INDEX

active earth pressure, 309
 concept of, 313, 314
 coefficient of, 310
activity, 4, 36, 37
aging of soils, 3
air voids, 15
allophone, 4, 5
allowable bearing capacity, 262
allowable settlement, 170–172
angle of shearing resistance
 (“friction angle”), 58, 186, 226–227
angular distortion, 171
anisotropy, 216, 218, 219
area ratio, 240
at rest earth pressure, 57
Atterberg limits, 5, 31, 41
 definition of, 31, 32
 test for, 31–33
 use in soil classification, 34, 35, 38, 39
bearing capacity, 259, 261, 262, 267–274
 allowable, 262
 eccentric and inclined loads, 270–272
equations, 268–273
 of clay, 272–274
 of sand, 276–278
 ultimate, 262, 267
Bishop method of slices, 360–366
 block sampling, 241
 boreholes, 235
 braced excavations, 321–322
 bulk density, 15, 22
 Burland-Burbidge sand settlement method, 176–178
Casagrande construction, 166
classification methods, 37, 38, 40
 for residual soils, 44–47
 Unified soil classification system (USCS), 38
clay, 27
 definition of, 28
 particle size, 28
 plasticity of, 40
clay fraction, 29
clay minerals, 2–6, 47
coarse-grained soils, 27, 28, 39, 42, 52,
classification of, 38
definition of, 27
 particle size of, 28
coefficient of consolidation, 144
determination from odometer test, 147
odometer test time intervals, 148
typical values of, 150
coefficient of one dimensional compressibility \((m_v) \), 82, 124
coefficient of permeability (hydraulic conductivity)
definition, 92
measurement of, 93, 94
typical values of, 93
coherent gravity block method, 339–343
cohesion, 28
cohesion intercept, 186
compaction, 121, 391–404
control using shear strength and air voids, 398–400
difficulties in compaction, 401, 402
standard compaction tests, 391–396
traditional control method, 397
compressibility, 121
compression index, 133
confined flow, 100
consolidation, 121, 129
average degree of, 145
magnitude, 122–128
oedometer test, 129
primary, 143
rate of, 142–146, 152, 153
secondary, 143
Terzaghi one-dimensional theory, 142–147
Terzaghi consolidation equation, 144
time rate, 142–154
core barrel, 237, 238
correlations from in situ tests, 250–254
Coulomb earth pressure method, 307–312, 324, 325
CPT test, 246–248
critical state, 205, 206
critical hydraulic gradient, 104–106
critical circle, 358
Darcy’s law, 92, 93
degree of consolidation, 145–146
degree of saturation, 14, 15, 406–408
density, 15
de-structured soil, 10
dilatancy, 28
dilatant behavior, 28
direct shear box test, 190, 191
discharge velocity, 92
drained behavior, 80, 81, 123
drained triaxial test, 192, 198
drilling, 235–239
hand auger, 236
machine, 236, 237
rig, 237
rotary, 238
wash, 239
percussion, 239
dry density, 15, 392, 393
dry unit weight, 15
Dupuit’s assumption, 114, 115
Dutch cone penetrometer test (CPT), 246–248
earth dams, 100, 108, 109
earth pressure, 307–316
active, 309
at rest, 57, 312
Coulomb earth pressure, 307–312
active coefficient of, 312–316
passive coefficient of, 312–316
passive, 309
earth retaining walls –see retaining walls
effective stress, 6, 50, 77–87
principle of, 77–87
equation for, 50, 77
practical examples of, 83–87
elastic (immediate) settlement, 126–129
elastic theory, 68, 124
 for stresses beneath point load, 69
 for stresses beneath line (strip) load, 71
 for stresses beneath circular loaded area, 72
 for stresses beneath rectangular loaded area, 73
equipotential lines, 98, 100–102
excavated slopes, 369–371
excess pore pressure, 145
expansive soils, 415–421
 basic concept, 415, 416
 swelling pressure and magnitude, 416–419
factor of safety, 107, 108
 definition of, 260
 for bearing capacity, 262, 272–273
 for slope stability, 260
 for retaining wall design, 263, 264
failure criterion, 224, 225
failure mechanisms/modes, 257–265
filters, 109–111
fine-grained soils, 27, 29, 38, 43
 definition, 28
 classification of, 39, 40
flow (seepage) in soils, 95–109
 confined and unconfined, 115–116
flow lines, 98–102
flow nets, 97, 99–104
 concept, 98
 construction of, 101
 example of, 103
 rules for flow net sketching, 102
