CONTENTS

Preface xi
Preface to the Second Edition xiii
Preface to the First Edition xv

PART I GENERAL ASPECTS OF BRIDGE DESIGN

CHAPTER 1 INTRODUCTION TO BRIDGE ENGINEERING

1.1 A Bridge Is the Key Element in a Transportation System 3
1.2 Bridge Engineering in the United States 3
 1.2.1 Stone Arch Bridges 3
 1.2.2 Wooden Bridges 4
 1.2.3 Metal Truss Bridges 6
 1.2.4 Suspension Bridges 8
 1.2.5 Metal Arch Bridges 10
 1.2.6 Reinforced Concrete Bridges 12
 1.2.7 Girder Bridges 13
 1.2.8 Closing Remarks 14
1.3 Bridge Engineer—Planner, Architect, Designer, Constructor, and Facility Manager 14
References 15
Problems 15

CHAPTER 2 SPECIFICATIONS AND BRIDGE FAILURES

2.1 Bridge Specifications 17
2.2 Implication of Bridge Failures on Practice 18
 2.2.1 Silver Bridge, Point Pleasant, West Virginia, December 15, 1967 18
 2.2.2 I-5 and I-210 Interchange, San Fernando, California, February 9, 1971 19
 2.2.3 Sunshine Skyway, Tampa Bay, Florida, May 9, 1980 21
 2.2.4 Mianus River Bridge, Greenwich, Connecticut, June 28, 1983 22
 2.2.5 Schoharie Creek Bridge, Amsterdam, New York, April 5, 1987 24
 2.2.6 Cypress Viaduct, Loma Prieta Earthquake, October 17, 1989 25

CONTENTS

2.2.7 I-35W Bridge, Minneapolis, Minnesota, August 1, 2007 26
2.2.8 Failures During Construction 30
References 30
Problems 31

CHAPTER 3 BRIDGE AESTHETICS 33

3.1 Introduction 33
3.2 Nature of the Structural Design Process 33
3.2.1 Description and Justification 33
3.2.2 Public and Personal Knowledge 34
3.2.3 Regulation 34
3.2.4 Design Process 35
3.3 Aesthetics in Bridge Design 36
3.3.1 Definition of Aesthetics 36
3.3.2 Qualities of Aesthetic Design 37
3.3.3 Practical Guidelines for Medium- and Short-Span Bridges 47
3.3.4 Computer Modeling 55
3.3.5 Web References 56
3.3.6 Closing Remarks on Aesthetics 59
References 59
Problems 60

CHAPTER 4 BRIDGE TYPES AND SELECTION 61

4.1 Main Structure below the Deck Line 61
4.2 Main Structure above the Deck Line 61
4.3 Main Structure Coincides with the Deck Line 64
4.4 Closing Remarks on Bridge Types 66
4.5 Selection of Bridge Type 66
4.5.1 Factors to Be Considered 66
4.5.2 Bridge Types Used for Different Span Lengths 69
4.5.3 Closing Remarks 72
References 72
Problems 73

CHAPTER 5 DESIGN LIMIT STATES 75

5.1 Introduction 75
5.2 Development of Design Procedures 75
5.2.1 Allowable Stress Design 75
5.2.2 Variability of Loads 76
5.2.3 Shortcomings of Allowable Stress Design 76
5.2.4 Load and Resistance Factor Design 77
5.3 Design Limit States 77
5.3.1 General 77
5.3.2 Service Limit State 79
5.3.3 Fatigue and Fracture Limit State 80
5.3.4 Strength Limit State 81
5.3.5 Extreme Event Limit State 81
5.4 Closing Remarks 82
References 82
Problems 82
CHAPTER 6 PRINCIPLES OF PROBABILISTIC DESIGN 83

6.1 Introduction 83
 6.1.1 Frequency Distribution and Mean Value 83
 6.1.2 Standard Deviation 83
 6.1.3 Probability Density Functions 84
 6.1.4 Bias Factor 85
 6.1.5 Coefficient of Variation 85
 6.1.6 Probability of Failure 86
 6.1.7 Safety Index β 87

6.2 Calibration of LRFD Code 89
 6.2.1 Overview of the Calibration Process 89
 6.2.2 Calibration Using Reliability Theory 89
 6.2.3 Calibration of Fitting with ASD 93

6.3 Closing Remarks 94
References 94
Problems 94

CHAPTER 7 GEOMETRIC DESIGN CONSIDERATIONS 95

7.1 Introduction to Geometric Roadway Considerations 95
7.2 Roadway Widths 95
7.3 Vertical Clearances 96
7.4 Interchanges 96
References 97
Problem 97

PART II LOADS AND ANALYSIS 101

CHAPTER 8 LOADS 101

8.1 Introduction 101
8.2 Gravity Loads 101
 8.2.1 Permanent Loads 101
 8.2.2 Transient Loads 102
8.3 Lateral Loads 114
 8.3.1 Fluid Forces 114
 8.3.2 Seismic Loads 118
 8.3.3 Ice Forces 122
8.4 Forces Due to Deformations 127
 8.4.1 Temperature 127
 8.4.2 Creep and Shrinkage 129
 8.4.3 Settlement 129
8.5 Collision Loads 129
 8.5.1 Vessel Collision 129
 8.5.2 Rail Collision 129
 8.5.3 Vehicle Collision 129
8.6 Blast Loading 129
8.7 Summary 130
References 130
Problems 131
CONTENTS

12.2.3 Temperature Effects 222
12.2.4 Shrinkage and Creep 225
12.3 Closing Remarks 225
References 225

PART III CONCRETE BRIDGES

CHAPTER 13 REINFORCED CONCRETE MATERIAL RESPONSE AND PROPERTIES 229

13.1 Introduction 229
13.2 Reinforced and Prestressed Concrete Material Response 229
13.3 Constituents of Fresh Concrete 230
13.4 Properties of Hardened Concrete 232
13.4.1 Short-Term Properties of Concrete 232
13.4.2 Long-Term Properties of Concrete 238
13.5 Properties of Steel Reinforcement 242
13.5.1 Nonprestressed Steel Reinforcement 242
13.5.2 Prestressing Steel 244
References 246
Problems 246

CHAPTER 14 BEHAVIOR OF REINFORCED CONCRETE MEMBERS 249

14.1 Limit States 249
14.1.1 Service Limit State 249
14.1.2 Fatigue Limit State 252
14.1.3 Strength Limit State 255
14.1.4 Extreme Event Limit State 256
14.2 Flexural Strength of Reinforced Concrete Members 257
14.2.1 Depth to Neutral Axis for Beams with Bonded Tendons 257
14.2.2 Depth to Neutral Axis for Beams with Unbonded Tendons 259
14.2.3 Nominal Flexural Strength 260
14.2.4 Ductility, Maximum Tensile Reinforcement, and Resistance Factor Adjustment 262
14.2.5 Minimum Tensile Reinforcement 264
14.2.6 Loss of Prestress 265
14.3 Shear Strength of Reinforced Concrete Members 270
14.3.1 Variable-Angle Truss Model 271
14.3.2 Modified Compression Field Theory 272
14.3.3 Shear Design Using Modified Compression Field Theory 278
14.4 Closing Remarks 289
References 289
Problems 290

CHAPTER 15 CONCRETE BARRIER STRENGTH AND DECK DESIGN 291

15.1 Concrete Barrier Strength 291
15.1.1 Strength of Uniform Thickness Barrier Wall 291
15.1.2 Strength of Variable Thickness Barrier Wall 293
15.1.3 Crash Testing of Barriers 293
15.2 Concrete Deck Design 293
References 311
Problems 311