Contents

About the Authors xiii
Preface xv
Acknowledgements xix
Definitions of Risk and Risk Management xxi

Introduction: The Art of Prediction and the Creation of Order 1
Risk and Risk Management 1
Defining Risk 2
Managing Risk: Our Purpose, Plan and Goals 4
Recent Tragic Outcomes 6
Power Blackouts, Space Shuttle Losses, Concorde Crashes, Chernobyl, Three Mile Island and More . . . 6
How Events and Disasters Evolve in a Phased Development: The Human Element 8
Our Values at Risk: The Probable Improvement 10
Probably or Improbably Not 11
How this Book is Organised 12
References 14

Technical Summary 15
Defining the Past Probability 15
Predicting Future Risk: Sampling from the Jar of Life 16
A Possible Future: Defining the Posterior Probability 21
The Engineers Have an Answer: Reliability 22
Drawing from the Jar of Life: The Hazard Function and Species Extinction 23
Experiencing Failure: Engineering and Human Risk and Reliability 25
Experience Space 27
Managing Safely: Creating Order out of Disorder Using Safety Management Systems 29
Describing the Indescribable: Top-Down and Bottom-Up 30
What an Observer will Observe and the Depth of our Experience 31
References 33

1 The Universal Learning Curve 35
Predicting Tragedies, Accidents and Failures: Using the Learning Hypothesis 35
The Learning Hypothesis: The Market Place of Life 37
Learning in Homo-Technological Systems (HTSs): The Way a Human Learns 39
Evidence of Risk Reduction by Learning 41
Evidence of Learning from Experience: Case Studies 42
Evidence of Learning in Economics 43
Evidence of Learning in Engineering and Architecture: The Costs of Mistakes 44
Learning in Technology: the Economics of Reducing Costs 46
Evidence of Learning Skill and Risk Reduction in the Medical Profession: Practice Makes Almost Perfect 48
Learning in HTSs: The Recent Data Still Agree 50
The Equations That Describe the Learning Curve 52
Zero Defects and Reality 54
Predicting Failures: The Human Bathtub 55
Predicting the Future Based on Past Experience: The Prior Ignorance 57
Future Events: the Way Forward Using Learning Probabilities 58
The Wisdom of Experience and Inevitability 59
The Last, First or Rare Event 59
Conclusions and Observations: Predicting Accidents 60
References 61

2 The Four Echoes 63
Power Blackouts, Space Shuttle Losses, Concorde Crashes, and the Chernobyl and Three Mile Island Accidents 63
The Combination of Events 64
The Problem Is the Human Element 65
The Four Echoes Share the Same Four Phases 66
The First Echo: Blackout of the Power Grid 67
Management’s Role 69
The First Echo: Findings 71
Error State Elimination 73
The Second Echo: Columbia/Challenger 75
The Results of the Inquiry: Prior Knowledge 76
The Second Echo: The Four Phases 79
Management’s Responsibility 80
Error State Elimination 82
The Third Echo: Concorde Tires and SUVs 83
Tire Failures: the Prior Knowledge 84
The Third Echo: The Four Phases 87
Management’s Responsibility 87
Error State Elimination 87
The Fourth Echo: Chernobyl 88
An Echo of Three Mile Island 88
The Consequences 92
Echoes of Three Mile Island 92
The Causes 93
Error State Elimination 94
The Fourth Echo: The Four Phases 95
Regulatory Environment and Practices 95
Case study: Regulation in Commercial Aviation a) Regulations Development 96
b) Compliance Standards 97
c) Accident Investigation 97
The Concept of Depth of Experience and the Theory of Error States	184
The Fundamental Postulates of Error State Theory	188
The Information in Error States: Establishing the Risk Distribution	189
The Exponential Distribution of Outcomes, Risk and Error States	192
The Total Number of Outcomes	193
The Observed Rate and the Minimum Number of Outcomes	195
Accumulated Experience Measures and Learning Rates	198
The Average Rate	200
Analogy and Predictions: Statistical Error Theory and Learning Model Equivalence	201
The Influence of Safety Management and Regulations: Imposing Order on Disorder	201
The Risk of Losing a Ship	203
Distribution Functions	205
The Most Probable and Minimum Error Rate	208
Learning Rates and Experience Intervals: The Universal Learning Curve	209
Reducing the Risk of a Fatal Aircraft Accident: the Influence of Skill and Experience	212
Conclusions: A New Approach	215
References	216

