abduction, 103
access control, 302, 304, 305, 307–308
access control policy, 302, 302
access point (AP), 251, 257
Accord programming system, 85
accuracy, definition of, 157
ACK packets, 67, 70, 89
acting, 100–103
active networks, xxvi
ACT-R, 225
actuator functions, 236–237
adaptation, techniques of, 59–73
data routing and, 62–69
analysis of, 66
application data and, adapting to changes in, 64–65
network resources and, adapting to changes in, 63–64
user behaviors and, adapting to changes in, 65–66
data transmission and, scheduling, 66–69
analysis of, 69
application data and, adapting to changes in, 67–68, 68
network resources and, adapting to changes in, 67
hop-by-hop connectivity and, constructing, 59
analysis of, 62
application data and, adapting to changes in, 61
network resources and, adapting to changes in, 59–61, 60
user behaviors and, adapting to changes in, 61–62
review of, 72–73
transmission rate and, controlling, 69–73
analysis of, 72–73
application data and, adapting to changes in, 72
network resources and, adapting to changes in, 69–71, 71
adaptation functions of radio, 173
adaptive immunity, 7
adaptive interface, 101
adaptive network functions, 55–58, 56
data routing and, 56, 57, 62–69
analysis of, 66
application data and, adapting to changes in, 64–65
application layer of, 57
network layer of, 57
network resources and, adapting to changes in, 63–64
user behaviors and, adapting to changes in, 65–66
data transmission and, scheduling, 57–58, 66–69
analysis of, 69
application data and, adapting to changes in, 67–68, 68
medium access control and, 58
network resources and, adapting to changes in, 67
node duty cycle management and, 58
hop-by-hop connectivity and, constructing, 55–57
application layer of, 57
data link layer of, 55–56
transmission rate and, controlling, 58, 69–73
analysis of, 72–73
Index

adaptive network functions (continued)
application data and, adapting to changes in, 72
congestion control and, 59
flow control and, 58
network resources and, adapting to changes in, 69–71, 71
adaptive networks, xxix
dynamic factors of, 54–55
modern network scenarios, 53, 54
adaptive response by attractor selection (ARAS), 4–5
adaptive schemes, 72–73
adaptive to user needs, 46
additive increase multiplicative decrease (AIMD), 16
ad hoc network
concept of, 205
see also cognitive ad hoc networks
ad hoc nodes, 209–211, 210, 211
ad hoc on-demand distance vector (AODV), 205, 282
affinity maturation, 8
alert(s), 294, 296–299, 306
correlation, issues with, 299
volume, 297–298
analogical problem solving, 102
anomaly detection, 105–107, 296, 304, 312
ant colony optimization (ACO), 9–10, 10
AntNet, 63, 66, 73–74
ant system (AS), 9
API(s), 162, 163, 164, 165–166, 190, 197
application data, adapting to changes in
data transmission and, 67–68, 68
hop-by-hop connectivity and, 61
routing data and, 64–65
transmission rate and, 72
application layer, 284
application programming interface (API), 48
artificial immune system (AIS), 7, 7–8
artificial intelligence, 48, 49
distributed (DAI), 225
Association of Radio Industries and Businesses (ARIB), 168
asynchronous sensing attack, 281
attractor selection, 4–5
autonomic, definitions of, 50
autonomic components, decision making in, 84–86
autonomic computing
advances in, 26–34 (see also autonomic networking)
information and data models in, role of, 31, 31–32
ontologies in, role of, 32, 32–33
architecture
control loops and, xxvii
IBM’s, xxix
and autonomic networking, differences between, 26
challenge and future developments in, 48–50
concepts of, xxix
foundations of, 24–26
management functionality, xxvi
proper function of, requirements for, xxv
autonomic computing element (ACE), 43, 45
autonomic control loop, 25, 25
autonomic network, definition of, 50–50
autonomic networking
and autonomic computing, differences between, 26
complexity and, managing, 28, 29, 30
languages, problems with, 28–29, 30, 30–31
programming models and, 29, 30
context and, role of, 33, 33–34
as new management approach, 26, 26–28, 27
policy management approach and, 34, 34
role of, xxix, 26
see also FOCALE
autonomic system, definition of, 51
autonomous machine learning, 148, 155, 166
autonomous machine learning (AML)
autonomous network management, 79, 79, 80, 82
auto-rate fallback, 132
awareness functions of radio, 173
background knowledge, 104, 115, 117
bandwidth estimation (BE), 70
base station (BS), 209
Bayesian networks (BNs). See distributed Bayesian networks (BNs)
B-cells, 7–8
Beam Flex, 137
behavior, orchestrating using semantic-based reasoning, 41–42
behavioral cloning, 101
belief–desires–intention framework, 83
benchmarking, 90
beyond the 3rd generation (B3G), 34
BGP (Border Gateway Protocol), 29, 30, 32, 43
biased utility attack, 281
binding, 176–177
biological systems
 in computer networking, xxix, 8–9
 concepts of, xxix
 feedback-based control loops and, xxvii
 inspired networking, xxviii–xxix
BioNet, 85
BIONETS, 9
bio-networking architecture, 85
bitwise XOR operation, 324
Bluetooth, 45, 149, 154, 161, 204
Boolean algebra (propositional logic), 251
Brownian motion, 4
built-in test (BIT), 161
Business Support Systems (BSSs), 31
Byzantine model, 288
