INDEX

AASHO, see American Association of State Highway Officials

Abutments:
integral, 51–52, 55–58
for medium- and short-span bridges, 51–55
Addis, W., 35
ADT (average daily traffic), 107
Advanced first-order second-moment (AFOSM) method, 90–91
Aerodynamic instability, 63
Aesthetics, 36–59
and computer modeling, 56–59
contrast and texture in, 44–46
defined, 36–37
function in, 37–38
harmony in, 41–43
light and shadow in, 44, 46–47
for medium- and short-span bridges, 47–55
abutments, 51–55
deck overhangs, 49–50
girder span/depth ratio, 49–50
integral abutments and jointless bridges, 51–52, 55–58
piers, 50–53
resolution of duality, 47–49
order and rhythm in, 43–44
proportion in, 38–41
in selection of bridge type, 67
symmetry in, 147
Web references on, 56, 59
AISC (American Institute for Steel Construction), 149
Allowable stress design (ASD), 17
calibration with ASD criteria, 93–94
evolution of specifications, 75–76
shortcomings of, 76–77
and variability of loads, 76
Alvord Lake Bridge, San Francisco, 12
Ambassador Bridge, Detroit, Michigan, 9, 10
American Association of State Highway and Transportation Officials (AASHTO), 17
distribution factors, 175–178
and margin of safety, 75
A Policy on the Geometric Design of Highways and Streets, 95
strip widths, 198–199
American Association of State Highway Officials (AASHTO), 17
American Bridge Company, 7
American Institute for Steel Construction (AISC), 149
American Railroad Engineering Association (AREA), 17
American Railway Engineering and Maintenance of Way Association, 18
American Society of Civil Engineers (ASCE), 17
Anchorage set loss of prestress (concrete), 266
Arch bridges:
for long spans, 71
with main structure below deck line, 61, 62
Marsh rainbow arch, 13
metal, 10–12
reinforced concrete, 12–13
span lengths for, 67
stone, 3–4
wooden, 4
Arched trusses, 4, 7
AREA (American Railroad Engineering Association), 17
Arlington Memorial Bridge, Washington DC, 12
ASCE (American Society of Civil Engineers), 17
Aspdin, Joseph, 17
Assumptions:
in composite rolled steel beam bridge design problem, 460–461
in noncomposite rolled steel beam bridge design problem, 452
in system analysis, 161–162
Average daily traffic (ADT), 107
Average daily truck traffic (ADTT), 107
Axial strain:
in flexibility and stiffness formulations, 223–225
temperature-gradient-induced, 222–223
Barriers:
concrete barrier strength, 291–293
crash testing of, 293
traffic barrier design loads, 108–109
for uniform-thickness barrier wall, 291–293
for variable thickness barrier wall, 293
Bayonne Arch Bridge, New Jersey, 11
Beam action shear resistance (I-sections), 427, 429
Beam columns, 396, 402
Beam-line analysis:
box-girder bridges, 208–211
slab-girder bridges, 174–182
Bearing stiffeners:
multiple-span composite steel plate girder beam bridge design problem, 490–493
steel bridges, 440–441
Bear Mountain Bridge, New York, 9
Bending moment:
concrete deck design problem, 294–295
barrier, 295
deck slab, 294–295
future wearing surface, 295
overhang, 295
of I-sections, 405
Bending stress profile, 161
Ben Franklin Bridge, Philadelphia, Pennsylvania, 9, 10
Betti’s theorem, 137
Bias factor, 85
Billner, K. R., 12
Bixby Creek Bridge, Carmel, California, 13
Blast loading, 129–130
BLAST loading, 129–130
BMS (bridge management systems), 15
Bosphorus Straits Bridge, Istanbul, Turkey, 37–38
Bowstring arch, 10
Bowstring arch trusses, 7
Box-girder bridges, 64–67
configurations, 206–207
gravity load analysis, 206–212
beam-line methods, 208–211
behavior, structural idealization, and modeling, 206–208
finite-element method, 208, 211–212
modeling, 173–174
Braking forces, gravity loads from, 113
Bridges, 3
classification of, 61–72
as key transportation system elements, 3
subsystems of, 161
Bridge Aesthetics Around the World (Burke), 36
Bridge engineers, 14–15
INDEX

Bridge engineering, 3–30
failure of bridges, 18–30
during construction, 30
Cypress Viaduct, California, 25–26
1-5 and I-210 interchange, San Fernando, California, 19–21
I-35W Bridge, Minneapolis, Minnesota, 26–30
Manus River Bridge, Greenwich, Connecticut, 22–23
Schoharie Creek Bridge, Amsterdam, New York, 24–25
Silver Bridge, Point Pleasant, West Virginia, 18–19
Sunshine Skyway, Tampa Bay, Florida, 21–22
girder bridges, 13–14
metal arch bridges, 10–12
metal truss bridges, 6–7
reinforced concrete bridges, 12–13
specifications, 17–18
stone arch bridges, 3–4
suspension bridges, 8–10
wooden bridges, 4–6
Bridge management systems (BMS), 15
Bridge types, 61–72
Bridge types, 61–72
for different span lengths, 69–72
with main structure:
above the deck line, 61, 63–64
below the deck line, 61, 62
coinciding with deck line, 64–67
metal arch bridges, 10–12
metal truss bridges, 6–7
reinforced concrete bridges, 12–13
selection of, 66–69
specifications, 17–18
stone arch bridges, 3–4
suspension bridges, 8–10
wooden bridges, 4–6
Bristle fracture (steel bridges), 372–373
Broadway Bridge, Daytona, Florida, 55, 56
Brooklyn Bridge, New York, 8, 9, 11, 45, 61, 68
BT Beam-LRFD Analysis, 154
Buckling, 398–399
global, 411
lateral torsional, 411, 417–420
local, 411–417
compression flange, 416–417
web bend buckling, 414–415
web buckling load shedding, 415–416
web vertical buckling, 413–414
Burr, Theodore, 4
Cable-stayed bridges:
for extra-large spans, 71–72
with main structure above deck line, 61, 63–64
span lengths for, 67
CAD (computer-aided drafting), 33
Calibration of LRFD code, 89–94
for fitting with ASD, 93–94
using reliability theory, 89–93
Caltrans, 113–114
Camber:
composite rolled steel beam bridge design problem, 460, 461
noncomposite rolled steel beam bridge design problem, 452
prestressed concrete girder bridge design problem, 350–352
steel bridges, 390
T-beam bridge design problem, 331–333
Canyon Padre Bridge, Flagstaff, Arizona, 12
Carbon structural steel, 368–369
Casey, Edward, 12
Cast-in-place (CIP) concrete:
box girders, 229
bridges, 229
posttensioned concrete box girder bridges, 70, 71
reinforced concrete box girder bridges, 70
Cedar Creek Bridge, Elkington, Kentucky, 13
Centrifugal forces, gravity loads from, 112–113
Charettes, 55
Chenoweth, Lemuel, 4
Cincinnati Suspension Bridge, Ohio, 8, 9
Coefficient of variation, 85
Collision loads, 129
Colorado Street Bridge, Pasadena, California, 12
Columns, 396
compressive resistance, 399–401
stability of, 396–398
Combined shear resistance (I-sections), 431–432
Compatibility, 161, 229–230
Composite rolled steel beam bridges:
design problem, 452–461
checking assumptions, 460–461
dead-load camber, 460, 461
design sketch, 461
dimensions and details requirements, 460
flexural design, 454–459
force effects from non-live loads, 453–454
shear connectors, 459–460
shear design, 459
for medium spans, 70
Composite sections, 404
defined, 404
ductility of, 421
noncompact, 42
plastic moment of, 408–409
plastic neutral axis of, 407–408
