.2.3 Food Proteins and Peptides 240
7.2.4 Fatty Acids and Triacylglycerols 246
7.2.5 Volatile Compounds 249
7.2.6 Phenolic Compounds 256
7.2.7 Organic Acids 258
7.2.8 Conclusions 258

Acknowledgements 259
References 259
8    Vibrational and Fluorescence Spectroscopy  277

8.1    Vibrational Spectroscopy  278
Daniel Cozzolino
8.1.1    Introduction  278
8.1.2    Instrumentation and Software  280
8.1.3    Applications of Vibrational Spectroscopy in Food Authenticity  284
8.1.3.1    Fish and Seafood  284
8.1.3.2    Fish and Meat By-Products  284
8.1.3.3    Wine  285
8.1.3.4    Cereal grains  287
8.1.3.5    Honey  288
8.1.3.6    Meat and Meat Products  291
8.1.4    Concluding Remarks and Future Perspectives  291
References  292

8.2    Fluorescence Spectroscopy  298
Georgios Mousdis and Fotini Mellou
8.2.1    Fluorescence  298
8.2.1.1    Basic Principles  298
8.2.1.2    Instrumentation  299
8.2.1.3    Types of Fluorescence Spectra  301
8.2.1.4    Factors Affecting Fluorescence Intensity  302
8.2.1.4.1    Concentration and Inner Filter Effect  302
8.2.1.4.2    Quenching  303
8.2.1.4.3    Scatter  303
8.2.1.4.4    Molecular Environment  303
8.2.2    Chemometrics  303
8.2.3    Applications in Foods and Drinks  305
8.2.3.1    Edible Oils  305
8.2.3.2    Meat and Meat Products  307
8.2.3.3    Fish and Fish Products  308
8.2.3.4    Eggs  309
8.2.3.5    Caviar  309
8.2.3.6    Milk and Cheese Products  309
8.2.3.7    Cereals  311
8.2.3.8    Honey, Sugar, and Syrups  312
8.2.3.9    Fruits  313
8.2.3.10    Alcoholic Beverages  313
8.2.4    Conclusions and Perspectives  315
References  315

9    Molecular Techniques – Genomics and Proteomics  325
Ignacio Ortea, Karola Böhme, Pilar Calo-Mata and Jorge Barros-Velázquez
9.1    Introduction  325
9.2    DNA-Based Methods  326
| 9.2.1 | Randomly Amplified Polymorphic DNA (RAPD) | 328 |
| 9.2.2 | Simple Sequence Repeats (SSR) | 328 |
| 9.2.3 | DNA Sequencing | 330 |
| 9.2.4 | Multiplex PCR with Species-Specific Primers | 331 |
| 9.2.5 | Real-Time PCR | 331 |
| 9.2.6 | PCR-SSCP | 333 |
| 9.2.7 | PCR-RFLP | 333 |
| 9.2.8 | DNA Hybridization and Microarrays | 335 |
| 9.2.9 | Peptide Nucleic Acid (PNA) -Based Approaches | 335 |
| 9.3 | Proteomics for Species and Geographical Origin Authentication | 336 |
| 9.3.1 | Gel-Based Methods | 337 |
| 9.3.2 | MS-Based Methods | 341 |
| 9.3.3 | MS/MS-Based Methods | 342 |
| 9.3.4 | Directed Approaches | 342 |
| 9.4 | Future Trends | 343 |
| References | 344 |

10  **Immunological Techniques** 355
*Yun-Hwa Peggy Hsieh and Jack Appiah Ofori*

10.1 | Introduction | 355 |
10.2 | Immunoassays | 356 |
10.3 | Meat Speciation | 357 |
10.4 | Fish and Shellfish Authentication | 362 |
10.5 | Fruit Juices | 364 |
10.6 | Botanical Origin of Honey | 365 |
10.7 | Irradiated and Genetically Modified Foods | 366 |
10.7.1 | Detection of Irradiated Foods | 367 |
10.7.2 | Detection of GM Foods | 368 |
10.8 | Conclusions | 369 |
| References | 369 |

11  **Sensory Analysis** 377
*Laura Aceña, Montserrat Mestres, Olga Busto and Ricard Boqué*

11.1 | Introduction | 377 |
11.2 | Organoleptic Evaluation and Food Quality | 377 |
11.3 | Human Sensory Panels: Response and Subjectivity | 378 |
11.4 | Instrumental Sensory Analysis | 378 |
11.4.1 | Looking for Objectivity | 378 |
11.4.2 | Gas Chromatography-Olfactometry (GCO) | 379 |
11.4.2.1 | GCO Device: How it Works | 379 |
11.4.2.2 | Olfactometric Techniques | 380 |
11.4.2.3 | Applications | 380 |
11.4.3 | Electronic Nose | 381 |
11.4.3.1 | Emulating the sense of smell | 381 |
11.4.3.2 | Types of Electronic Noses: Instrumental Aspects | 381 |
11.4.3.3 | Applications of E-Noses in Food Analysis | 382 |
11.4.4 Electronic Tongue 382
11.4.4.1 Emulating the Sense of Taste 382
11.4.4.2 Types of Electronic Tongues 382
11.4.5 Multivariate Data Analysis 384
11.5 Future Trends 386
References 387