carrying capacity, 15
case-based reasoning (CBR), 235–236
Catallaxy model, 86
CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code) Protocol, 276
CDMA2000, 136
cell biology, 6
cell necrosis, 8
centralized cognitive radio networks, 273, 274
centralized learning, 114–115
certificate authority (CA), 276–277
channel ecto-parasite attack (CEPA), 282–283
ChannelInUse(x, t), 260, 261, 262
Channel state dependent packet scheduling (CSDPS), 67
Cisco router, 29, 30
classification, 99–100
clear channel assessment (CCA), 69
clonal selection, 7
closed-loop control, theories of, 82–83, 83 clustering, 100
Code division multiple access (CDMA), 45, 168, 172, 189, 191
code rate K/N, 321
cognition, universal theories of, 225
cognition cycle, xxvii, xxx, 203, 206–207, 207, 208, 225
cognition functions of radio, 173
cognitive, context of, xxvi
cognitive ad hoc networks, xxx, 206
cognition in networks and, 207–208, 208
 centralized, infrastructure-based networks and, 208, 208–209
 distributed, 209–211, 210, 211
cognitive cycle of, xxx, 206–207, 207
 scenarios for, dynamic spectrum of, 214–216, 216–218
 common regimes and, 218–219
 future of, 219
 market-based regimes and, 216–218
 next-generation architecture and, 215, 216
 range of frequency and, 217, 218
 wisdom of crowds and, 211–214
 cognitive architectures, 225–226
 and cognitive network architectures, linking to, 225
cognitive control, 242–243
cognitive layer, xxvi
cognitive network(s)
 autonomic networking in, role of, xxix concept of, xxv
definitions of, xxvi–xxvii, 51, 223–224
dynamic spectrum access and, xxviii end-to-end goals of, xxvii
future innovations in, xxviii
learning and, role of, xxvii
machine learning for, xxix
as multiagent system (MAS), 225–227
optimization techniques and, xxvii, xxx
seamless mobility and, xxviii, 45–46, 46
security issues in, xxviii, xxx
self-attributes of, xxvi–xxvii, 25
self-management in, xxix
threat response and, paradigm change in, 311
wired networking and, xxviii, 46
wireless networking and, 47, 47–48
see also cognitive networking; integrated dynamic security approach; intrusion detection, in cognitive network(s); threat model
cognitive network architectures, 285
DIMSUMnet, 285–286
IEEE 802.22 and, 286
Nautilus, 285
OCRA, 286
cognitive networking, 34
FOCALE and, extensions to, 47, 47–48
functions, 46–47
wired, 46
wireless requirements, 47, 47
cognitive networking tasks, 105
anomaly detection and fault diagnosis, 105–107
configuration and optimization, 109
compatible parameter configuration in, 111
component selection and configuration in, 112
configuration tasks, spectrum of, 109–110, 110
operating conditions and, changing, 112–113
parameter selection in, 111
reconfiguration process in, 110–111
topological configuration in, 111–112
intruders and worms, responding to, 107, 108
detection tasks, 108–109
prevention tasks, 107–108
response and recovery tasks, 109
cognitive packet network (CPN), 89
cognitive properties, xxv
cognitive radio (CR)
applications, architecture for, 265–267
community architecture, 251–252
differentiating speakers to reduce confusion and, 151–152
dynamic frequency selection (DFS) scenario and, 261–263
Event–Condition–Action (ECA) rules and, 263–264
ideal cognitive radio (iCR) and, xxx, 148–158
knowledge representation and, two variants of, 252
military applications and, 155–156
model-theoretic semantics and, 252–253
personal skills and, augmenting, 150–151
privacy and, 154–155
quality of information (QoI) metric and, 156–158
radio frequency (RF) uses, needs, and preferences and, 149–150
radio spectrum and, flexible secondary use of, 152
research, architectures used in, xxvii
semantic side of, xxxi
software-defined radio (SDR) technology and, 153–154
see also cognitive radio networks, attacks on; semantics
COgnitive Radio approach for Usage of Virtual Unlicensed Spectrum (CORVUS), 317–318, 318, 318–310
cognitive radio architecture (CRA), xxvii, xxx, 158
cognition cycle of, 174–175, 175
acting phase of, 177–178
decide phase of, 177
learning phase of, 178
observe (sense and perceive) phase of, 175–176
orient phase of, 176–177
planning phase of, 177
reaching out phase of, 179
retrospection phase of, 179
self monitoring timing phase of, 178–179
frameworks for, future, 199
functions, components, design rules of
cognitive components of, 167
cross-domain grounding for flexible information systems, 169, 169–171
design rules of, functional component interfaces and, 161–166, 162
flexible functions of, 173–174, 173
frameworks for, future, 199
industrial strength, 199–200
near term implementations and, 166–167
radio knowledge in, 167–169, 169
self-referential components of, 171
self-referential inconsistencies of, 171–172
software-defined radio (SDR)
components and, 160
spectral efficiency and, potential gains in, xxviii, 129
user knowledge in, 169
watchdog timer in, 172
see also ideal cognitive radio (iCR);
inference hierarchy; software-defined radio (SDR)
cognitive radio community architecture, 251–252
cognitive radio networks functions of
spectrum analysis and decision, 273
spectrum mobility, 273
spectrum sensing, 272–273
types of
centralized, 273, 274
decentralized, 273–275, 274