yield moment of, 405–407
Composite steel bridges:
box girder, 70–71
plate girder:
multiple-span, bridge design problem, 462–499
for small and medium spans, 70–71
Compression field theory, 273
Compression flange:
local buckling, 416–417
requirements for specifications, 417
section requirement for, 416–417
slenderness specifications, 417
Compressions members:
defined, 396
steel bridges, 396–401
column stability behavior, 396–398
compressive resistance, 399–401
connections for, 401
inelastic buckling behavior, 398–399
Compressing softening (concrete), 233, 276
Compression resistance (steel bridges), 399–401
Compressive strength:
concrete bridges, 229
defined, 404
of very-high-strength concrete, 231
Concrete barrier strength, 291–293
Concrete deck design problem, 304–311
critical length of yield line failure pattern, 306
about axis parallel to longitudinal axis of bridge, 306
about vertical axis, 305–306
length of additional deck overhang bars, 310
nominal resistance to transverse load, 307
shear transfer between barrier and deck, 307–308
top reinforcement in deck overhang, 309–310
crash testing of, 293
for uniform thickness barrier wall, 291–293
external virtual work by applied loads, 292
internal virtual work along yield lines, 292–293
nominal railing resistance to transverse load, 293
for variable thickness barrier wall, 293
Concrete bridges, 229–359
box girder, 64–67
concrete barrier strength, 291–293
crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293
design problems, 293–311
concrete deck, 293–311
prestressed girder bridge, 340–359
solid slab bridge, 313–321
T-beam bridge, 321–339
flexural strength of reinforced concrete
members, 257–270
depth to neutral axis for beams with bonded tendons, 257–259
depth to neutral axis for beams with unbonded tendons, 259–260
Computer-aided drafting (CAD), 33
Computer modeling, aesthetics with, 56–59
Concentric loading, 161
Conceptual design stage, 35
Concrete, 229
classes of, 230
compression softening of, 276
creep in, 129, 225, 508–511
fatigue of, 252–253
fresh, 230–232
hardened, 232–242
compressive strength and behavior, 232–233
cracked concrete tensile strength and behavior, 236–237
confined concrete compressive strength and behavior, 233–236
long-term properties of, 238–242
modulus of elasticity for, 241–242
short-term properties of, 232–237
high-performance, 231–232
modulus of elasticity for, 233
shrinkage in, 225
stress limitations for, 250–251
stress limits for, 344–345
very-high-strength, 231
water/cement ratio, 230–231
Concrete arch bridges, 71
Concrete barrier strength, 291–293
Concrete deck design problem, 304–311
critical length of yield line failure pattern, 306–307
flexural resistance of wall about axis parallel to longitudinal axis of bridge, 306
about vertical axis, 305–306
length of additional deck overhang bars, 310
nominal resistance to transverse load, 307
shear transfer between barrier and deck, 307–308
top reinforcement in deck overhang, 309–310
crash testing of, 293
for uniform thickness barrier wall, 291–293
external virtual work by applied loads, 292
internal virtual work along yield lines, 292–293
nominal railing resistance to transverse load, 293
for variable thickness barrier wall, 293
Concrete bridges, 229–359
box girder, 64–67
concrete barrier strength, 291–293
crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293
design problems, 293–311
concrete deck, 293–311
prestressed girder bridge, 340–359
solid slab bridge, 313–321
T-beam bridge, 321–339
flexural strength of reinforced concrete
members, 257–270
depth to neutral axis for beams with bonded tendons, 257–259
depth to neutral axis for beams with unbonded tendons, 259–260
ductility, maximum tensile reinforcement, and resistance factor adjustment, 262–264
loss of prestress, 265–270
minimum tensile reinforcement, 264–265
nominal flexural strength, 260–262
fresh concrete constituents, 230–232
hardened concrete properties, 232–242
long-term, 238–242
short-term, 232–237
limit states, 249–252
extreme event limit state, 256
fatigue limit state, 252–255
service limit state, 249–252
strength limit state, 255–256
for long spans, 71
for medium spans, 70
reinforced and prestressed concrete material response, 229–230
reinforced concrete, 12–13
shear strength of reinforced concrete members, 270–288
modified compression field theory, 272–278
shear design using modified compression field theory, 278–288
variable-angle truss model, 271–272
for small spans, 69–70
steel-reinforced concrete properties, 242–246
nonprestressed steel reinforcement, 242–244
prestressing steel, 244–246
Concrete deck design problem, 293–311
bending moment force effects, 294–295
shear strength of wall, 296
about axis parallel to longitudinal axis of bridge, 306
about vertical axis, 305–306
length of additional deck overhang bars, 310
nominal resistance to transverse load, 307
shear transfer between barrier and deck, 307–308
top reinforcement in deck overhang, 308–310
cracking control, 300–302
deck overhang design, 303–304
extreme event limit state, 304
strength limit state, 303–304
deck thickness, 294
empirical design of deck slabs, 302–303
design conditions, 302–303
reinforcement requirements, 303
fatigue limit state, 302
reinforcement quantities, comparison of, 303
reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement, 300
strength limit state, 297–298
barrier, 298
Deck:
gravity loads, 107–109
multiple-span composite steel plate girder beam design problem, 462
noncomposite rolled steel beam bridge design problem, 452
Deck overhang:
cracking control, 300–302
extreme event limit state, 304
length of additional overhang bars, 310
strength limit state, 303–304
top reinforcement in, 309–310
Design of bridges, 75–97
design loads, 103–106
design lane load, influence functions for, 150–152
design loads, 103–106
deck overhangs, 108
lane, 150–152
tandem, 103–105, 150, 151–152
traffic barrier, 108–109
truck, 103–106, 149–154
vehicular, 103–106
Design of bridges, 75–97
cracking control, 300–302
extreme event limit state, 304
strength limit state, 303–304
deck thickness, 294
empirical design of deck slabs, 302–303
design conditions, 302–303
reinforcement requirements, 303
fatigue limit state, 302
reinforcement quantities, comparison of, 303
reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement, 300
strength limit state, 297–298
barrier, 298
Deck:
gravity loads, 107–109
multiple-span composite steel plate girder beam design problem, 462
noncomposite rolled steel beam bridge design problem, 452
De Miranda, F., 35–36
deflection:
prestressed concrete girder bridge design problem, 350–352
steel bridges, 377
T-beam bridge design problem, 331–333
deforestation:
concrete bridges, 250
forces due to, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129
solid slab bridge design problem, 317–319
steel bridges, 377–378