 use of in design, 103, 106–108
foundations, 267–289
 shallow, 67, 267–278
 pile (deep), 278–289
friction angle (angle of shearing resistance), 58
 correlations with index parameters, 226–227
 definition of, 186
 measurement of, 190–200
 typical values of, 226–227
friction piles, 278
fully saturated soils, 13
gap graded soils, 29, 30
geogrid reinforcement, 338, 347
gravel, 27
gravity retaining walls, 322–328
groundwater, 113
 basic equation for, 97, 114
 Dupuit assumption used in analysis of, 114
halloysite, 4, 5
hand augur, 236
head (total head), 90, 91
horizontal stress, 57
hydraulic gradient, 92, 106–108
hydrostatic pressure, 51–54
illite, 2–5
immediate (elastic) settlement, 126–129
index tests, 27
inclined foundation loads, 270–272
in situ testing, 242–249
internal stability (of reinforced earth walls), 339
investigation pits, 242
isotropic, 215–218
isotropically consolidated soil, 217
kaolinite, 2–5
Ko coefficient of at rest pressure, 57, 58, 312
Laplace equation, 97
 derivation of, 95–97
Laplace equation \((Continued)\)
- form of solution, 97
- physical meaning of solution, 98, 99
- lateral earth pressure, 57–60
- laterite, 5
- limit equilibrium methods, 258
- line (strip) load, 70,71
- liquidity index, 35, 36
- liquid limit, 31
 - apparatus, 32
 - definition of, 32
 - measurement of, 32, 33
- maximum dry density, 392, 393
- method of slices, 357–366
- Meyerhof’s factors for inclined and eccentric loads, 70–72
- mobilized shear strength, 260
- Mohr-Coulomb failure criterion, 186, 200
- Mohr’s circle, 193, 195
- moisture content. See water content
- montmorillonite, 2–5
- normally consolidated soil, 7, 134
- odometer test, 129
 - apparatus, 129, 130
 - on slurry sample, 130, 131
 - on normally-consolidated clay, 134–136
 - on over-consolidated clay, 136, 137
 - on residual soil, 137–139
 - determination of compressibility parameters, 131–133
 - determination of coefficient of consolidation, 147–149
 - one-dimensional consolidation, 124, 142
- optimum water content, 392, 393
- over-consolidated soil, 7, 134, 140
- over-consolidation ratio (OCR), 134, 214, 215
- partially saturated soil, 13, 51, 406–415
- particle size, 28
 - distribution curves, 29
 - use in classification of soil, 28, 39, 40
 - measurement of, 29
- particle density (solid density), 15
- passive earth pressure
 - concept of, 313, 314
 - coefficient of, 310
- peak shear stress, 205, 207
- peat, 41
- permeability, 89
 - coefficient of, 92, 93
 - measurement of, 93, 94
- phases, 13
- phase relationships, 13, 14, 16–21
- phreatic surface, 56
- piezometers, 90, 91
- pile foundations, 278–281
 - bearing capacity, 281, 282
 - bearing capacity in clay, 282–284
 - bearing capacity in sand, 285, 286
 - construction methods, 279–181
 - end resistance (point resistance), 278, 283, 285
 - groups, 286–288
 - lateral load capacity, 289–303
 - principle of, 278–281
 - settlement, 287, 288
 - skin friction (shaft adhesion), 283–285
 - types, 279–281
- plasticity, 28, 31, 41
- plastic limit, 31
 - definition of, 33
 - measurement of, 33
- plasticity chart, 34
- plasticity index, 34
- poorly graded soils, 29, 30
- Poisson’s ratio, 58, 123
pore water pressure (pore pressure), 49–57
during consolidation, 164, 165
excess pore pressure, 145
in principle of effective stress, 50, 77–79
parameters A and B, 211, 222
response to total stress, 81–83
porosity, 14, 15
pre-consolidation pressure, 134, 135
pressure head, 90
primary consolidation, 142
principle of effective stress, 6, 50, 77–87
Proctor compaction test, 391–394
quick behavior, 28
quick clay, 37
quicksand, 106
radial drainage, 172–174
Rankine earth pressure, 312–316
active pressure, 313
method for determination of, 313–316
passive pressure, 313
rapid drawdown in earth dams
rate of consolidation, 142–146, 152, 153
reinforced earth retaining walls, 337–351
concept, 337, 338
design procedures, 339–349
pore pressures and drainage
measures, 349–351
reinforcement types, 338
two-part wedge (DIBt) design
method, 343–349