cognitive radio networks, attacks on, 279
application layer, 284
cross-layer, 284
jellyfish attack, 284–285
routing information jamming attack, 285
link layer, 280–281
asynchronous sensing attack, 281
biased utility attack, 281
false feedback attack, 281
network layer, 282
channel ecto-parasite attack (CEPA), 282–283
low cost ripple effect attack (LORA), 283
network endo-parasite attack (NEPA), 282
physical layer, 279–280
intentional jamming attack, 280
overlapping secondary attack, 280
primary receiver jamming attack, 280
sensitivity amplifying attack, 280
transport layer, 283
key depletion attack, 283–284
cognitive techniques, performance issue with, xxv
cognitive technology, xxvi
cognitive wireless networks (CWN), 148, 150, 154, 155, 157–159, 167–169
cognitive wireless personal digital assistant (CWPD), 173
coherent control, 243
collaborative filtering, 107
collaborative reinforcement learning, 87
collegial, 232
collision-aware rate adaptation (CARA), 69–70, 72, 74
command and control approach, 214
Command Line Interfaces (CLIs), 29, 31
compatible parameter configuration, 111
compatible parameter selection, 110
component selection and configuration, 110, 112
computational state, 241–242
computer virus, 8
configurable topology control (CTC), 61
configuration tasks, 109, 109–110
congestion adaptation, 243
congestion control, 59
congestion detection and avoidance (CODA), 72
constraint logic programming (CLP), 111
constraint satisfaction problem (CSP), 111
course of action, 240–241
context
concept of, 302–303
FOCALE and, 40, 41, 45, 48
policy management and, 39–40
role of, 33, 33–34
context-aware, 46
Context to Management Information to Policy, 33
crossover, 226
cross-layer, 272, 279, 284
cross-layer design, xxvii, 121–123
in commercial products and industry standards, xxx, 136
mesh networks and, 137–138
multimedia over wireless and, 137
3G cellular networks and, 136
vertical handovers and, 136
wireless local area networks and, 136–137
wireless regional networks and, 136
understanding, xxvii, 123–124
definitions for, 123–124
interpretations of, 123
motivations for, 125–129
cognitive networks and, 129
new modalities of
in cognitive radios, 129
in multi-packet reception, 128
in node cooperation, 128–129
optimistic side of
ad hoc networks on, power control in, 126
cross-layer design (continued)
 energy efficiency and security and, 126
 fading channels, multiple users and, 127–128
 fading channels, single user and, 127
 real-time multimedia on, 125
 TCP on, 125
 vertical handovers and, 126–127
performance and architectural viewpoints
 of, xxx, 138–139
 on communication model and, right, 141
 on cross-layer couplings and, important, 139
 on cross-layer design, when to invoke, 139–140
 on cross-layer design proposals,
 co-existence of, 139
 on physical layer, role of, 140–141
 on standardization of interfaces and, 140
 proposals, according to architecture violations, xxx, 129–131, 130
 on adjacent layers, merging of, 133
 on design coupling without new interfaces, 133
 on new interfaces, creation of, 131
 back and forth information flow and, 132–133
 downward information flow and, 132
 upward information flow and, 131–132
 on vertical calibration across layers
 and, 133–134
cross-layer scheduling, 68–69
cross-layer signaling shortcuts (CLASS), 69, 135
cryptography, 287, 288
crypto primitives, 288
CURRENT TIME, 262–263, 264
customer premises equipment (CPEs) nodes, 209
cyber-entities (CE), 8–9
cyber-entity (CE), 85–86
danger signal, 7
data model(s) in autonomic computing, role of, 31, 31–32
definition of, 51
ontologies and, integrating, 36–38, 38
data plane, 27, 28
data routing
 network functions of
 analysis of, 66
 application data and, adapting to changes in, 64–65
 application layer of, 57
 network layer of, 57
 network resources and, adapting to changes in, 63–64
techniques of adaptation and
 analysis of, 66
 application data and, adapting to changes in, 64–65
 network resources and, adapting to changes in, 63–64
 user behaviors and, adapting to changes in, 65–66
 user behaviors and, adapting to changes in, 65–66
data source(s), 295–296
data transmission scheduling, 57–58, 66–69
DDoS attacks, 89
decentralized cognitive radio networks,
 273–275, 274
decision-making, distributed, 84–86, 213
decision-tree, 100
declarative knowledge, 115–116
degree distribution, 325
DEN-ng
 definition of, 51
 ontologies and, 36, 38, 40, 44, 47
 policy languages, 41
 simplified form of, 33
 as unified information model, 29, 30
 wired networking and, 46
density estimation, 100
Department of Defense Applied Research Projects Agency
 (DARPA), 154, 196, 205
description logic (DL), 251
design patterns, 81–82
detection, 108–109
detection algorithm, 296, 312
detection technique
device languages, 42
diagnosis, 106–107
diffusion, 83
The Diffusion of Innovations (Rogers), 212
Digital Fountain, 137
digital fountain codes, 322–323
see also Luby transform (LT) codes
DIMSUMnet, 285–286
directed acyclic graph (DAG), 229, 230
direct knowledge, 115–116
distance vector (DSR), 205
distributed artificial intelligence (DAI), 225
distributed Bayesian networks (BNs)
distributed learning of, 234–235
distributed reasoning and, 229–230