Delafeld, Richard, 10
Densities, 102
department of Transportation in California (Caltrans), 113–114
department of Transportation of Pennsylvania (PennDOT), 113
depth to neutral axis (reinforced concrete): for beams with bonded tendons, 257–259
for beams with unbonded tendons, 259–260
description of design, 33
design-bid-build model, 68
design-build, 68
designer sign conventions, 133
design lanes, 103
design lane load, influence functions for, 150–152
design loads, 103–106
deck overhangs, 108
lane, 150–152
tandem, 103–105, 150, 151–152
traffic barrier, 108–109
truck, 103–106, 149–154
vehicular, 103–106
design of bridges, 75–97
 calibration of LRFD code, 89–94
for fitting with ASD, 93–94
using reliability theory, 89–93
geometric design, 95–97
goals of, 75
historical procedures for, 75–77
justification stage of, 75
limit states in, 75, 77–82
basic design expression for, 77
ductility factor, 77–78
extreme event limit state, 81–82
fatigue and fracture limit state, 80–81
load combinations and load factors, 79–80
load designation, 78–79
operational importance factor, 78
redundancy factor, 78
service limit state, 79–80
strength limit state, 81
Deck slabs:
bending moment force effects, 294–295
empirical design of, 302–303
design conditions, 302–303
reinforcement requirements, 303
deductive reasoning, 34
Deflection:
prestressed concrete girder bridge design problem, 350–352
steel bridges, 377
T-beam bridge design problem, 331–333
Deformation:
concrete bridges, 250
forces due to, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129
solid slab bridge design problem, 317–319
steel bridges, 377–378
De Miranda, F., 35–36
Density, 102
Department of Transportation in California (Caltrans), 113–114
Department of Transportation of Pennsylvania (PennDOT), 113
Depth to neutral axis (reinforced concrete): for beams with bonded tendons, 257–259
for beams with unbonded tendons, 259–260
Description of design, 33
Design-bid-build model, 68
Design-build, 68
Designer sign conventions, 133
Design lanes, 103
Design lane load, influence functions for, 150–152
Design loads, 103–106
deck overhangs, 108
lane, 150–152
tandem, 103–105, 150, 151–152
traffic barrier, 108–109
truck, 103–106, 149–154
vehicular, 103–106
Design of bridges, 75–97
cracking control, 300–302
extreme event limit state, 304
strength limit state, 303–304
deck thickness, 294
empirical design of deck slabs, 302–303
design conditions, 302–303
reinforcement requirements, 303
fatigue limit state, 302
reinforcement quantities, comparison of, 303
reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement, 300
strength limit state, 297–298
barrier, 298
Deck:
gravity loads, 107–109
multiple-span composite steel plate girder beam design problem, 462
noncomposite rolled steel beam bridge design problem, 452
depth to neutral axis (reinforced concrete): for beams with bonded tendons, 257–259
for beams with unbonded tendons, 259–260
Description of design, 33
Design-bid-build model, 68
Design-build, 68
Designer sign conventions, 133
Design lanes, 103
Design lane load, influence functions for, 150–152
Design loads, 103–106
deck overhangs, 108
lane, 150–152
tandem, 103–105, 150, 151–152
traffic barrier, 108–109
truck, 103–106, 149–154
vehicular, 103–106
Design of bridges, 75–97
cracking control, 300–302
extreme event limit state, 304
strength limit state, 303–304
deck thickness, 294
empirical design of deck slabs, 302–303
design conditions, 302–303
reinforcement requirements, 303
fatigue limit state, 302
reinforcement quantities, comparison of, 303
reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement, 300
strength limit state, 297–298
barrier, 298
Deck:
gravity loads, 107–109
multiple-span composite steel plate girder beam design problem, 462
noncomposite rolled steel beam bridge design problem, 452
index 519
INDEX

Design of bridges (continued)
modeling in, 162, 163
probabilistic, 83–88
bias factor, 85
coefficient of variation, 85
frequency distribution and mean value, 83
levy of, 83
probability density functions, 84–85
probability of failure, 86
safety index, 86–88
safety in, 75
structural design process, 33–36
description and justification in, 33–34
input to, 34
model of, 33
and regulation, 34–35
Design problems:
composite rolled steel beam bridge, 452–461
cement bridges, 293–311
cement deck, 293–311
multiple-span composite steel plate girder beam bridge, 461–499
noncomposite rolled steel beam bridge, 443–452
prestressed girder bridge, 340–359
solid slab bridge, 313–321
steel bridges, 443–499
T-beam, bridge, 321–339
Design vehicular loads, 103–106
Diaphragms:
multiple in composite steel plate girder beam bridge design problem, 496–499
steel bridges, 390
Distributed loads, 136, 161
Distribution factors
for moment:
multiple-span composite steel plate girder beam problem, 462–463
noncomposite rolled steel beam bridge design problem, 444–445
prestressed concrete girder bridge design problem, 341–342
T-beam bridge design problem, 323–325
for shear:
multiple-span composite steel plate girder beam problem, 463–465
noncomposite rolled steel beam bridge design problem, 445–446
prestressed concrete girder bridge design problem, 342
T-beam bridge design problem, 325–326
slab-girder systems, 173–178
Distribution reinforcement, in solid slab bridge design problem, 321
DLA, see Dynamic load allowance
Dominance, in aesthetic design, 44
Double-intersection Pratt truss, 7
Double-plate transverse stiffener design, 489–490
Downdrag, 102
Drag coefficient, 116
Drip groove, 50
Duality:
for medium- and short-span bridges, 47–49
unresolved, 47
Ductility:
of composite sections, 421
in limit states, 77–78
in reinforced concrete, 262–264
steel, 363
and stress, 165–167
Durand’s Creek bridge, Brownsville, Pennsylvania, 10
Durability:
(solid slab bridge design problem, 316
T-beam bridge design problem, 327
Dynamic horizontal ice forces, 125–126
Dynamic load allowance (DLA):
defined, 109
multiple-span composite steel plate girder beam bridge design problem, 462
noncomposite rolled steel beam bridge design problem, 444
prestressed concrete girder bridge design problem, 341
T-beam bridge design problem, 323
Dynamoelectric load effect, 109–112
global, 111
impact factor parameters, 110–111
studies of, 109–110
Eads, James B., 10–11
Eads Bridge, St. Louis, Missouri, 10–11
Earthquake failures:
Cypress Viaduct, California, 25–26
and extreme event limit state, 81
I-5 and I-210 interchange, San Fernando, California, 19–21
and operational importance factor, 78
Earth surface load, 102
East Huntington Bridge, Huntington, West Virginia, 45, 61
Economics, in selection of bridge type, 67–68
Eden Park Bridge, Cincinnati, Ohio, 12
Effective strength of ice, 122–123
Einstein, Albert, 35
Elastic seismic response spectrum, 218–220
Elastic shortening, loss of prestressing from concrete, 267–268