Vidal coherent gravity method, 339–343
relative density (density index), 35, 36, 252, 253
remolded soil, 10
residual soils, 8, 9, 59, 137–139
consolidation behavior, 150–152
formation, 2, 3
shear strength, 221–224, 227, 231
undrained strength, 231
residual strength, 206–209, 228
residual angle of shearing resistance
(friction angle), 207, 228
retaining walls, 307–351
construction methods, 319–321
design methods, 322–328
gravity block, 322–325
reinforced earth, 337–351
root time method to determine
coefficient of consolidation, 146, 147
safety factor – see factor of safety
sand, 27
sand drains, 172
Barron theory of, 173
concept, 172, 173
rate of consolidation, 174
Schmertman construction for
sample disturbance, 166
Schmertman sand settlement
method, 175
secondary consolidation, 142, 147
sedimentary soils, 8, 9, 57, 130
consolidation behavior, 130–137
formation, 3, 7
shear strength, 214–221
undrained shear strength,
228–230
seepage, 89–91
governing equation, 95–97
flow rate, 92–94
steady state, 95
non-steady state (transient), 95
sensitivity, 36
settlement, 86, 121–181
allowable, 170–172
estimation using elastic theory,
122, 123, 126
estimation assuming 1-D
behavior, 124, 125
settlement (Continued)
estimation in clays, 154–164
estimation in sands, 174–181, 276–278
immediate, 126–129
long term, 126–129
of piles, 287–289
primary, 142
secondary, 142
time rate, 142–146, 152, 153
uncertainties in estimates, 165–169
shear strength, 86, 185–233, 251, 252, 259
general effective stress equation, 186
measurement of, 190–193
of remolded clay, 212–214
of sedimentary clays, 214–221
of residual soils, 221–224
of sand, 204–206
residual value, 206–208
typical shear strength parameters, 225–228
undrained, 43, 187, 228–232
sheet pile retaining walls, 329–336
free standing (cantilever) and propped walls, 329, 330
factor of safety, 331–335
seepage and pore pressure influence, 335–336
silt, 28
particle size, 28
silt fraction, 29
site investigations, 235–250
skin friction, 278, 283–286
slope stability, 259–261
Bishop method, 360–366
determination of safety factor, 260
effective stress analysis, 360–366
failure types/mechanisms, 260, 356
infinite slope, 366–368
influence of weather and climate, 381–385
long term stability, 368–377
methods of analysis, 259, 260, 357–366
of earth dam slope, 377–382
short term stability, 368–377
total stress (undrained) analysis, 359–360
solid density (particle density), 22
specific gravity, 15, 22, 23
steady state flow, 97–109
soil skeleton, 13
soil stiffness, 253
standard penetration test (SPT), 243–246
stress distribution from applies loads
stress history, 7, 9
stress paths, 127, 209–211
submerged unit weight, 14
swell (rebound) index, 133
test pits, 242
time rate of consolidation, 142–154
transient (non-steady state) flow, 95
Terzaghi bearing capacity equation, 268
Terzaghi theory of consolidation, 144
time factor, 145, 149, 174
total head, 80, 81
total stress, 49, 50
total stress path, 127–129
translational slides, 355–356, 366, 377
transported soils, 3
trench supports, 321–322
triaxial tests, 191
apparatus, 192
consolidated undrained, 192, 198
drained, 192, 198
extension test, 216–217
undrained, 192
use of Mohr’s circle, 193–197
volume change correction, 199, 200
two-dimensional seepage flow, 99
ultimate bearing capacity, 262, 267
unconfined flow, 100, 108, 109
undisturbed sampling, 239–241
undrained behavior, 80, 81, 123
undrained shear strength, 43, 187, 228, 251
Unified Soil Classification System
(USCS), 38–40
uniformly graded soils, 29, 30
unit weight, 15
unsaturated soils, 13
uplift force, 84–85
vane test, 249
velocity of seepage flow, 92, 93
Vidal reinforced earth design
method, 339–343
virgin consolidation line, 130–133
vertical stress from applied loads, 67–76
void ratio, 8, 14, 15
wall friction, 316
water content, 15, 22
water table, 49–57
weathering, 1–3, 5
chemical, 1
physical, 1
well graded soils, 29, 30
yield pressure (vertical yield stress), 134
Young’s modulus , 123
zero air voids line, 393, 394