6 Risk Assessment: Dynamic Events and Financial Risks 219

Future Loss Rate Prediction: Ships and Tsunamis	221
Predicted Insurance Rates for Shipping Losses: Historical Losses	224
The Premium Equations	225
Financial Risk: Dynamic Loss and Premium Investments	226
Numerical Example	227
Overall Estimates of Shipping Loss Fraction and Insurance Inspections	228
The Loss Ratio: Deriving the Industrial Damage Curves	229
Making Investment Decisions: Information Drawing from the Jar of Life	231
Information Entropy and Minimum Risk	232
Progress and Learning in Manufacturing	233
Innovation in Technology for the Least Product Price and Cost: Reductions During Technological Learning	234
Cost Reduction in Manufacturing and Production: Empirical Elasticity ‘Power Laws’ and Learning Rates	235
A New General Formulation for Unit Cost Reduction in Competitive Markets: the Minimum Cost According to a Black-Scholes Formulation	237
Universal Learning Curve: Comparison to the Usual Economic Power Laws	240
The Learning Rate b-Value ‘Elasticity’ Exponent Evaluated	242
Equivalent Average Total Cost b-Value Elasticity	244
Profit Optimisation to Exceed Development Cost	246
The Data Validate the Learning Theory	247
a) Aircraft Manufacturing Costs Estimate Case	247
b) Photovoltaic Case	248
c) Air Conditioners Case	250
d) Ethanol Prices Case	251
e) Windpower Case	252
f) Gas Turbine Power Case	253
g) The Progress Curve for Manufacturing	254
Non-Dimensional UPC and Market Share	256
Contents

Conclusions: Learning to Improve and Turning Risks into Profits 259
References 260

7 Safety and Risk Management Systems: the Fifth Echoes 263
Safety Management Systems: Creating Order Out of Disorder 263
Workplace Safety: The Four Rights, Four Wrongs and Four Musts 264
Acceptable Risk: Designing for Failure and Managing for Success 265
Managing and Risk Matrices 269
Organisational Factors and Learning 272
A Practical ‘Safety Culture’ Example: The Fifth Echo 273
Safety Culture and Safety Surveys: The Learning Paradox 278
Never Happening Again: Perfect Learning 280
Half a World Apart: Copying the Same Factors 281
Using a Bucket: Errors in Mixing at the JCO Plant 283
Using a Bucket: Errors in Mixing at the Kean Canyon Explosives Plant 284
The Prediction and Management of Major Hazards: Learning from SMS Failures 286
Learning Environments and Safety Cultures: The Desiderata of Desires 289
Safety Performance Measures: Indicators and Balanced Scorecards 291
Safety and Performance Indicators: Measuring the Good 292
Human Error Rates Passing Red Lights, Runway Incursions and Near Misses 293
Risk Informed Regulation and Degrees of Goodness: How Green is Green? 294
Modelling and Predicting Event Rates and Learning Curves Using Accumulated Experience 297
Using the Past to Predict the Future: How Good is Good? 299
Reportable Events 300
Scrams and Unplanned Shutdowns 301
Common-Cause Events and Latent Errors 303
Performance Improvement: Case-by-Case 304
Lack of Risk Reduction: Medical Adverse Events and Deaths 305
New Data: Sentinel Events, Deaths and Blood Work 308
Medication Errors in Health Care 313
Organisational Learning and Safety Culture: the ‘H-Factor’ 316
Risk Indicator Data Analysis: A Case Study 319
Meeting the Need to Measure Safety Culture: the Hard and the Soft Elements 321
Creating Order from Disorder 324
References 324