Elington, Charles, 9
Elliot, A. L., 51
Ellim Bridge Company, 13
Empirical approach, in gravity load analysis, 198
End moments, Muller-Breslau principle for, 145–146
Equilibrium, 161
and compatibility/material response, 229–230
for safe design, 162–165
Erection, as type selection criterion, 68
Erie Canal bridge, Utica, New York, 7
Esthetics in Concrete Bridge Design
Watson (and Hurd), 36
Eucld, 38
Exclusion vehicles, in live-load model, 104–106
Expansion joints, maintenance problem with, 51–52
Experience, judgment and, 34
Extra large (long) span bridges, 71–72
Extreme event limit state, 81–82
Concrete bridges, 256
Concrete deck design problem, 304
Steel bridges, 389–390
Factored loads, in noncomposite rolled steel beam bridge design problem, 447
Failure of bridges, 18–30
during construction, 30
Cypress Viaduct, California, 25–26
defined, 86
I-5 and I-210 interchange, San Fernando, California, 19–21
I-35W Bridge, Minneapolis, Minnesota, 26–30
Mianus River Bridge, Greenwich, Connecticut, 22–23
prior to specifications, 17
probability of, 86
Schonheir Creek Bridge, Amsterdam, New York, 24–25
Silver Bridge, Point Pleasant, West Virginia, 18–19
Sunshine Skyway, Tampa Bay, Florida, 21–22
Fatigue:
defined, 252
and safety of analysis methods, 169–170
solid slab bridge design problem, 319
steel, 370–372
T-beam bridge design problem, 330–331
Fatigue and fracture limit state, 80–81
composite rolled steel beam bridge design problem, 458
multiple-span composite steel plate girder beam bridge design problem, 484
steel bridges, 378–388
detail categories, 379
fatigue design criteria, 378
fatigue load, 379
fatigue resistance, 379, 387
fracture toughness requirements, 387–388
load-induced fatigue, 378, 380–386
Fatigue limit state:
(stainless steel, 252–255
fatigue of plain concrete, 252–253
fatigue of prestressing tendons, 254
fatigue of reinforcing bars, 253–254
fatigue of welded or mechanical splices of reinforcement, 255
cement concrete design problem, 302
I-sections in flexure, 421–423
prestressed concrete girder bridge design problem, 349–350
steel bridge shear connectors, 433–434
stud connectors (steel bridges), 433–434
T-beam bridge design problem, 330–331
Fatigue loads, 106–107, 379
Federal Aid Highway Act of 1968, 18
Fernandez-Ordóñez, J. A., 44
FIGG Engineering Group, 55
Finite-element analysis:
box-girder bridges, 208, 211–212
slab bridges, 195, 197, 198
slab-girder bridges, 187–192
slabs, 201–202
Finite-strip analysis:
slab-girder bridges, 191–194
slabs, 201–202
Finley, James, 8
First-order second-moment (FOSM) method, 83, 89–91
Flexibility:
and axial strain, 223–225
and curvature, 223–225
Flexural resistance of wall, in concrete deck design problem:
about axis parallel to longitudinal axis of bridge, 306
about vertical axis, 305–306
INDEX

I-sections (steel bridges), 424, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
in flexure, 402–428
composite and noncomposite sections, 404
depth of web in compression, 410
hybrid strength reduction, 410–411
limit states, 421–428
moment redistribution, 403–404
plastic moment, 402–403, 405, 408–409
plastic neutral axis, 407–408
stability related to flexural resistance, 411–421
stiffness properties, 404
yield moment, 405–407
shear resistance of, 424, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
tension field action shear resistance, 429–431
for unstiffened webs, 432
tension field action shear resistance, 429–431
for unstiffened webs, 432

Jacob’s Creek bridge, Uniontown, Pennsylvania, 8
James J. Hill Stone Arch Bridge, Minneapolis, Minnesota, 4
Jaminet, Alphonse, 11
Jointless bridges, medium- and short-span, 51–52, 55–58
Judgment, experience and, 34
Justification of design, 34, 75

Key Bridge, Washington, DC, 12
Keystone Bridge Works, 7
Knight’s Key Bridge, Florida, 14

Lancaster, S. C., 12
Lane loads, design, 150–152
Lateral bracing (steel bridges), 390–391
Lateral loads, 114–127
analysis of, 215–221
seismic loads, 216–221
wind loads, 215–217
fluid forces, 114–118
ice forces, 122–127
seismic loads, 118–122
water forces, 118
wind forces, 116–118
Lateral torsional buckling (LTB), 411, 417–420
Lattice truss, 5–6
Lee Roy Selmon Crosstown Expressway, Tampa, Florida, 56, 57
Legal issues, in selection of bridge type, 68–69
Leonard P. Zakim Bunker Hill Memorial Bridge, Boston, Massachusetts, 44
Leonhardt, F., 35, 47
Lever rule, 175
Light, in aesthetic design, 44, 46–47
Limit states, 75, 77–82
basic design expression for, 77
concrete bridges, 249–256
extreme event limit state, 256
fatigue limit state, 252–255
service limit state, 249–252
strength limit state, 255–256
ductility factor, 77–78
extreme event limit state, 81–82
fatigue and fracture limit state, 80–81
I-sections in flexure, 421–428
fatigue limit state, 424
service limit state, 421–423
strength limit state, 424
load combinations and load factors, 79–80
load designation, 78–79
operational importance factor, 78
redundancy factor, 78
service limit state, 79–80
steel bridges, 377–390
extreme event limit state, 389–390
fatigue and fracture limit state, 378–388
I-sections in flexure, 421–428
service limit state, 377–378
strength limit state, 389
strength limit state, 81
Linear elastic method, for gravity load analysis, 198–199
Linear material response, 162–163
Linear material response, 446
stiffness, 446
multiple presence, 444
dynamic load allowance, 444
distribution factors for moment, 441–442
distribution factors for shear, 442–444
shears and moments due to live loads, 444
rigid method with, 515–516
solid slab bridge design problem, 341–343
distribution factors for moment, 341–342
distribution factors for shear, 342
dynamic load allowance, 341
multiple presence factor, 341
shears and moments due to live loads, 342–343
rigid method with, 515–516
solid slab bridge design problem, 314–316
t-beam bridge design problem, 323–327
distribution factors for moment, 323–325
distribution factors for shear, 325–326
dynamic load allowance, 323
multiple presence, 323
number of lanes, 323
reactions to substructure, 326
Live-load model, 104–106
Live-load strip width (solid slab bridge design problem), 313–314
multiple lanes loaded, 314
one lane loaded, 314
Loads, 101–130
blast loading, 129–130
collision, 129
designations for, 78–79
forces due to deformations, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129
gravity, 101–114
braking forces, 113
centrifugal forces, 112–113
deck and railing loads, 107–109
design lanes, 103
dynamic effects, 109–112
fatigue loads, 106–107
multiple presence, 109
pedestrian loads, 107
permanent, 101–102
permit vehicles, 113–114
transient, 102–114
vehicular design loads, 103–106
lateral, 114–127
fluid forces, 114–118
ice forces, 122–127
seismic loads, 118–122
water forces, 118
wind forces, 116–118
permanent, 101
seismic:
analysis of, 216–221
combination of seismic forces, 121–122
lateral loads from, 118–122