multiply sectioned Bayesian network (MSBN) and, 229–230
distributed case-based reasoning (CBR), 235–236
distributed constraint optimization problems (DCOP), 228–229
distributed constraint satisfaction problems (DisCSP), 228
distributed decision-making, 84–86, 213
distributed learning, xxx–xxxi, 114–115
see also learning and reasoning, in
cognitive network
distributed Q-learning, 234
distributed reasoning. See learning and reasoning, in
cognitive network
distributed multiobjective reasoning, 232
diversity, 2
division of labor, 9
DMTF, 37
dynamic control of behavior based on learning (DCBL), 87
dynamic factors, 54–55
dynamic frequency selection (DFS), 254
cognitive radio (CR) and, 261–263
cognitive spectrum access and, 254–257, 256
Web Ontology Language Description Logic (OWL-DL) ontologies and, 260–261
dynamic source routing (DSR), 282
dynamic spectrum access (DSA), 204, 214–215, 330

EGDE, 136
emergence
empirical optimization, 102
endocrine signaling, 7–8
end-to-end goals, xxv, xxvi, xxvii, 224
energy efficiency, 126
enhanced distributed channel access (EDCA), 136
environment sensors, 160
epidemic algorithms, 18
epidemic diffusion, 16–17
epidemic methods, 18
erasure channels
erasure channels, overview of, 319–320
erasure tolerant coding, xxxi–xxxii, 315–318
applications, 329
digital fountain codes and, 322–323 (see also Luby transform (LT) codes)
Raptor codes and, 326–328, 327, 328
multiple description coding (MDC), 328, 329
Reed-Solomon codes, 330
tornado codes, 330
traditional, 321–322
Escherichia coli, 5
Esperanto, 42
European Telecommunications Standards Institute (ETSI)
167–168
Event–Condition–Action (ECA) rules, 263–264, 267
expandability. See scalability
EXPECT, 29
explanation-based generalization, 104
explanation generation (abduction), 103
Explicit Congestion Notification (ECN), 131
Extraordinary Popular Delusions and the Madness of Crowds (Mackay), 212
false alarms, 106, 113
false feedback attack, 281
fault diagnosis, 105–107
fault isolation, 106, 107
Federal Communications Commission (FCC), 147, 152, 195, 196, 199, 254, 257
static spectrum allocation, 315–316, 316
Unlicensed National Information Infrastructure (U-NII), 254, 257
feedback
adaptive, 15
negative, 4, 10, 19
positive, 4, 10
feedback control loop, xxvii
file transfer protocol (FTP), 284
first-order logic (FOL), 251
first order predicate calculus (FOPC), 178
Fischer-Lynch-Patterson result, 211, 213
flexible prediction, 99
fluctuation
adaptive response by attractor selection
(ARAS) and, 4–5
biologically inspired systems and, reliance
on, 3
noise and, 4, 19
randomness and, in self-organized
structures, 4
FOCALE
architecture of, 35, 37, 43–44, 44, 48–49
challenges of, future, 48–50
architectural innovations, 48–49
artificial intelligence, incorporation of,
49
human-machine interaction, 49
progress, current, 49–50
control loops of, 35, 35–36
elements of, complete, 43–44, 44
model-based translation layer (MBTL) and,
39, 39
policy continuum in, use of, 40, 41
role of context and policy in, 39–40, 40
as ‘self-governed’ system, incorporation of, 41
semantic-based reasoning and, 41
semantic similarity matching and, 37–38,
38
wireless networking extensions to, 47,
47–48
forward error correcting (FEC) code, 321
Foundation – Observation – Comparison
– Action – Learn – Reason. See
FOCALE
4G networks, 45

game theory, 237–238

genetic algorithms (GA), 14
Geographical and energy aware routing
(GEAR), 64
Gianduia (Gia), 59, 60, 62
Glean system, 91
goal-driven self-assembly, 81
goal-oriented, 46
Google, 304
GRACE (Graduate Robot Attending
Conference), 149–150
Greedy perimeter stateless routing (GPSR),
64
Green Revolution, 213–214
GSM, 45
head-of-line (HOL) blocking problem, 67
heuristic function, 112
high frequency (HF) radio, 153, 154, 168
Homo equalis model, 279, 288
hop-by-hop connectivity, constructing
analysis of, 62
application data and, adapting to changes in,
61
application layer of, 57
data link layer of, 55–56
network resources and, adapting to changes
in, 59–61, 60
user behaviors and, adapting to changes in,
61–62
Horn clause programs, 104
host-based intrusion detection, 8
human-machine interaction, 48, 49
hybrid energy-efficient distribution (HEED),
60, 62, 74
hypothesis management, 200
IBM, 24, 25, 26, 50
ICARUS, 225
ideal cognitive radio (iCR), xxx
features of, to be organized via architecture,
173t
functions of, xxx, 148–159, 159
node functional components and, 160,
160–161
ontological Self/ and, 161
ideal soliton distribution, 325–326
ignorance, 239, 241, 242
immune network models, 7
immune response, 7, 7–8
incompleteness, 172
independent learning (IL), 234
induced control, 243
induction over explanations, 104
inference, model-based, 91
inference engines, 33
inference hierarchy, 179, 179–187
atomic stimuli and, 180–181
basic sequences and, 181–182
natural language in cognitive radio
architecture (CRA) and, 182–183,
183
observe-orient links for radio skill sets and,
184, 184–185, 185
observe-orient links for scene interpretation
and, 183–184
primitive sequences and, words and dead time, 181
world knowledge and, general, 185–187, 186
inference plane, 26, 26, 27, 28
information-directed routing, 64–65, 66