8 Risk Perception: Searching for the Truth Among all the Numbers 329
Perceptions and Predicting the Future: Risk Acceptance and Risk Avoidance 329
Fear of the Unknown: The Success Journey into What We Do or Do Not Accept 333
A Possible Explanation of Risk Perception: Comparisons of Road and Rail Transport 334
How Do We Judge the Risk? 337
Linking Complexity, Order, Information Entropy and Human Actions 338
Response Times, Learning Data and the Universal Laws of Practice 341
The Number and Distribution of Outcomes: Comparison to Data 343
Risk Perception: Railways 345
Risk Perception: Coal Mining 348
Risk Perception: Nuclear Power in Japan 349
Risk Perception: Rare Events and Risk Rankings 352
Predicting the Future Number of Outcomes 354
A Worked Example: Searching out and Analysing Data for Oil Spills

Typical Worksheet

Plotting the Data

Fitting a Learning Curve

Challenging Zero Defects

Comparison of Oil Spills to Other Industries

Predicting the Future: the Probability and Number of Spills

Observations on this Oil Spill Case

Knowing What We Do Not Know: Fear and Managing the Risk of the Unknown

White and Black Paradoxes: Known Knowns and Unknown Unknowns

The Probability of the Unknowns: Learning from What We Know

The Existence of the Unknown: Failures in High Reliability Systems

The Power of Experience: Facing Down the Fear of the Unknown

Terrorism, Disasters and Pandemics: Real, Acceptable and Imaginary Risks

Estimating Personal Risk of Death: Pandemics and Infectious Diseases

Sabotage: Vulnerabilities, Critical Systems and the Reliability of Security Systems

What Is the Risk?

The Four Quadrants: Implications of Risk for Safety Management Systems

References

9 I Must Be Learning

Where We Have Come From

What We Have Learned

What We Have Shown

Legal, Professional and Corporate Implications for the Individual

Just Give Me the Facts

Where We are Going

Reference

Nomenclature

Appendices:

Appendix A: The ‘Human Bathtub’: Predicting the Future Risk

The Differential Formulation for the Number of Outcomes

The Future Probability

Insufficient Learning

Appendix B: The Most Risk, or Maximum Likelihood, for the Outcome (Failure or Error)

Rate while Learning

The Most or Least Likely Outcome Rate

The Maximum and Minimum Risk: The Two Solutions

Low Rates and Rare Events

The Limits of Maximum and Minimum Risk: The Two Solutions

Common Sense: The Most Risk at the Least Experience and the Least Risk as

the First Outcome Decreases with Experience

Typical Trends in Our Most Likely Risk

The Distribution with Depth of Experience

References

Appendix C: Transcripts of the Four Echoes

References
Appendix I: A Heuristic Organisational Risk Stability Criterion 499
 Order and Disorder in Physical and Management Systems 499
 Stability Criterion 500
 References 502

Appendix J: New Laws of Practice for Learning and Error Correction 505
 Individual Learning and Practice 505
 Comparison to Error Reduction Data 506
 Comparison to Response Time Data and the Consistent Law of Practice 509
 Reconciling the Laws 511
 Conclusions 512
 References 513

Appendix K: Predicting Rocket Launch Reliability – Case Study 515
 Summary 515
 Theory of Rocket Reliability 515
 a) Unknown Total Number of Launches and Failures 516
 b) Known Total Number of Launches and Failures 517
 Results 518
 Measures of Experience 519
 Comparison to World Data 520
 Predicting the Probability of Failure 521
 Statistical Estimates of the Failure Probability for the Very ‘Next’ Launch 523
 Independent Validation of the MERE Launch Failure Curve 525
 Observations 526
 References 526

Index 527