12 MALDI Mass Spectrometry: A Promising Non-Chromatographic Technique 393
Cosima D. Calvano, Antonio Monopoli and Carlo G. Zambonin
12.1 Introduction 393
12.2 MALDI MS Principles 394
12.3 MALDI-TOF-MS for Food Proteins and Peptides Analysis 396
12.4 MALDI-TOF-MS for Lipids Analysis 397
12.5 MALDI-TOF-MS for Illegal Mixture Detection 397
12.5.1 Hazelnut Oil in Olive Oil: Lipid Analysis 397
12.5.2 Hazelnut Oil in Olive Oil: Protein Analysis 399
12.5.3 Cow Milk in Goat and Sheep Milk: Protein Analysis 399
12.5.4 Powder Milk in Liquid Milk: Protein and Lipid Analysis 401
12.6 MALDI-TOF-MS for Microbial Contamination Detection 402
Acknowledgements 404
References 404

13 Detection of Food Processing Techniques 413
Aristidis S. Tsagkaris, Georgios P. Danezis and Constantinos A. Georgiou
13.1 Introduction 413
13.2 Freezing–Thawing 414
13.2.1 Methods of Detection 414
13.3 Irradiation 415
13.3.1 Physical Methods for Irradiation Detection 417
13.3.2 Chemical Methods for Irradiation Detection 418
13.3.3 Biological Methods for Irradiation Detection 418
13.4 Heating Techniques 418
13.4.1 Methods of Detection 419
13.5 Conclusion 420
References 420

14 Adulteration Stories 423
Aristidis S. Tsagkaris, Constantinos A. Papachristidis, Georgios P. Danezis and Constantinos A. Georgiou
14.1 Introduction 423
14.2 A Flashback 424
14.3 Food Fraud Incidents 425
14.3.1 Bootleg Liquor, India, 2015 425
14.3.2 Horse Meat Scandal, EU, 2013 425
14.3.3 Adulteration with Melamine, China, 2008 and 2007 427
14.3.4 Food Extension in the ConAgra Incident, USA, 1997 427
14.3.5 Low-Cost Mixture Marketed as 100% Pure Apple Juice in the Beech-nut Incident, USA, 1987 427
14.3.6 Arsenic in Beer, UK, 1880 and 1900 428
14.3.7 Bright Poisonous Inorganic Colors for Sweets, UK, 1858 428
14.3.8 Adulteration of Bread with Alum in London, UK, 1839 429
14.4 Conclusions 429
References 429

15 Organic Foods 431
Yolanda Picó
15.1 Introduction 431
15.2 Biochemical Markers and Analytical Platforms 432
15.3 Sampling 433
15.4 Sample Preparation and Extraction 440
15.5 Instrumental Analysis 441
15.5.1 Multi-Elemental Composition 441
15.5.2 Stable Isotope Analysis 441
15.5.3 Biocrystallisation 443
15.5.4 Infrared Spectroscopy 443
15.5.5 Proton Transfer Reaction Mass Spectrometry (PTR-MS) 444
15.5.6 Gas Chromatography–Mass Spectrometry (GC-MS) 444
15.5.7 Liquid Chromatography–Mass Spectrometry (LC-MS) 445
15.5.8 Direct Analysis in Real-Time High-Resolution Mass Spectrometry (DART-HRMS) 446
15.5.9 Biological Methods 447
15.6 Data Analysis 447
15.7 Conclusions and Future Trends 448
References 449

16 Screening and High-Throughput Multi-Contaminants Methods 453
Natasa P. Kalogiouri and Nikolaos S. Thomaidis
16.1 Introduction 453
16.2 Sample Preparation 454
16.2.1 Sample Extraction 454
16.2.1.1 Solid-Phase Micro-Extraction 454
16.2.1.2 Matrix Solid-Phase Dispersion Extraction 460
16.2.1.3 Supercritical Fluid Extraction 460
16.2.1.4 Accelerated Solvent Extraction 461
16.2.1.5 Liquid–Liquid Extraction 461
16.2.1.6 QuEChERS 461
16.2.1.7 Microwave-Assisted Extraction 462
16.2.2 Sample Clean-Up 462
16.2.2.1 Gel Permeation Chromatography 463
16.2.2.2 Solid-Phase Extraction 463
16.2.2.3 Dispersive Solid-Phase Extraction 463
16.3 Separation and Detection 464