information model(s)
in autonomic computing, role of, 31, 31–32
definition of, 51
DEN-ng model used for, 29, 30, 51
FOCALE and, used in, 35
ontologies and, integrating, 36–38, 38
single, 30, 31–32
information services, 161
innate immunity, 7
in-network computation and compression, 236
innovation diffusion, 213
Institute of Electrical and Electronics Engineers, standards
802.11, 253–257, 259
802.11e, 136, 137
802.21, 136, 140
802.22, 136, 209, 215
integrated dynamic security approach, 305
operational plans and interactions,
description of, 305–307, 306
operations within the management plane,
308
on alerts, 309
on cartographic information, 309
on policies, 309
operations within the network plane, 307
on packets, 308
on policies, 307–308
operations within the policy plane
on alerts, 310
on business policies, 309–310
on reports, 310
integrity key (IK), 287
intruders, 107
intrusion detection, in cognitive network(s),
xxviii, xxxi, 108–109, 114, 115,
293–294
domain description and, 294, 295
data sources, 295–296
detection algorithms, 296
intrusion detection systems, examples of,
296–297, 297
origin and concepts of, 294, 294–295
paradigm changes in, 311
reaction and, 299–301, 300
security information management and, 297
alert correlations, issues with, 299
pertinence correlation and intrusion prevention, relationship between, 299
in sensors, 299
pertinence improvement, 298–299
reduction of alert volume, 297–298
volume reduction and pertinence improvement, combination of, 298
systems, adapting, xxxi
intrusion detection systems (IDSs), 294,
294–295
domain characteristics of, 297
examples of, 296–297
intrusion prevention, 107–108
intrusion recovery, 109
invisible management, 49
ITU-T, 37
jamming, see cognitive radio networks, attacks on
jellyfish attack, 284–285
joint action learning (JAL), 234
joint probability distribution (JPD), 229
Joint Tactical Radio System (JTRS), 190,
191
Juniper router, 29, 30
KASUMI, 287
k-component model, 87
key depletion attack, 283–284
K input packets, 321–323, 329
knowledge, 80, 167–169, 169t
knowledge collegial, 232
knowledge discovery and data mining (KDD),
180
Knowledge Plane, xxx, 27, 28, 97, 99, 105,
106, 107, 113, 114, 116
Langevin equation, 4
language translation, 42
layering, 121, 122, 125, 129, 131, 135, 140, 142
learning and reasoning, in cognitive network
design decisions impacting, 237
critical, 238
behavior and, 238–241
cognitive control and, 242–243
computational state and, 241–242
game theory and, 237–238
distributed, xxx–xxxi
sensory and actuator functions of, 236–237
see also multiagent system (MAS)
learning apprentice, 101
learning characteristic descriptions, 106
learning for interpretation and understanding,
103–104
learning from mental search, 102
learning from problem solving, 102
licensed spectrum, xxvii, xxviii
light weight security, 288–289
link layer, 280–281
asynchronous sensing attack on, 281
biased utility attack on, 281
false feedback attack on, 281
local area networks (LANs), 1, 45
local effector functions, 160
Lotka-Volterra model, 15, 16
low cOst ripple effect attack (LORA), 283
Luby transform (LT) codes, 323
decoder, 324–325
error probability in, 329, 330
degree distributions, 325
encoder, 323–324, 324
ideal solition distributions, 325–326
robust solition distributions, 326
machine learning, xxix–xxx, 97–98
cognitive radio architecture and, xxx
definition of, 49
importance of, 49
issues and research, challenges in, xxix, 113
from centralized to distributed learning,
114–115
from direct to declarative models,
115–116
from engineered to constructed
representations, 115
from fixed to changing environments,
114
from knowledge-lean to knowledge-rich
learning, 115
from offline to online learning, 113–114
from supervised to autonomous learning,
113
methodology and evaluation, challenges in,
116–117
problem formulations in, 99–105
acting and planning, learning for,
100–103
classification or regression, learning for,
99
interpretation and understanding,
learning for, 103–104
summary of, 104–105, 105t
technique, 49
Mackay, Charles, 212
macro operators, 101
Managed Object Format (MOF), 37
management information bases (MIBs), 29, 30, 37
management plane, 26, 26, 27, 28
market-control model, 81–82
M-ary erasures, 320, 321
meaning and meaning change (semantics), 42
medium access control, 58
mesh networks, 137–138
MessageTransmission, 258, 259, 266
micro electromechanical systems (MEMS),
153–154
middleware, 87
misuse detection, 296, 312
MIT Roofnet, 137
mobile ad hoc network
mobile ad-hoc networks (MANETs), 1, 203,
205, 287
mobile computing, xxv
mobile IP, 65–66
mobility, 1–2
model-based translation layer (MBTL), 39,
46–4739
model comparator pattern, 82
Model Driven Architecture (MDA), 42
molecular processes, 6–7, 7
monitoring, 108
morphology, 42
Morse code, 153
Motorola
autonomic research, analogies for, 26
FOCALE and, prototyping of, 47, 49
management plane and inference plane, formalizing, 27
Seamless Mobility initiative, 44, 45–46
MPEG-2, 328
MPEG-4, 328
multiagent system (MAS), 82, 224
cognitive network as, 225–227
distributed learning and, 233t
elements of, 232–233
methods for, 233–234