minimum seismic design connection forces, 120–121
seismic design procedure, 119–120
transient, 101
variability of, 76
Load and resistance factor design (LRFD), 17–18, 77
advantages and disadvantages of, 77
calibration of LRFD code, 89–94
for fitting with ASD, 93–94
using reliability theory, 89–93
Load combinations:load factors for, 79–80
noncomposite rolled steel beam bridge design problem, 444
prestressed concrete girder bridge design problem, 444
prestressed concrete girder bridge design problem, 444
service limit state, 79–80
solid slab bridge design problem, 315
strength limit state, 81
t-beam bridge design problem, 323
Load factors:calculating, 92–93
for load combinations, 79–80
multiple-span composite steel plate girder beam bridge design problem, 462
noncomposite rolled steel beam bridge design problem, 444
vehicular live load, 80–81
Load factor design, 17
Load modifiers:multiple-span composite steel plate girder beam bridge design problem, 462
noncomposite rolled steel beam bridge design problem, 443
prestressed concrete girder bridge design problem, 431
solid slab bridge design problem, 315
t-beam bridge design problem, 323
Local buckling (steel bridges), 411–417
compression flange, 416–417
web buckling, 414–415
web buckling load shedding, 415–416
web vertical buckling, 413–414
Locked-in erection stresses, 102
Lognormal probability density functions, 84–85
Loma Prieta earthquake, 25–26

522
Noncomposite rolled steel beam bridge design problem (continued) 445–446
distribution factor for shear, 445–446
dynamic load allowance, 444 multiple presence, 444
reactions to substructure, 446 stiffness, 446
wind effects, 446
load combination, 444
load factors, 444
load modifiers, 443
resistance factor, 443
shear design, 451
trial section, 451–451
typical section, 443
Noncomposite sections, 404
compactness requirements, 42 defined, 404
plastic moment of, 408, 409
garlic neutral axis of, 408
yield moment of, 407
Nonlinear material response, 162–163
Non—live load force effects:
composite rolled steel beam bridge design problem, 453–454
multiple—span composite steel plate girder beam bridge design problem, 466–473
exterior girders, 466
interior girders, 466
uniformly distributed load, 466–473
noncomposite rolled steel beam bridge design problem, 446–447
prestressed concrete girder bridge design problem, 343–345
solid slab bridge design problem, 316
T—beam bridge design problem, 326–327
Non—prestressed steel reinforcement, 242–244
Normalized influence functions, 147–149
Normal probability function, 84
Notation, span point, 139–140
Numerical models, 162–163
Oakland—Bay Bridge, California, 10
Operational category, 119, 121, 122
Operational importance factor, 78
Order, in aesthetic design, 43–44
Overloads, repetitive, 165–169
Palmer, Timothy, 4–5
Panel—truss truss:
metal, 6
wooden, 6
Panhorst, F. W., 13
Panther Hollow Bridge, Pittsburgh, Pennsylvania, 10
Peak ground acceleration (PGA), 119
Pedestrian loads, 404–405
strength of, 408–409
Plastic neutral axis (steel bridge I—sections), 402–403
Plate girders, 13–14
Poisson’s effect, 161
A Policy on the Geometric Design of Highways and Streets (AASHO), 95
Portland cement, 12
Portland Company, 13
Posttensioned concrete segmental construction, 71
Pott, Caleb, 6
Pott, Thomas, 6
Pott truss, 6–7
Precast concrete bridges:
for medium spans, 70
for small spans, 69–70
Prestressed concrete:
loss of prestress, 265–270
anchor age set loss, 266
approximate estimate of time—dependent losses, 268–269
elastic shortening loss, 267–268
friction loss, 266–267
jump—sum estimate of time—dependent losses, 269–270
refined estimate, 507–512
total loss, 265–266
material response, 229–230
Prestressed concrete girder bridges, 13, 14
design problem, 340–359
conventionally reinforced concrete deck, 340
design sketch, 359
fatigue limit state, 349–350
force effects from non—live loads, 343–345
general section, 292–293
live—load force effects, 341–343
distribution factors for moment, 341–342
distribution factors for shear, 342
dynamic load allowance, 341
multiple presence factor, 341
number of lanes, 341
shears and moments due to live loads, 342–343
load combinations, 341
load modifiers, 341
resistance factors, 341
service limit state, 344–352
choices of prestressing tendons, 345–347
deflection and camber, 350–352
fatigue limit state, 349–350
girder stresses at transfer, 348
prestress loss evaluation, 347–348
stress limits for concrete, 344–345
stress limits for prestressing tendons, 344
strength limit state, 352–358
flexure, 352–353
shear, 352–358
typical section, 292–293
Sunshine Skyway, Tampa Bay, Florida failure, 21–22
Prestressed concrete girder bridges:
design problem:
service limit state
girder stresses after total losses, 349
Prestress effects, in system analysis, 221–222
Prestressing steel, 244–246
Prestressing tendons, fatigue of, 254
Probabilistic design, 83–88
bias factor, 85
coefficient of variation, 85
distribution and mean value, 83
levels of, 83, 90
probability density functions, 84–85
probability of failure, 86
safety index, 85–88
standard deviation, 83–84
Probability density functions, 84–85
Probability of failure, 86–88
Proportion, in aesthetic design, 38–41
Public knowledge, in design process, 34
Purcell, C. H., 13
Qualitative influence functions, 139
Rail collision forces, 129
Railing loads, 107–109
Ransome, Ernest, 12
Red Mountain Freeway—U. S. 60 interchange, Mesa, Arizona, 44
Redundancy factor, 78
Regulation of design, 34–35
Reinforced concrete:
fatigue of reinforcing bars, 253–254
fatigue of welded or mechanical splices of reinforcement, 255
flexural strength of members, 257–270
depth to neutral axis for beams with bonded tendons, 257–259
for beams with unbonded tendons, 259–260
ductility, maximum tensile reinforcement, and resistance factor adjustment, 262–264
loss of prestress, 265–270
minimum tensile reinforcement, 264–265
nominal flexural strength, 260–262
material response, 229–230
shear strength of members, 270–288
modified compression field theory, 272–278
shear design using modified compression field theory, 278–288
variable—angle truss model, 271–272
stress—strain response for, 276–277
Reinforced concrete bridges, 12–13
Reinforced concrete deck, 322
Reinforcement quantities, comparison of, 303
Reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement, 300
Relaxation loss, 509, 511
Reliability analysis, failure in, 86
Reliability theory, in calibration of LRFD code, 89–93
Repetitive overloads, 165–169
Residual stresses:
columns, 397–398
from rolling, 161
and safety of methods, 165–167
steel bridges, 365–366
Resistance, typical statistics for, 85
Resistance factors:
calculating: 92–94
multiple-span composite steel plate girder beam bridge design problem: 462
noncomposite rolled steel beam bridge design problem: 443
prestressed concrete girder bridge design problem: 341
