Contents

Preface xi
Abbreviations xiii

1 Introduction 1
 1.1 Introduction 1
 1.1.1 Why Photovoltaics? 1
 1.1.2 Who Should Read this Book? 2
 1.1.3 Structure of the Book 2
 1.2 What is Energy? 3
 1.2.1 Definition of Energy 3
 1.2.2 Units of Energy 4
 1.2.3 Primary, Secondary and End Energy 5
 1.2.4 Energy Content of Various Substances 6
 1.3 Problems with Today’s Energy Supply 7
 1.3.1 Growing Energy Requirements 7
 1.3.2 Tightening of Resources 8
 1.3.3 Climate Change 9
 1.3.4 Hazards and Disposal 10
 1.4 Renewable Energies 11
 1.4.1 The Family of Renewable Energies 11
 1.4.2 Advantages and Disadvantages of Renewable Energies 12
 1.5 Photovoltaic – The Most Important in Brief 12
 1.5.1 What Does “Photovoltaic” Mean? 13
 1.5.2 What are Solar Cells and Solar Modules? 13
 1.5.3 How is a Typical Photovoltaic Plant Structured? 14
 1.5.4 What Does a Photovoltaic Plant “Bring?” 14
 1.6 History of Photovoltaics 15
 1.6.1 How it all Began 15
 1.6.2 The First Real Solar Cells 16
 1.6.3 From Space to Earth 18
 1.6.4 From Toy to Energy Source 18
4 Structure and Method of Operation of Solar Cells 67
4.1 Consideration of the Photodiode 67
 4.1.1 Structure and Characteristics 67
 4.1.2 Equivalent Circuit 69
4.2 Method of Function of the Solar Cell 69
 4.2.1 Principle of the Structure 69
 4.2.2 Recombination and Diffusion Length 70
 4.2.3 What Happens in the Individual Cell Regions? 71
 4.2.4 Back-Surface Field 73
4.3 Photocurrent 73
 4.3.1 Absorption Efficiency 74
 4.3.2 Quantum Efficiency 75
 4.3.3 Spectral Sensitivity 76
4.4 Characteristic Curve and Characteristic Dimensions 77
 4.4.1 Short Circuit Current I_{SC} 78
 4.4.2 Open Circuit Voltage V_{OC} 78
 4.4.3 Maximum Power Point (MPP) 79
 4.4.4 Fill Factor FF 79
 4.4.5 Efficiency η 80
 4.4.6 Temperature Dependency of Solar Cells 80
4.5 Electrical Description of Real Solar Cells 82
 4.5.1 Simplified Model 82
 4.5.2 Standard Model (Single-Diode Model) 83
 4.5.3 Two-Diode Model 83
 4.5.4 Determining the Parameters of the Equivalent Circuit 85
4.6 Considering Efficiency 87
 4.6.1 Spectral Efficiency 87
 4.6.2 Theoretical Efficiency 90
 4.6.3 Losses in Real Solar Cells 92
4.7 High Efficiency Cells 95
 4.7.1 Buried-Contact Cells 96
 4.7.2 Point-Contact Cell 96
 4.7.3 PERL Cell 97

5 Cell Technologies 99
5.1 Production of Crystalline Silicon Cells 99
 5.1.1 From Sand to Silicon 99
 5.1.2 From Silicon to Wafer 103
 5.1.3 Production of Standard Solar Cells 104
 5.1.4 Production of Solar Modules 106
5.2 Cells of Amorphous Silicon 108
 5.2.1 Properties of Amorphous Silicon 108
 5.2.2 Production Process 108
 5.2.3 Structure of the pin Cell 109
 5.2.4 Staebler–Wronski Effect 110
 5.2.5 Stacked Cells 112
5.2.6 Combined Cells of Micromorphous Material
5.2.7 Integrated Series Connection
5.3 Further Thin Film Cells
5.3.1 Cells of Cadmium-Telluride
5.3.2 CIS Cells
5.4 Hybrid Wafer Cells
5.4.1 Combination of c-Si and a-Si (HIT Cell)
5.4.2 Stacked Cells of III/V Semiconductors
5.5 Other Cell Concepts
5.6 Concentrator Systems
5.6.1 Principle of Radiation Bundling
5.6.2 What is the Advantage of Concentration?
5.6.3 Examples of Concentrator Systems
5.6.4 Advantages and Disadvantages of Concentrator Systems
5.7 Ecological Questions on Cell and Module Production
5.7.1 Environmental Effects of Production and Operation
5.7.2 Availability of Materials
5.7.3 Energy Amortization Time and Yield Factor
Summary

6 Solar Modules and Solar Generators
6.1 Properties of Solar Modules
6.1.1 Solar Cell Characteristic Curve in All Four Quadrants
6.1.2 Parallel Connection of Cells
6.1.3 Series Connection of Cells
6.1.4 Use of Bypass Diodes
6.1.5 Typical Characteristic Curves of Solar Modules
6.1.6 Special Case Thin Film Modules
6.1.7 Examples of Data Sheet Information
6.2 Connecting Solar Modules
6.2.1 Parallel Connection of Strings
6.2.2 What Happens in Case of Cabling Errors?
6.2.3 Losses Due to Mismatching
6.2.4 Smart Installation in Case of Shading
6.3 Direct Current Components
6.3.1 Principle Plant Build-Up
6.3.2 Direct Current Cabling
6.4 Types of Plants
6.4.1 Open Air Plants
6.4.2 Flat Roof Plants
6.4.3 Pitched Roof Systems
6.4.4 Façade Systems

7 Photovoltaic System Technology
7.1 Solar Generator and Load
7.1.1 Resistive Load
9.3.1 Methods of Plant Surveillance 235
9.3.2 Monitoring PV Plants 235
9.3.3 Visualization 238

9.4 Operating Results of Actual Installations 239
 9.4.1 Pitched Roof Installation from 1996 239
 9.4.2 Pitched Roof Installation from 2002 240
 9.4.3 Flat Roof from 2008 241

10 Outlook 243
 10.1 Potential of Photovoltaics 243
 10.1.1 Theoretical Potential 243
 10.1.2 Technically Useful Radiation Energy 243
 10.1.3 Technical Electrical Energy Generation Potential 245
 10.1.4 Photovoltaics versus Biomass 246
 10.2 Efficient Promotion Instruments 247
 10.3 Price Development 248
 10.4 Thoughts on Future Energy Supply 249
 10.4.1 Current Development in Renewable Energies 249
 10.4.2 Consideration of Future Scenarios 249
 10.4.3 Options for Storing Electrical Energy 251
 10.4.4 Requirements of the Grids 254
 10.5 Conclusion 255

11 Exercises 257

Appendix A 267
Appendix B 269
References 271
Index 277