distributed case-based reasoning (CBR) and, 235–236
distributed learning of Bayesian networks (BNs), 234–235
distributed Q-learning and, 234
distributed reasoning and, 233t
elements of, 227–228
methods for (see also parallel metaheuristics)
distributed Bayesian networks (BNs) and, 229–230
distributed constraint reasoning and, 228–229
distributed multiobjective reasoning and, 232
multiband, multimode radio (MBMMR), 168
multilateral decisions, 207–208, 208
multimedia broadcast and multicast services (MBMS), 137
multi-packet reception, 128
multiple description codes (MDC), 328, 329
multiply sectioned Bayesian network (MSBN), 229–230
Munshi, Kaivan, 213
Nash equilibrium (inefficient), 241
natural language processing, 182–183, 183
Nautilus, 285
nearest-neighbor approaches, 100
negative selection, 7
negotiated spectrum sharing, 317
network-assisted diversity multiple access (NDMA), 132
network endo-parasite attack (NEPA), 282
network functions, 55–58, 56
data transmission and, scheduling, 57–58, 66–69
analysis of, 69
application data and, adapting to changes in, 67–68, 68
medium access control and, 58
network resources and, adapting to changes in, 67
node duty cycle management and, 58
network layer, 282
channel ecto-parasite attack (CEPA) on, 282–283
low cost ripple effect attack (LORA) on, 283
network endo-parasite attack (NEPA) on, 282
network-level cognitive processing, 207–209, 210, 219
network resources
data transmission and, adapting to changes in, 67
hop-by-hop connectivity and, adapting to changes in, 59–61, 60
routing data and, adapting to changes in, 63–64
transmission rate and, adapting to changes in, 69–71, 71
network state, 73, 74
neural network methods, 100
NGOSS, Telemanagement Forum’s, 28
$N-K$ redundant packets, 321
node architecture, 160, 160–161, 168t
node clustering, 60, 60
node cooperation, 128–129
node duty cycle management, 58
node-level cognitive processing, 207, 209, 219
‘nogood learning,’ 111
noise, 200
nonlinear flows, 200
notifications and hints, 132
N output packets, 321–322
N-Squared, 162, 162t
object constraint language (OCL), 42
Object Management Group (OMG), 42, 153, 159, 190
observation phase hierarchy, 175, 181–182, 183, 185
Observe-Orient- Decide-Act (OODA), xxvii, xxxi, 175, 305–310 306
OCRA, 286
offline learning, 98
one-class learning, 106
one-shot decision, 227
online learning, 98, 98, 113–114
ontology(ies)
- DEN-ng and, 36, 38, 40, 44, 47
- in ideal cognitive radio (iCR), 161
- merging tool to find semantic differences, 43
- models and, integrating with, 36–38, 38
- ‘ontological comparison’ and, 43–44, 44
- role of, in autonomic computing, 32, 32–33
- semantic web vision and, notion of, 250
- shared vocabulary, defining, 42
- term of ‘ontology’ and, use of, 248
- of time, 259
- ontology and rule abstraction layer (ORAL), 265
- OODA loop, 225
- OOPDAL loop (Observe, Orient, Plan, Decide, Act and Learn), 158, 207
- Open Systems Interconnection (OSI), xxvii, 121, 123, 142
- operational knowledge, 83
- Operational Support Systems (OSSs), 31
- opportunistic packet scheduling and media access control (OSMA), 67, 69
- opportunistic spectrum sharing, 317
- optimization, 109
- Optimized Link State Routing (OLSR), 205
- organization, concept of, 302
- organization-based access control model (OrBAC), 302, 304, 310
- orthogonal frequency division multiplexing (OFDM), 286
- overlapping secondary attack, 280
- paracrine signaling, 7
- parallel genetic algorithms (PGAs), 230–231
- parallel metaheuristics, 230
- parallel genetic algorithms (PGAs) and, 230–231
- parallel scatter search (PSS) and, 231
- parallel tabu search (PTS) and, 231–232
- parallel scatter search (PSS), 231
- parallel tabu search (PTS), 231–232
- parameter selection, 110, 111
- pattern completion, 99, 100
- PAYL, 308
- peer-to-peer (P2P) networks, 1, 57
- perception, 173

Perception and Action Abstraction Layer (PAAL), 266
- perception functions of radio, 173–174
- performance, 98
- PERL, 29
- pheromones, 9–10, 85, 86, 172
- physical layer, 279–280
- intentional jamming attack on, 280
- overlapping secondary attack on, 280
- primary receiver jamming attack on, 280
- sensitivity amplifying attack on, 280
- planning, 100–103
- platform independent model (PIM), 174
- policy (decision making policy), 102
- policy(ies)
 - definition of, 51
 - static use of, 41
- policy-based control, 84–85
- policy continuum, 18, 19
- policy language, 41, 41
- policy management
 - approach to, 34, 34
 - context and, 39–40, 40
 - post-mortem analysis, 109
- power control, 126, 132–133
- predator-prey models, 15–17
- Predictive Wireless Routing Protocol (PWRP), 138
- primary afferent path, 163
- primary receiver jamming attack, 280
- primary user (PU), 316, 317
- primary user identification
- primary users, 215
- principal component analysis, 84
- private information, 212, 213
- PRNET, 205
- proactive, xxv
- probabilistic methods, 100
- programmable digital radios (PDRs), 188
- programmable networks, xxv
- programming by demonstration, 101
- PROLOG, 166
- propositional logic (Boolean algebra), 251
- protocol heaps, 135
- public information, 212, 213, 214
- public key infrastructure (PKI), 155
- pulse-coupled oscillators, 11, 11–12