in reinforced concrete: 262–264
solid slab bridge design problem: 315
T-beam bridge design problem: 322
Rhetorical design stage: 35–36
Rhythm, in aesthetic design: 43–44
Rigid method (five-load distribution): 515–516
Roadway widths, in geometric design: 95–96
Rock Creek bridge, Maryland: 10
Roebing, John A.: 8, 9, 68
Roebling, Washington, 11, 68
Rolled steel beam bridges:
composite: 452–461
checking assumptions: 460–461
dead-load camber: 460, 461
design sketch: 461
dimensions and details requirements: 460
flexural design: 454–459
force effects from non-live loads: 453–454
for medium spans: 70
shear connectors: 459–460
shear design: 459
noncomposite: 443–452
checking assumptions: 452
dead-load camber: 452
deck. 443
design sketch: 452
dimensions and details requirements: 451–452
factored loads: 447
force effects from non-live loads: 446–447
general section: 443
live-load force effects: 444–446
load combination: 444
load factors: 444
load modifiers: 443
resistance factor: 443
shear design: 451
trial section: 447–451
typical section: 443
for small spans: 70
Roman bridge builders: 3–4
Rouge River Bridge, Gold Beach, Oregon: 12
Route 8/805 interchange, San Diego, California: 53
Safety:
of analysis methods: 162–170
and equilibrium: 162–165
fatigue and serviceability: 169–170
repetitive overloads: 165–169
stress reversal and residual stress: 165–167
in design, 75
quantitative measure of: 86
Safety index: 87–88
estimating: 90–91
observing variation of: 91
target, selecting: 91–92
St. Regis River Bridge, New York: 123
Salginatobel Bridge, Switzerland: 61, 62
Schematic design stage: 35–36
Scholarie Creek Bridge, Amsterdam, New York: 24–25
Scour: 118
Schoharie Creek Bridge, Amsterdam, New York: 315
Salginatobel Bridge, Switzerland: 61, 62
St. Regis River Bridge, New York: 123
Safety index: 87–88
route of analysis of: 216–221
elastic seismic response spectrum: 218–220
minimum requirements for: 217–218
seismic design response spectra: 220–221
combination of seismic forces: 121–122
lateral loads from: 118–122
minimum seismic design connection forces: 120–121
seismic design procedure: 119–120
Seismic performance zones: 121
Serviceability, safety of analysis and: 169–170
Service limit state: 79–80
composite rolled steel beam bridge design problem: 457–458
concrete bridges: 249–252
control of flexural cracking in beams: 249–250
deformations: 250
stress limitations for concrete: 250–251
stress limitations for prestressing tendons: 251–252
I-sections in flexure: 421–423
load combinations: for: 79–80
multiple-span composite steel plate girder beam bridge design problem: 483–484
prestressed concrete girder bridge design problem: 344–352
choices of prestressing tendons: 345–347
deflection and camber: 350–352
fatigue limit state: 349–350
girder stresses after total losses: 349
girder stresses at transfer: 348
prestress loss evaluation: 347–348
stress limits for concrete: 344–345
stress limits for prestressing tendons: 344
solid slab bridge design problem: 316–319
cracking control: 316–317
deflections: 317–319
durability: 316
fatigue: 319
steel bridges: 377–378
T-beam bridge design problem: 327–333
crack control: 327–330
deflection and camber: 331–333
durability: 327
fatigue: 330–331
Settlement, deformations due to: 129
Seven Mile Bridge, Florida: 14
Shadow, in aesthetic design: 44, 46–47
Shakedown load: 167–169
Shear:
concrete deck design problem: 307–308
prestressed concrete girder bridge design problem: 342–343, 352–358
steel bridges: 433–437
fatigue limit state for: 433–434
strength limit state for: 434–437
T-beam bridge design problem: 337–339
Shear connectors:
composite rolled steel beam bridge design problem: 459–460
multiple-span composite steel plate girder beam bridge design problem: 492–496
Shear design:
composite rolled steel beam bridge design problem: 459
multiple-span composite steel plate girder beam bridge design problem: 484–487
noncomposite rolled steel beam bridge design problem: 451
using modified compression field theory: 278–288
Method 1: 286–287
Method 2: 282–286
Method 3: 287–288
Shear diagrams, sign conventions for: 133
Shear resistance of I-sections: 424, 427–432
beam action shear resistance: 427, 429
combined shear resistance: 431–432
tension field action shear resistance: 429–431
for unstiffened webs: 432
Shear strength (reinforced concrete members): 270–288
modified compression field theory: 272–278
shear design using modified compression field theory: 278–288
variable-angle truss model: 271–272
Shepperd’s Dell Bridge, Latourell, Oregon: 12
Short-span bridges: 47–55
abutments: 51–55
deck overhangs: 49–50
girder bridges: 13
girder span/depth ratio: 49–50
integral abutments and jointless bridges: 51–52, 55–58
piers: 50–53
resolution of duality: 47–49
span lengths for: 69–70
Shrinkage:
analyzing effects of: 221, 225
deformations due to: 129
solid slab bridge design problem: 321
Sign conventions: 133
for moment diagrams: 133, 144
for shear diagrams: 133
for slabs: 199
for strains and stresses: 229
Silver Bridge, Point Pleasant, West Virginia: 18, 19, 78, 81
Single-degree-of-freedom (SDOF) systems: 218–220
Single-load paths: 78
Slabs (slab-girder bridges):
gravity load analysis: 199–206
analytical strip method: 198–202
empirical approach: 198
linear elastic method: 198–199
yield-line analysis: 202–206
Slab bridges:
gravity load analysis: 194–198
for small spans: 69
solid slab bridge design problem: 313–321
design sketch: 321
distribution reinforcement: 321
force effects from other loads: 316
live-load force effects: 315, 316
live load for decks and deck systems: 314–315
live-load strip width: 313–314
load combinations: 315
load modifiers: 315
minimum recommended depth: 313
resistance factors: 315
service limit state: 316–319
shrinkage and temperature reinforcement: 321
strength limit state: 320
span lengths for: 67
INDEX 525
Slab-girder bridges, gravity load analysis, 171–194
beam-line method, 174–182
behavior, structural idealization, and modeling, 173–174
finite-element method, 187–192
finite-strain method, 191–194
grillage method, 182–189
Slenderness ratio:
columns, 395
tensile members, 396
Smart Road Bridge, Blacksburg, Virginia, 38, 56, 58
Smear steel tensile stresses, 273
Smith, Andrew H., 11
Snow loads on superstructure, 127
Soil profiles, 120
Solar radiation zones, 128
Solid slab bridge design problem, 313–321
design sketch, 321
distribution reinforcement, 321
force effects from other loads, 316
live-load force effects, 315, 316
live load for decks and deck systems, 314–315
load combinations, 315
load modifiers, 315
minimum recommended depth, 313
resistance factors, 315
service limit state, 316–319
cracking control, 316–317
deformations, 317–319
durability, 316
fatigue, 319
shrinkage and temperature reinforcement, 321
strength limit state, 320
Span/depth ratio (girders), 49–50
Span lengths, 66, 67
bridge types for, 69–72
extra large span bridges, 71
long-span bridges, 71–72
long-span wooden bridges, 4–5
medium-span bridges, 70–71
ratios for, 149
small-span bridges, 69–70
steel bridges, 390
Span point notation, 139–140
Specifications, 17–18
calibrating, 89
evolution of, 75–77
influence of bridge failures on, 18–30
LRFD Bridge Design Specifications, 18
Standard Specifications for Highway Bridges, 18
Spring Street Bridge, Chippewa Falls, Wisconsin, 13
Stagnation pressure, 115–116
Standard deviation, 83–84
Standard Specifications for Highway Bridges (AASHTO), 18
Standard Specifications for Highway Bridges and Incidental Structures (AASHO), 17
Startucca Viaduct, Lanesboro, Pennsylvania, 4
Statically determinate beams, influence functions for, 134–137
concentrated loads, 134–136
uniform loads, 136–137
Statically indeterminate beams, influence functions for, 139–147
automation by matrix structural analysis, 146–147
integration of influence functions, 142–143
Muller-Breslau principle for end moments, 145–146
relationship between influence functions, 143–145
Static horizontal ice forces, 127
Steel:
heat treatments of, 366
structural, 366–371
carbon steel, 368–369
chemical composition of, 368
classification of, 366–371
heat-treated low-alloy, 369
high-strength heat-treated alloy, 369–371
high-strength low-alloy, 369
mechanical properties of, 366–368
tensile strength, 363, 393
Steel bridges, 363–499
arch, 71
box girder, 64–67
compression members, 396–401
column stability behavior, 396–398
compressive resistance, 399–401
connections for, 401
inelastic buckling behavior, 398–399
design problems, 443–499
composite rolled steel beam bridge, 452–461
multiple-span composite steel plate girder beam bridge, 461–499
noncomposite rolled steel beam bridge, 443–452
general design requirements, 390–391
I-sections in flexure, 402–428
composite and noncomposite sections, 404
depth of web in compression, 410
hybrid strength reduction, 410–411
limit states, 421–428
moment redistribution, 403–404
plastic moment, 402–403, 405, 408–409
plastic neutral axis, 407–408
stability related to flexural resistance, 411–421
stiffness properties, 404
yield moment, 405–407
limit states, 377–390
extreme event limit state, 389–390
fatigue and fracture limit state, 378–388
service limit state, 377–378
strength limit state, 389
for long spans, 71–72
material properties, 363–374
brittle fracture, 372–373
classification of structural steels, 366–371
heat treatments, 366 production of finished products, 365
repeated stress (fatigue) effects, 370–372
residual stresses, 365–366
steel-making processes, 363–365
for medium spans, 70–71
plate girder, 64–67
shear connectors (stud connectors), 433–437
fatigue limit state for, 433–434
strength limit state for, 434–437
shear resistance of I-sections, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
tension field action shear resistance, 429–431
for unstiffened webs, 432
for small spans, 70
stiffeners, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440
tensile members, 393–396
strength of connections, 396
tensile resistance, 393–396
types of connections for, 393
trus, 71, 72
Steel-making processes, 363–365
Steel-reinforced concrete properties, 242–246
non prestressed steel reinforcement, 242–244
prestressing steel, 244–246
Stiffeners:
bearing:
multiple-span composite steel plate girder beam bridge design problem, 490–493
steel bridges, 440–441
multiple-span composite steel plate girder beam bridge design problem:
bearing stiffeners, 440–493
double-plate transverse stiffener design, 489–490
transverse intermediate stiffener design, 487–489
transverse intermediate stiffeners, 487–489
steel bridges, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440
for webs, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440
Stiffening, tension, 243
and axial strain, 223–225
and curvature, 223–225
multiple-span composite steel plate girder beam bridge design problem, 465
noncomposite rolled steel beam bridge design problem, 446
steel bridge I-sections, 404
Stone arch bridges, 3–4
Strain:
axial
in flexibility and stiffness formulations, 223–225
temperature-gradient-induced, 222–223
Mohr strain circle, 274–275
reinforced concrete stress-strain response, 276–277
sign conventions for, 229
Strength limit state, 81
composite rolled steel beam bridge design problem, 458–459
concrete bridges, 255–256
concrete deck design problem, 297–298
barrier, 298
deck overhang design, 303–304
deck slab, 298
future wearing surface, 298
live load, 298
overhang, 298
strength limit state, 298
ductility factor, 77–78
I-sections in flexure, 424
multiple-span composite steel plate girder beam bridge design problem, 484
operational importance factor for, 78
INDEX

prestressed concrete girder bridge design problem, 352–358
flexure, 352–353
shear, 353–358
redundancy factor for, 78
solid slab bridge design problem, 320
steel bridges, 389
steel bridge shear connectors, 434–437
T-beam bridge design problem, 334–339
flexure, 334–335
373–379
Stress(es):
allowable stress design, 17
calibration with ASD criteria, 93–94
evolution of specifications, 75–76
shortcomings of, 76–77
and variability of loads, 76
bending stress profile, 161
and ductility, 165–167
locked-in erection stresses, 102
modified compression field theory, 276–278
repeated, for steel bridges, 370–372
residual stresses, 365–366
columns, 397–398
from rolling, 161
and safety of methods, 165–167
sign conventions for, 229
smear steel tensile stresses, 273
steel bridges:
repeated stress (fatigue) effects, 370–372
residual stresses, 365–366
working stress design, 17
Stress limits:
for concrete, 250–251, 344–345
for prestressing tendons, 251–252, 344
Stress relieving, 244
Stress reversal, safety of methods and, 165–167
lock-in, 167
Stress analysis, 331, 332
Stress analysis, 146–147
Structural analysis, 33–36
description and justification in, 33–34
input to, 34
model of, 33
and regulations, 34–35
stages of, 35–36
Structural steel:
carbon steel, 368–369
chemical composition of, 368
classification of, 366–371
heat-treated low-alloy, 369
high-strength heat-treated alloy, 369–371
high-strength low-alloy, 369
mechanical properties of, 368–369
minimum thickness of, 390
Subsurface conditions, 67
Subsystems of bridges, 161
Sunshine Skyway, Tampa Bay, Florida, 21–22
Superstructure:
continuity of, 39–41
deformations due to temperature change, 127–129
piers integral with, 51
snow loads on, 127
Suspension bridges, 8–10
for extra-large (long) spans, 71
failure of:
Silver Bridge, Point Pleasant, West Virginia, 18–19
Tacoma Narrows Bridge, 9, 117–118
Wheeling Suspension Bridge, West Virginia, 8–9
with main structure above deck line, 61, 63–64
span lengths for, 67
Symmetry, 147
System analysis, 161–213
assumptions in, 161–162
creep, 225
gravity load, 171–212