Q-learning, distributed, 234
QMON, 84
quality of information (QoI), 148, 156–158
quality of service (QoS), xxvii, 46, 49, 63, 84, 85, 89–90, 282, 286, 384
QVT (Query–View–Transformation), 42
radian, 253–255, 256, 257
notional, 255, 256
RadarCheck, 261–266
RadarCheckAlarm, 264, 267
RadarCheckedAtTime(x, t), 260, 261
RADAR CHECK TIME_THRESHOLD, 260, 261, 262, 263
RequireRadarCheck(x, t), 260
sensing capability, 254, 256
signals, 254, 256–257, 260
waveform, 266
radio, 247
radio access network managers (RANMANs), 286
radio knowledge representation language (RKRL), 185, 193
radio procedure skill sets (SSs), 185
radio spectrum, regulated access to, xxvii
Raptor codes, 326–328, 327, 328
rate control, 16
reaction-diffusion (RD), 12–14, 13
reactive adaptation, xxv
reasoning, xxv, xxx–xxxi
reception control protocol (RCP), xxv, 70
reconfiguration, 110–111
recovery, 109
Reed-Solomon codes, 321, 322, 330
regression, 99–100
regulatory authorities (RAs), 168
reinforcement learning, 86, 101–102
relevance, definition of, 157
repair-based configuration, 112
replicated parallel scatter search (RPSS), 231
replication, 83
representation change, 104
from engineered to constructed, 115
resilience, 4, 16, 19
resilient overlay network (RON), 63, 66, 74–75
resource reallocation pattern, 82
response, 109
response surface methodology, 103
reverse path multicast, 65
rewards-based learning, 232
Roaming hub-based architecture (RoamHBA), 61, 62
robust soliton distribution, 326
Rogers, Everett, 212–213
role-based access control (RBAC), 302, 304
rough set theory, 84
round trip time (RTT), 283, 285
round trip timeout (RTO), 285
router/NAT box, 112
routing
ad hoc on-demand distance vector (AODV), 5
ant colony optimization (ACO) and, 9
AntHocNet, 10–11
AntNet, 10, 11
attack, information jamming, 285
gossip-based, 18
modes, 30
multipath, 5
protocols, 10, 12, 213
virtual, 29, 30
RTS probing, 69
Ruckus Wireless, 137
Rule Formula, 267
rule induction, 100
Rule Interchange Format (RIF), 265
rules
Event–Condition–Action (ECA), 263–264, 267
of the game, 248
need for, 259–258
runtime validity checking, 90–91
scalability, 1
AntHocNet vs. ad hoc on-demand distance vector (AODV), 10
BIONETS and, 9
controllability and, trade-off between, 2, 3
of detector cells, 9
of epidemic models, 16
of Lotka–Volterra model, 16
seamless mobility, 45–46, 46
Motorola’s Seamless Mobility initiative and, 44
secondary (non-primary) user (SU), 215, 218, 316, 317, 319
secondary user link (SUL), 319, 320, 320
security attacks, xxvii, xxxi
see also cognitive radio networks, attacks on
security information management, 294, 295, 297, 311
security issues, xxvii, xxviii
see also intrusion detection, in cognitive
network(s)
security policy(ies), xxxi, 294, 302, 305, 309–310
security properties, 293
self, definition and specification of, 84
self- attributes of cognitive networks, xxvi–xxvii
self-awareness, xxix, 77
self-configuration capability, xxvi, 78, 81
self-governance, definition of, 51
self-governing networks, xxv, xxviii, xxix
self-healing, 79, 87–88
selfishness, 239
self-knowledge, 25–26
definition of, 51
self-management
advances in specific problem domains
quality of service (QoS) and, 89–90
self-healing and self-protection, 87–88
self-optimization and, 86–87
self-organization, 88–89
intelligence, 83–86
decision making in autonomic components, 83–86
knowledge and, 83
self-managing, xxix
self-managing networks, xxix
challenges in, 79–81
control loop of, 79, 79
designing, theories for, 81–83
vision of, 78–79
self model, 266
self-monitoring, 91
self/nonself cells, 7–8
self-optimizing, 78, 86–87, 88–89
self-organization, 3–4, 217, 218
self-protection, 79, 87–88
self-regenerating cluster, 81
self-stabilization
concept of, 91–92
of network path, 92
semantic-based reasoning, 41–43
semantics, 42, 248–249
of association using IEEE 802.11 and
cognitive spectrum access, dynamic
frequency selection (DFS) and, 254–257, 256
commentary on the scenarios, 257
considerations and scenarios, motivating, 253–254
of association using Web Ontology
Language Description Logic (OWL-DL) ontologies, 257–259
dynamic frequency selection (DFS) scenario and, 260–261
ontology of time and, 259
rules and, need for, 259–260
future of, in cognitive radio, 268
model-theoretic, cognitive radio (CR) and, 252–253
model-theoretic, for imperatives, 264–265
syntax of, 250
term of ‘semantics,’ usage of, 249–250
semantic similarity matching and, 37–38, 38
semantic web
encoding and, 257
ontology and, 250–251
Semantic Web Rule Language (SWRL), xxxi, 248
semi-supervised learning, 100
sensitivity amplifying attack, 280
sensor nodes, 11–12
sensory functions, 236–237
sensory functions of radio, 174
sentence structure (syntax), 42
sequential reasoning, 227–228
service level agreements (SLAs), 37–38, 40
signal-to-interference-plus-noise ratio (SINR), 233
Simple Network Management Protocol (SNMP), 29
alarm, 37, 38
configuration support for, lack of, 31
management information bases (MIBs), 30
problems with, 29
SINCGARS, 170
SIR model, 17, 17–18
situation calculus, 83
Smart-Cast, 137
Soar, 225
soft state fail-safe models, 90–91
software adaptable network (SAN), 225, 226, 227, 236, 237