for box-girder bridges, 206–212
for slab bridges, 194–198
for slab-girder bridges, 171–194
for slabs in slab-girder bridges, 198–206
lateral load, 215–221
seismic load analysis, 216–221
wind loads, 215–217
mathematical models for, 162–163
numerical models for, 162–163
prestress effects, 221–222
safety of methods used in, 162–170
and equilibrium, 162–165
fatigue and serviceability, 169–170
repetitive overloads, 165–169
stress reversal and residual stress, 165–167
shrinkage effects, 221, 225
temperature effects, 221–225
AASHTO temperature specifications, 222
temperature-gradient-induced axial strain, 222–223
temperature-gradient-induced curvature, 223
using strain and curvature formulas, 223–225
temperature-gradient-induced axial strain, 222–223
delamination (concrete), 65–66
displacement due to, 65–66
Temperature reinforcement, in solid slab bridge design problem, 321
Temperature specification, 222
Tensile (tension) members:
etwork, 395
slenderness requirements, 396
steel bridges, 393–396
strength of connections, 396
tensile resistance, 393–396
types of connections for, 393
Tensile reinforcement (concrete):
maximum, 263–264
minimum, 264–265
Tensile strength:
hardened concrete, 236–237
steel, 363, 393
testing, 7
Tension field action, 6
Tension field action shear resistance, 429–431
Tension field theory, 272
Tension stiffening, 243
Texture, in aesthetic design, 44–46
Thickness of ice, 124–125
3D finite-element model, 190
Through-truss bridges, 61, 63–64
Tied-arch design, 10
Time-dependent prestress losses (concrete):
approximate estimate of, 268–269
lumped estimate of, 269–270
refined estimate, 507–512
Total load of prestressing (concrete), 265–266
Toughness, steel, 363
Town, Ithiel, 4, 5
Traffic barrier system design loads, 108–109
Traffic lanes, 103
Transit loads, 78–79, 101
gravity, 101, 102–114
lateral, 101
Transition points, in multiple-span composite steel plate girder beam bridge design problem, 482
Transportation Research Board (TRB), 103
Transportation systems, bridges in, 3
Transverse deck moment, 503–504
Transverse intermediate stiffeners:
multiple-span composite steel plate girder beam bridge design problem, 487–489
steel bridges, 438–440
Transverse intermediate stiffeners:
steel bridges:
slenderness, 438
stiffness, 438–439
TRB (Transportation Research Board), 103
Truck loads, 18
design, 103–106
fatigue limit state for, 80–81
influence functions, 149–154
Truck train loads, 17
Trusses:
arch, 4–5
bowstring arch, 7
Hove, 6
lattice, 5–6
Trusses (continued)
metal truss bridges, 6–7
multiple king-post, 6
Pratt, 6–7
for suspension bridges, 9
variable-angle truss model, 271–272
for wooden bridges, 4–6
Truss-arched bridges, 61–62
Truss bridges:
for long spans, 71, 72
with main structure above deck line, 61, 63–64
span lengths for, 67
TS & L (type, size, and location) report, 66
Tunkhannock Creek Viaduct, Nicholson, Pennsylvania, 12, 44
Turner, C. A. P., 12
2D finite-element model, 188, 190
Type, size, and location (TS & L) report, 66
“Typical Specifications for the Fabrication and Erection of Steel Highway Bridges” (USDA), 18
Uniform loads:
influence functions for statically determinate beams, 136–137
multiple-span composite steel plate girder beam bridge design problem, 466–473
repetitive overloads, 165–167
U.S. Army Corps of Engineers, 10
U.S. Department of Agriculture, Office of Public Roads, 18
Unresolved duality, 47
Unstiffened webs, shear resistance for, 432
Upper bound theorem, 167, 169
Variability of loads, 76
Variable-angle truss model, 271–272
Variation, coefficient of, 85
Vehicle collisions:
concrete barrier strength, 291–293
crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293
and extreme event limit state, 81–82
Vehicle collision forces, 129
Vehicle loads:
AASHTO, 103–108, 149–156
design fatigue load, 106–107
design lane load, 103–106, 150–152
design tandem load, 103–106, 150, 151–152
design truck load, 103–106, 149–154
concrete deck design problem, 296–297
maximum interior negative live-load moment, 297
maximum live-load reaction on exterior girder, 297
maximum positive live-load moment, 296–297
overhang negative live-load moment, 296
design gravity loads, 103–106
fatigue limit state for live loads, 80–81
live loads, fatigue limit state for, 80–81
repetitive overloads, 165–169
Velocity profile, 116–117
Verrazano-Narrows Bridge, New York, 9
Vertical clearances, in geometric design, 96
Vertical ice forces, 127
Very-high-strength concrete, 231
Vessel collision forces, 22, 81–82, 101, 129
Von Mises, Fritz, 12
Waddell and Harrington, 12
Walnut Lane Bridge, Philadelphia, Pennsylvania, 13
Washington Bridge, New York, 10
Water forces, lateral loads from, 118
Vehicle collisions:
concrete barrier strength, 291–293
crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293
and extreme event limit state, 81–82
Vehicle collision forces, 129
Vehicle loads:
AASHTO, 103–108, 149–156
design fatigue load, 106–107
design lane load, 103–106, 150–152
design tandem load, 103–106, 150, 151–152
design truck load, 103–106, 149–154
concrete deck design problem, 296–297
maximum interior negative live-load moment, 297
maximum live-load reaction on exterior girder, 297
maximum positive live-load moment, 296–297
overhang negative live-load moment, 296
design gravity loads, 103–106
fatigue limit state for live loads, 80–81
live loads, fatigue limit state for, 80–81
repetitive overloads, 165–169
Velocity profile, 116–117
Verrazano-Narrows Bridge, New York, 9
Vertical clearances, in geometric design, 96
Vertical ice forces, 127
Very-high-strength concrete, 231
Vessel collision forces, 22, 81–82, 101, 129
Von Mises, Fritz, 12
Waddell and Harrington, 12
Walnut Lane Bridge, Philadelphia, Pennsylvania, 13
Washington Bridge, New York, 10
Water forces, lateral loads from, 118
Web (Internet) resources, for aesthetics, 56, 59
Webs (steel bridge I-sections):
cross-sectional shape classifications, 411–412
depth of, in compression, 410
stiffeners for, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440
unstiffened, 432
Welded splices of reinforcement, fatigue of, 255
Wernwag, Lewis, 4
Wheeler, Walter, 12
Wheeling Suspension Bridge, West Virginia, 8–9
Whipple, Squire, 7
Wide-flange beam girder bridges, 64–67
Widths, roadway, in geometric design, 95–96
William Sallers and Company, 7
Williamsburg Bridge, New York, 9–10
WIM (weigh-in-motion) studies, 104
Wind forces:
lateral loads from, 116–118, 215–217
multiple-span composite steel plate girder beam bridge design problem, 465
noncomposite rolled steel beam bridge design problem, 446
Wobble effect, 266–267
Wood bridges, 4–6
creep in, 129
for small spans, 69
Working stress design, 17
A Work on Bridge Building (Squire Whipple), 7
Wyeth, Nathan C., 12
Yield, 161
Yield-line analysis, 202–206
Yield-line failure pattern, 306–307
Yield moment, 405–407
Yield strength, steel, 363