software communications architecture (SCA), 153, 190–192, 191
software-defined radio (SDR), 148, 153–154, 159–160
cognitive radio architecture (CRA) and, building on, 187–199
architecture migration and, from SDR to ideal cognitive radio (iCR), 194
cognitive electronics and, 194
functions-transforms model of radio and, 193, 193–194
ideal cognitive radio (iCR) design rules and, industrial strength, 197–199
radio architecture and, 189–190, 190
radio evolution towards, 196
research topics for, 196–197
software communications architecture (SCA) and, 190–192, 191, 192
software radio (SWR) and, architecture principles, 187–189, 188, 189
transitioning towards cognition, 194–196, 195
spectral agility and, 316
unified modeling language (UML)-based object-oriented model, 190–191, 191
Software-Defined Radio (SDR) Forum, 148, 152, 153, 159, 167
unified modeling language (UML) management and computational architectures, 192, 192
source-adaptive multilayered multicast (SAMM), 70
space-time, 148, 158, 168, 169, 172, 180, 186, 186, 194, 197, 198, 199
spectrum
 licensed, xxvii, xxviii
unlicensed, xxvii–xxviii
spectrum analysis, 273
spectrum aware approach, 288
spectrum consumer, 217
spectrum handoff, 271
spectrum mobility, 273
spectrum pooling, 317–318, 318
CORVUS system and, 317–318, 318, 318–310
secondary users (SU) and, reliable communication among, 319
new subchannel acquisition and, 319
subchannel selection and, 319
spectrum scarcity, xxviii
spectrum sensing, 272–273
spectrum white space, 209, 215
speech, 182
speech understanding, 150–151
static spectrum allocation, 315–318, 316
station (STA), 257
stigmergy, 9, 83
stimulus-experience-response model (serModel), 177
stimulus recognition, 176
stochastic recognition, 176
subchannel acquisition, 319
subchannel selection, 319
supervised learning, 99–100, 113
support-vector machines, 100
support vector machines (SVM), 180
SURAN, 205
Surowiecki, James, 203, 212, 213
SwarmingNet, 90
swarm intelligence, 9–14
ant colony optimization (ACO) and, 9–10, 10
AntHocNet and, 10–11
AntNet and, 10
pulse-coupled oscillators and, 11, 11–12
reaction diffusion and, 12–14, 13
synaptic signaling, 7
synchronization, with pulse-coupled oscillators, 11, 11–12
syntax, 42, 250, 250t
of description logics, 42, 250–251
syslog service, 295
systems applications, 160, 161
T-cells, 7
TCP/IP model, xxvii, 121, 141–142
TeleManagement Forum (TMF), 28, 37
TellMe®, 148, 150, 151, 152, 199
term generation, 104
theory revision, 104
threat model, 301
constraints, 301–303, 302
impact of threat and, 303
availability of, 303
confidentiality of, 304–305
integrity of, 304
threat response, 301, 311
3G cellular networks, 136
3GPP/2, 37
threshold-based performance management, 87
TimeDifference(t1, t2), 260, 262
time-division multiple access (TDMA), 133
Timeout-MAC (T-MAC), 68–69, 69
tiny nodes (T-nodes), 9
TiVO®, 150
topological configuration, 110, 111–112
tornado codes, 322, 330
traceback mechanisms, 303
traditional erasure codes, 321–322, 330
Traffic-adaptive medium access (TRAMA), 68
tragedy of the commons, 218
training corpora/interfaces, 200
transmission rate, 58, 69–73
transmittedBy, 258, 259, 260, 266
Transport Control Protocol (TCP)
 congestion control algorithms of, 72, 73–74, 79, 243
 jellyfish attack and, 284–285
 sender, 125, 131
 source node, 72, 73
 transport layer attacks and, 283
 Westwood, 70, 72
 on wireless links, 125
 transport layer, 283
 key depletion attack on, 283–284
 traveling salesman problem (TSP), 9
 Tropos Networks, 138
Turing-Capable (TC), 171, 197
Turing-Gödel incompleteness, 158, 171–172, 197, 198
Ultra-wide-band (UWB), 215
UMTS authentication and key agreement (UMTS AKA), 287
understanding, 103–104
unidirectional mapping, 43
unified modeling language (UML), 26, 27, 37, 42
 object-oriented model of software-defined radio (SDR), 190–192, 191, 192
unilateral decisions, 207
universal theories of cognition, 225
universe, 185–186
unlicensed spectrum, xxvii–xxviii
unsupervised learning, 100
user behaviors, adapting to changes in hop-by-hop connectivity and, 61–62
 routing data and, 65–66
User Datagram Protocol (UDP), 283
user nodes (U-nodes), 9
user sensory perception (User SP), 160
validation, 90–91
validity, definition of, 156–157
value functions, 102
vertical handover, 126–127
vertical handovers, 136
vision, 147–148
VLSI design, 112
vocabulary (morphology), 42
VoIP, 45
WalkSAT, 111
watchdog timer, 172
Web Ontology Language (OWL), xxxi, 248, 250–251
Web Ontology Language Description Logic (OWL-DL), 251, 257–259
well-formed formula (wff), 250
white space spectrum, 209, 215
‘Why?’ scenario, 106, 107
wide area networks (WANS), 45
wide area networks (WANs), 1
Wiener process, 4
WiMAX, 45
window of compromisibility, 109
window of penetrability, 109
window of vulnerability, 108
Wireless LAN (WLAN), 45, 126, 133, 137, 287
wireless networking extensions to FOCALE, 47, 47–48
wireless networking requirements, 47
Wireless RAN (WRAN), 136, 286
Wireless World Research Forum (WWRF), 148
wisdom of crowds, 211–214
The Wisdom of Crowds (Surowiecki), 203–204, 212
world model, 266
worms, 107
XG (NeXt Generation), 196
xG networks, 215
XML-based language, 39
ZigBee, 45